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Problem

Let A a non-singular matrix and b a vector defined over Z.
Problem : Compute x = A~1h over the rational numbers
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Main difficulty : expression swell
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Let A a non-singular matrix and b a vector defined over Z.
Problem : Compute x = A~1h over the rational numbers
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Main difficulty : expression swell and take advantage of sparsity



Motivations

Large linear systems are involved in many mathematical applications

Over finite fields : integers factorization [Odlyzko 1999],
discrete logarithm [Odlyzko 1999 ; Thomé 2003].

Over the integers : number theory [Cohen 1993], group theory [Newman 1972],
integer programming [Aardal, Hurkens, Lenstra 1999].

Rational linear systems are central in recent linear algebra algorithms

e Determinant [Abbott, Bronstein, Mulders 1999 ; Storjohann 2005]
e Smith form [Giesbrecht 1995 ; Eberly, Giesbrecht, Villard 2000]

e Nullspace, Kernel [Chen, Storjohann 2005]
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[. a small guide to rational linear system solving

[l. a quest to improve the cost of rational sparse solver
I1l. what are benefits in practice ?

IV. conclusion and future work
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Some notations in this talk

We will use :

e O°(n™) to describe a complexity of O(n*t log™? n) for any Ay > 0.

e w to refer to the exponent in the algebraic complexity of matrix
multiplication O(n“).

e ||...]| to refer to the maximal entries in a matrix or vector.

e IF to refer to a field (e.g. finite fields).




Rational solution for non-singular system

Dense matrices :

» Gaussian elimination and CRA (deterministic)
— O (n“Tllog||A||) bit operations

» P-adic lifting [Monck, Carter 1979 ; Dixon 1982]( probabilistic)
< O"(n®log||Al|) bit operations

» High order lifting [Storjohann 2005]( probabilistic)
— O7(n“ log||A||) bit operations

Sparse matrices :

» P-adic lifting or CRA [Kaltofen, Saunders 1991]( probabilistic)
— O (yn?log||A||) bit operations with v non-zero elts.



Rational solution for non-singular system

Dense matrices :

» Gaussian elimination and CRA (deterministic)
— O (n“Tllog||A||) bit operations

» P-adic lifting [Monck, Carter 1979 ; Dixon 1982]( probabilistic)
< O"(n®log||Al|) bit operations

» High order lifting [Storjohann 2005]( probabilistic)
— O7(n“ log||A||) bit operations

Sparse matrices :

» P-adic lifting or CRA [Kaltofen, Saunders 1991]( probabilistic)
— O (yn?log||A||) bit operations with v non-zero elts.

Remark [Giesbrecht 1997 ;Mulder, Storjohann 2003]

Diophantine solutions with an extra log n from rational solutions.



P-adic lifting with matrix inversion

Scheme to compute A~1h [Dixon 1982] :

11 B:=Almodp
(1-2) r:=b
for i := 0 to k

(2-1) X; := B.r mod p
(2-2) r:=(1/p)(r — A.x;)

. k i
(3-1) X:1=) i oXi.p'
(3-2) rational reconstruction on x
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P-adic lifting with matrix inversion

Scheme to compute A~1h [Dixon 1982] :

1-1) B:=A lmodp O (n®log||Al|)
(1-2) r:=b

for i :=0 to k k= 07(n)
(2-1) X; := B.r mod p O (n?log||Al])
(2-2) r.=(1/p)(r — Ax) O (n?log ||A]|)

. k i
(3-1) X 1= i oXi.p'
(3-2) rational reconstruction on x

Main operations : matrix inversion and matrix-vector products



Dense linear system solving into practice

Efficient implementations are available : LinBox 1.1 [www.linalg.org]

e Use tuned BLAS floating-point library for exact arithmetic
e matrix inversion over prime field [Dumas, Giorgi, Pernet 2004]
e BLAS matrix-vector product with CRT over the integers

e Rational number reconstruction
e half GCD [Schénage 1971]
e heuristic using integer multiplication [NTL library]



