LinBox : Algèbre linéaire exacte sur les corps finis et applications

Pascal Giorgi

Laboratoire LIP - École Normale Supérieure de Lyon

Projet LinBox

• Projet international USA-Canada-France, fincancement NSF/CNRS 31 chercheurs

⇒ algébre linéaire exacte

- Site web: www.linalg.org
- Bibliothèque générique C++, licence GPL, (80000 lignes de code)

Principaux développements:

- algorithmes (rang, systémes linéaire,...)
 matrices (boîtes noires, conteneurs)
 domaines de calcul (corps finis, entiers, rationnels)
 généricité (plug&play)

Séminaire M.O.S.A.I.C LMC-IMAG , Grenoble, 25 Mars 2004

Plan de l'exposé

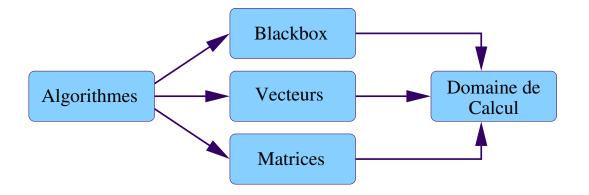
- Strucure et généricité de LinBox corps finis, Boîte noire, Matrice
- Algorithmes sur un corps fini méthode d'élimination, méthode itérative (Krylov/Lanczoz)
- \bullet Extension des problèmes sur $\mathbb Z$ Méthodes d'approximation et interpolation Systèmes linéaires diophantiens

Séminaire M.O.S.A.I.C LMC-IMAG , Grenoble, 25 Mars 2004

Structure et généricité de LinBox

Structure de LinBox

• Trois niveaux d'implantation (permettant la réutilisation et la reconfiguration)



- Matrices, Blackbox, Domaines de calcul respectent des interfaces.
- Interface= classe C++ virtuelle, template archetype:
 - définit l'interface commune aux objets.
 fournit une instance de code compilé.
 contrôle l'explosion de code.
 utilisation optionnelle.

Structure des corps finis (domaine des coefficients)

- Encapsulation des types : eléments, générateur aléatoire d'éléments.
- Eléments: aucune information sur le corps d'appartenance.
- Corps: méthodes affectation, égalité, arithmétique, IO pour les éléments:

```
x = y : F.assign(x,y)

x == y : F.areEqual(x,y)

x = y + z : F.add(x,y,z)

cout<< x : F.write(cout,x)
```

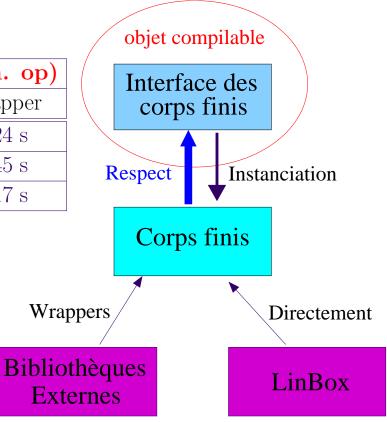
• Implantation : directe, plug-ins (au travers de wrappers).

Interfaces des Corps Finis

Timings for different LinBox field levels (arith. op)							
Library	Z/pZ	loop	Directly	Wrapper			
NTL::ZZ_p	1978146594666	100.000	0.24 s	0.24 s			
//	//	1.000.000	2.45 s	$2.45 \mathrm{\ s}$			
NTL::zz_p	553	300.000	0.16 s	$0.17 \; {\rm s}$			

• Interface:

objet à part entière validations des corps finis évite la réécriture (template)



Wrappers et arithmétiques

- NTL (www.shoup.net/ntl)
 - entiers simple-multi précision, polynômes & arithmétique modulaire
 - multiplication flot tante (a * b mod p = a * b - $\lfloor \frac{a*b}{p} \rfloor$ * p)
- GIVARO (www-apache.imag.fr/software/givaro/)
 - entiers simple precision (16,32,64 bits)
 - arithmétique modulaire, tabulée, générateur, Montgomery
- \bullet LIDIA (www.informatik.tu-darmstadt.de/TI/LiDIA/)
 - polynômes, entiers simple-multi précision
 - arithmétique modulaire, générateur
- LINBOX (www.linalg.org)
 - classe générique (+,-,*,/) & arithmétique modulaire
 - spécialisation (entiers 16,32,64 bits, flottants double précision)

Structure des matrices boîtes noires (Blackbox)

- Modèle des Blackbox paramétré par une classe de vecteurs (domaine d'application).
- Domaine de calcul passé comme paramètre ou specifié comme attribut.
- Seule l'application à un vecteur est autorisée :

```
x = Ay : A.apply(x,y)

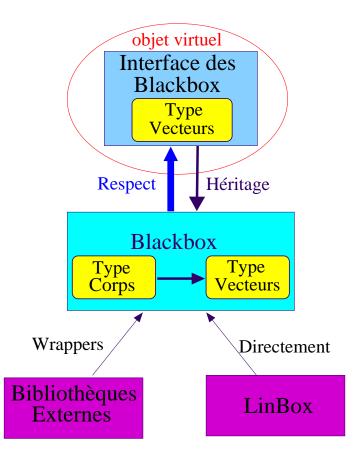
x = A^{T}y : A.applyTranspose(x,y)
```

• Récupération des dimensions de la matrice:

A.rowdim() A.coldim()

Interfaces des BlackBox

- Interface: purement virtuelle
- Paramétrée par un type de vecteur (compatible STL)
- Vecteurs: définis sur un type d'élément
- LinBox fournit 3 types de vecteurs :
 - Dense vector
 - Sparse sequence vector
 - Sparse map vector



Opérations arithmétiques sur les matrices

• Opération hybride (exacte-numérique):

Approche FFLAS package [Dumas-Gautier-Pernet 2002]

```
conversions éléments \iff flottants opération numérique (BLAS) conversions flottants \iff éléments
```

Interêt:

Minimise le nombre de réductions modulaires Avantage des routines numériques BLAS (bloc, optimisation de cache)

 \Rightarrow 67.58s pour une multiplication d'ordre 5000 sur GF(101)

• LinBox: domaine générique au travers d'une interface matrice BLAS

Séminaire M.O.S.A.I.C LMC-IMAG , Grenoble, $25~\mathrm{Mars}~2004$

Algorithmes sur les corps finis

Algèbre linéaire sur un corps

• Depuis 1969, multiplication matrices d'ordre n en moins que $O(n^3)$ [Strassen 1969]: $O(n^{2.81})$

- Meilleurs algorithmes ⇒ multiplication matrices (complexité O(n^ω))
 [Strassen 1969]: inversion, systèmes linéaires, determinant
 [Bunch-Hopcroft 1974]: généralisation matrices non génériques
 [Ibarra-Moran-Hui 1982]: cas singulier: rang, noyaux
- Cas creux [Wiedemann 1986], systéme linéaire en O(n²), probabiliste

Séminaire M.O.S.A.I.C LMC-IMAG , Grenoble, 25 Mars 2004

Méthode à base d'élimination

Elimination de Gauss \Rightarrow simplification de la matrice

- Gauss ⇔ Décomposition LUP
- Algorithme de décomposition LSP [Ibarra-Moran-Hui 1982]
- Algorithme par bloc en $O(n^{\omega})$ \Longrightarrow $\begin{cases} \text{multiplication matrices} \\ \text{résolution systèmes triangulaires} \end{cases}$
 - pivot = matrice triangulaire
 - elimination = multiplication et addition matrices

Implantation via les bibliothèques numériques BLAS

- Multiplication matrice:
 - \rightarrow FFLAS package
- Systèmes linéaires triangulaires: algorithme bloc récursif

Résolution hybride (exacte-numérique):

recursif \rightarrow solution représentable exactement sur les flottants résolution numérique via BLAS et conversion

FFPACK package [Dumas-Giorgi-Pernet 2004]

- → implantation efficace (en-place) LSP/LQUP
- → Intégration à LinBox (interface avec MAPLE)

Performance FFPACK package

• Décomposition LQUP sur GF(101)

n	400	700	1000	2000	3000	5000
LQUP	0.05s	0.18s	0.46s	2.80s	7.79s	32.9s
FGEMM	0.04s	0.23s	0.62s	4.28s	14.72s	67.58s
Ratio	1.25	0.78	0.74	0.65	0.53	0.48