Dense linear system solving into practice

use of LinBox library on Pentium 4 - 3.4Ghz, 2Gb RAM

random dense linear system with 3 bits entries

[ n ][ 500 | 1000 [ 2000 | 3000 | 4000 | 5000 |
[ time ][ 0.6s | 4.3s | 31.1s | 99.6s [ 236.85 | 449.2s |

random dense linear system with 20 bits entries

[ n ][ 500 [ 1000 | 2000 | 3000 | 4000 [ 5000 |
[ time [[ 1.8s [ 12.95 [ 91.55 [ 299.7s | 706.4s [ MT |

performances improvement of a factor 10
over NTL's tuned implementation




What does happen when
matrices are sparse ?

We consider sparse matrices with O(n) non zero elements

— matrix-vector product needs only O(n) operations.



Sparse linear system and P-adic lifting

Computing the modular inverse is proscribed due to fill-in

Solution [Kaltofen, Saunders 1991] :
— use modular minimal polynomial instead of inverse
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Solution [Kaltofen, Saunders 1991] :
— use modular minimal polynomial instead of inverse
Wiedemann approach (1986)

Let A € IF"*" non-singular and b € IF". Then x = A~!b can be expressed
as a linear combination of the Krylov subspace {b, Ab, ..., A"b}

Let fA(\) = fo+ fid+ ...+ fgA? € IF[)] be the minimal polynomial of A
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Wiedemann approach (1986)

Let A € IF"*" non-singular and b € IF". Then x = A~!b can be expressed
as a linear combination of the Krylov subspace {b, Ab, ..., A"b}

Let fA(\) = fo+ fid+ ...+ fgA? € IF[)] be the minimal polynomial of A
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0




Sparse linear system and P-adic lifting

Computing the modular inverse is proscribed due to fill-in

Solution [Kaltofen, Saunders 1991] :
— use modular minimal polynomial instead of inverse

Wiedemann approach (1986)

Let A € IF"*" non-singular and b € IF". Then x = A~!b can be expressed
as a linear combination of the Krylov subspace {b, Ab, ..., A"b}

Let fA(\) = fo+ fid+ ...+ fgA? € IF[)] be the minimal polynomial of A

-1
Alp = T(flb + foAb + ...+ f4A?71b)
0

~~
X




P-adic algorithm for sparse systems

Scheme to compute A~1b [Kaltofen, Saunders 1991] :
(1-1) f# := minpoly(A) mod p
(1-2) r:=0>b

for i := 0 to k

deg f*
(2-1) Xj = }T} E fiA=r mod p
i=1

(2-2) = (1/p)(r — Ax;)

B .
(1) X:i1=),; oX.p
(3-2) rational reconstruction on x
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P-adic algorithm for sparse systems

Scheme to compute A~1b [Kaltofen, Saunders 1991] :

(1-1) f# := minpoly(A) mod p

(1-2) r:=0>b
for i :=0 to k k = O7(n)
deg f*
(2-1) Xj 1= _f—: Z f;A™ r mod p O (n deg f4 log||A]|)
i=1

(2-2) = (1/p)(r — Ax;)

B .
(1) X:i1=),; oX.p
(3-2) rational reconstruction on x

worst case deg f* = n gives a complexity of O"(n® log ||A]|)



Sparse linear system solving in practice

use of LinBox library on Itanium Il - 1.3Ghz, 128Gb RAM

random systems with 3 bits entries and 10 elts/row (plus identity)

system order

400 900 1600 2500 3600
Maple 64.7s 849s 11098s — —
CRA-Wied 14.8s 168s 1017s 3857s 11452s
P-adic-Wied | 10.2s 113s 693s 2629s 8034s
Dixon 09s 10s 42s 178s 429s