Complexité arithmétique pour $\omega = 3$: LQUP = 2/3 * Multiplication matrices

• Inversion sur GF(101)

n	400	700	1000	2000	3000	5000
Inv	0.18s	0.70s	1.79s	10.84s	32.33s	139.5s
FGEMM	0.04s	0.23s	0.62s	4.28s	14.72s	67.58s
Ratio	4.50	3.04	2.89	2.53	2.20	2.07

Complexité arithmétique pour $\omega = 3$: Inverse = 4/3 * Multiplication matrices

Séminaire M.O.S.A.I.C LMC-IMAG , Grenoble, 25 Mars 2004

Méthode itérative (Krylov)

- Conservation de la structure des matrice (ex: creuse)
- Algorithmes basés sur le produit matrice-vecteur

ex: [Wiedemann 1986]

$$A^{-1}b = \sum_{i=0}^{m} c_i.A^ib$$
, $c_i \in K$

Systèmes linéaires creux

• Algorithme proposé par [Wiedeman 1986] Soient $A \in K^{n \times n}$, $b \in K^n$ et $\Pi^{A,b}(\lambda)$ polynome minimal $\{A^ib\}_{i=0}^{\infty}$. $\Pi^{A,b}(A)b = c_0.b + c_1.Ab + + ... + c_d.A^db = 0$, $c_0 \neq 0 \in K$

$$\Rightarrow$$
 b = A. $\frac{1}{c_0}$ (c₁.b + c₂.Ab + ... + c_d.A^{d-1}b) = A.y

Lemme: [Wiedemann 1986]

Soit $u \in K^n$ aléatoire:

(forte probabilité) Polynôme minimal $\{A^ib\}_{i=0}^{\infty}$ = Polynôme minimal $\{uA^ib\}_{i=0}^{\infty}$

- Calcul générateur: algorithme théorie des codes [Berlekamp-Massey 1969]
- Algorithme par blocs [Coppersmith 1994, Giorgi-Jeannerod-Villard 2003] parallélisme, petit corps

Séminaire M.O.S.A.I.C LMC-IMAG , Grenoble, $25~\mathrm{Mars}~2004$

Matrices à coefficients sur \mathbb{Z}

Problématique différente:

taille des données \Rightarrow la complexité

- Transposition des méthodes (corps finis \rightarrow entiers): pas satisfaisante
- Approche classique : théorème des restes chinois $(O(n^{1+\epsilon}) \times \text{coût algébrique})$
- Cas des systémes linéaires:

```
restes chinois : O(n^{\omega+1+\epsilon})
approximation p-adique : O(n^{3+\epsilon})
high order lifting [Storjohan 2002]:O(n^{\omega+\epsilon})
```

Séminaire M.O.S.A.I.C LMC-IMAG , Grenoble, 25 Mars 2004

Systèmes linéaires sur Z

• Algorithme p-adique[Moenck et Carter 1979, Dixon 1982]:

• soient $A \in \mathbb{Z}^{n \times n}$, $b \in \mathbb{Z}^n$ trouver $x \in \mathbb{Q}^n / Ax = b$ **idée:** calculer $Ay \equiv b \mod p^{k+1}$, p premier

$$y = x_{[0]} + x_{[1]}p + x_{[2]}p^2 + ... + x_{[k]}p^k$$

• k choisi assez grand (Hadamard, Cramers: $k \approx n \log n$) \Rightarrow reconstruction de x (fractions continus y/p^{k+1})

 \bullet calcul des chiffres p-adiques : systèmes linéaire sur \mathbb{Z}_p

$$j=0: \\ A.x_{[0]} \equiv b \mod p \\ j=1: \\ A.(x_{[0]} + px_{[1]}) \equiv b \mod p^2, b_{[0]} = \frac{b-A.x_{[0]}}{p} \\ A.x_{[1]} \equiv b_{[0]} \mod p \\ j=2: \\ A.(x_{[0]} + px_{[1]} + p^2x_{[2]}) \equiv b \mod p^3, b_{[1]} = \frac{b_{[0]}-A.x_{[1]}}{p} \\ A.x_{[2]} \equiv b_{[1]} \mod p \\ j=i+1: \\ A.(x_{[0]} + x_{[1]}p + ... + x_{[i+1]}p^{i+1}) \equiv b \mod p^{i+2}, b_{[i]} = \frac{b^{[i-1]}-A.x_{[i]}}{p} \\ A.x_{[i+1]} \equiv b_{[i]} \mod p$$

implantation dans LinBox

- définition d'interface pour l'approximation (conteneur/itérateur)
- Résolution des systèmes sur \mathbb{Z}_p via : Wiedemann Inversion + produit matrice-vecteur
- optimisations :

utilisation maximale: FFLAS et FFPACK construction approximation: pas de bébé / pas de géant reconstruction rationnelle: seulement les facteurs inconnus

• Comparaison avec la bibliothèque NTL

Performances: méthode d'elimination

• Systèmes avec coefficients 32bits

n	50	150	350	500	650	1000
LinBox	0.08s	0.96s	7.47s	18.57s	36.65s	115.43s
NTL	0.06s	1.92s	24.07s	72.49s	159.88s	688.57s

• Systèmes avec coefficients 128bits

n	50	150	350	500	650	1000
LinBox	1.67s	18.18s	126.78s	311.56s	602.5s	1870.85s
NTL	0.39s	11.69s	141.86s	448.3s	922.59s	4124.55s

Systèmes linéaires diophantiens

idée : [Giesbrecht 1997] En combinant 2 solutions rationnelles y_1, y_2 de dénominateur d_1, d_2 on obtient une nouvelle solution rationnelle y_3 de dénominateur $d_3 = \gcd(d_1, d_2)$

exemple:

A.y₁ = A.
$$(\frac{1}{2}$$
.x₁) = b, x₁ $\in \mathbb{Z}^n$
A.y₂ = A. $(\frac{1}{3}$.x₂) = b, x₂ $\in \mathbb{Z}^n$
gcd(2,3) = 1 = 2 * 2 - 1 * 3
A. $(2 * x_1 - x_2) = 4b - 3b = b$

Lemme: soient $y_1, y_2 \in \mathbb{Q}^n$ 2 solutions de Ax = b soient d, s_1 , s_2 tels que: $d = \gcd(d(y_1), d(y_2)) = s_1d(y_1) + s_2d(y_2)$ alors: $y_3 = \frac{s_1d(y_1)y_1 + s_2d(y_2)y_2}{d} \text{ est une solution de } Ax = b$

Algorithme (solutions diophantiennes):

combiner plusieurs solutions rationnelles ⇒ dénominateur=1

 $u \in \mathbb{Z}^n$, $uA \equiv 0 \mod d$, $ub \not\equiv 0 \mod d$

Algorithme: (mise en place)

- Solutions rationnelles aléatoires ([Kaltofen-Saunders 1991]) perturbation du système
- Certifier l'inconsistence [Giesbrecht-Lobo-Saunders 1998] vecteur aléatoire du noyau
- Certifier la minimalité du dénominateur [Mulder-Storjohann 2004] $z \in \mathbb{Q}^{1 \times n}/zA \in \mathbb{Z}$, d(zb) est un facteur du dénominateur
- Convergence (extension anneau, préconditionnement) O(1) solutions rationnelles

Complexité: O (n^{\omega})

conclusion

LinBox:

- Boîtes à outil: Corps finis, Blackbox, Matrices, Vecteurs
- Plug-ins (BLAS, MAPLE, NTL)
- Méthodes itératives: efficace pour les matrices creuses
- Implantations efficaces (corps finis, entiers)

 \bullet Combinaison solutions rationnelles \rightarrow solution diophantienne

Perspectives

- Développer: outils pour les entiers (interface d'anneaux, CRT)
- Implanter: systèmes linéaires diophantiens
- Généraliser: interaction entre logiciels de calcul formel (ROXANE, Maple)

Questions:

- ★ en pratique: approche classique (p-adic, CRT) sc vs high order lifting?
- * Peut-on résoudre un système linéaire singulier directement ?