Sparse linear system solving in practice
use of LinBox library on Itanium Il - 1.3Ghz, 128Gb RAM

random systems with 3 bits entries and 10 elts/row (plus identity)

system order
400 900 1600 2500 3600

Maple 64.7s 849s 11098s = =
CRA-Wied 14.8s 168s 1017s 3857s 11452s
P-adic-Wied | 10.2s 113s 693s 2629s 8034s

Dixon 09s 10s 42s 178s 429s
main difference :
(211) x; = B.rmod p (Dixon)
. —1N~deg fA g pio1 o dic Wi
1) xi:=F >3 fiA” rmodp (P-adic-Wied)
Remark :

n sparse matrix applications is far from level 2 BLAS in practice.
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[l. a quest to improve the cost of rational sparse solver




Our objectives

In practice :
Integrate level 2 and 3 BLAS in integer sparse solver

In theory :

Improve bit complexity of sparse linear system solving

= O"(n°) bits operations with § < 37?



Integration of BLAS in sparse solver

Our goals :
e minimize the number of sparse matrix-vector products.

e maximize the number of level 2 and 3 BLAS operations.
— Block Wiedemann algorithm seems to be a good candidate

Let s be the blocking factor of Block Wiedemann algorithm.
then

» the number of sparse matrix-vector product is divided by roughly s.

» order s matrix operations are integrated.



A good candidate : Block Wiedemann

e Replace vector projections by block of vectors projections
s
—=

Al v | < bis 1st column of v

s{( "

Block Wiedemann approach [Coppersmith 1994]
Let A € IF**" of full rank, b € IF® and n = m x s.
One can use a column of the minimal generating matrix polynomial

P € IF[x]*** of sequence {uA’v} to express A~1b as a linear combination

of block krylov subspace {v, Av,..., A"v}




A good candidate : Block Wiedemann

e Replace vector projections by block of vectors projections
s
—=

Al v | < bis 1st column of v

s{( "

Block Wiedemann approach [Coppersmith 1994]

Let A € IF**" of full rank, b € IF® and n = m x s.

One can use a column of the minimal generating matrix polynomial

P € IF[x]*** of sequence {uA’v} to express A~1b as a linear combination

of block krylov subspace {v, Av,..., A"v}

the cost to compute P is :
> O7(s3m) field op. [Beckermann, Labahn 1994 ; Kaltofen 1995; Thomé 2002],

» O7(s“m) field op. [Giorgi, Jeannerod, Villard 2003].




Block Wiedemann and P-adic

Scheme to compute A~1h :

(1-1) r:=>b
for i := 0 to k

V1 =1

x; := linear combi (A'v, P) mod p
r:=(1/p)(r — Ax;)

X .
(3-1) X:i= i oX.p'
(3-2) rational reconstruction on x

(2-1)
(2-2) P := block minpoly {uA’v} mod p
(2-3)
(2-4)
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for i :== 0 to k k = O7(n)
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Block Wiedemann and P-adic

Scheme to compute A~1h :

(1-1) r:=>b

for i :== 0 to k k = O7(n)
(2-1) Vig =T
(22) P := block minpoly {uA'v} mod p O (s*nlog |All)
(2-3) X := linear combi (A'v, P) mod p O (n?log||Al|)
(2-4) r:=(1/p)(r — Ax;)

X .
(3-1) X:i= i oX.p'
(3-2) rational reconstruction on x

Not satisfying : computation of block minpoly. at each steps

How to avoid the computation of the block minimal polynomial ?



Our alternative to Block Wiedemann

Express the inverse of the sparse matrix through a structured form
— block Hankel/Toeplitz structures

Let v € IF**" and v € TF™*® s.t. following matrices are non-singular
u
uA

U= . JV=|v|Av|. . [AZ=lv | € IB2%2

uAm—l



Our alternative to Block Wiedemann

Express the inverse of the sparse matrix through a structured form
— block Hankel/Toeplitz structures
Let v € IF**™ and v € IF"*® s.t. following matrices are non-singular

u

uA
W = . V=|v|Av|...|A™ v | e F™X

uAm—l

then we can define the block Hankel matrix

al a2 ... am

Gy @3 - Qmyl . .
H = UAVi= . , aj=uA'v el

am Qp ;1

and thus we have A1 = VH1U



Block-Hankel matrix inversion

Nice property on block Hankel matrix inverse
[Gohberg, Krupnik 1972, Labahn, Choi, Cabay 1990]

H™ =

* * * *
RN ) ~ AN

Hy ‘-;_1 /:/’2 ‘:rz
where Hi, H, are block Hankel matrices and Ty, T, are block Toeplitz
matrices




Block-Hankel matrix inversion

Nice property on block Hankel matrix inverse
[Gohberg, Krupnik 1972, Labahn, Choi, Cabay 1990]

H™ =

* * * *
RN ) ~ AN

Hy ‘-;_1 /:/’2 ‘:rz
where Hi, H, are block Hankel matrices and Ty, T, are block Toeplitz
matrices

e Computing inverse formula of H=! reduces to matrix-polynomial
multiplication : O"(s>m) [Giorgi, Jeannerod, Villard 2003].

e Computing H=1v for any vector v reduces to
matrix-polynomial /vector-polynomial multiplication : O"(s>m)




On the way to a better algorithm

Scheme to compute A~1h :

2m—1
1-1) H(z) = Z uA'v.z'~t mod p
i=1
(1-2) compute H~! mod p from H(z)
(1-3) r:=0>b

for i := 0 to k
(2-1) x;i .= VH1U.r mod p
(2-2) r:=(1/p)(r — Ax;)

X .
(1) X:=); oX.p'
(3-2) rational reconstruction on x
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Scheme to compute A~1h :

2m—1
(1) H(z):= ) uAv.z"" mod p O (sn? log ||All)
i=1
(1-2) compute H~! mod p from H(z) O (s*nlog |All)
(1-3) r:=0>b
for i := 0 to k k = O7(n)
(1)  x:=VH 'U.r mod p O ((n® + sn) log||Al|)
(2-2) r:=(1/p)(r — Ax) O"(nlog||Al|)

X .
(1) X:=); oX.p'
(3-2) rational reconstruction on x



On the way to a better algorithm

Scheme to compute A~1h :

2m—1
1-1) H(z) = Z uA'v.z'~t mod p
i=1
(1-2) compute H~! mod p from H(z)
(1-3) r:=0>b

for i := 0 to k k = O7(n)
21y  x:=V U.r mod p O ((n? ) log ||Al])
(2-2) r:=(1/p)(r — A.x;)

X .
(1) X:=); oX.p'
(3-2) rational reconstruction on x

Not yet satisfying : applying matrices U and V is too costly




Applying block Krylov subspaces
V = | v|Av|...|A™ v | € IF™*® and v € [F**®
can be rewrite as

o= + ...+ A"

S
+
>
S

Therefore, applying V to a vector corresponds to :
e m — 1 linear combinations of columns of v

e m — 1 applications of A
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Applying block Krylov subspaces
V = | v|Av|...|A" v | € F**™ and v € IF™*®

can be rewrite as

Va— dbe Mgt AT v

S
+
>
S

Therefore, applying V to a vector corresponds to :
e m — 1 linear combinations of columns of v O (m x snlog ||A]|)

e m — 1 applications of A

How to improve the complexity ?

= try to use special block projections v and v




Definition of suitable block projections

Considering A € IF™*" non-singular and n = m X s.

Let us denote K(A,v):=[v|Av|---| A"y | € I

Definition :
For any non-singular A € TF"*" and s|n a suitable block projection
(R, u,v) € TF™*™ x " x TF"*® is defined

such that :
1. K(RA,v) and K((RA)T,u") are non-singular,
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Definition of suitable block projections

Considering A € IF™*" non-singular and n = m X s.

Let us denote K(A,v):=[v|Av|---| A"y | € I

Definition :

For any non-singular A € TF"*" and s|n a suitable block projection
(R, u,v) € TF™*™ x " x TF"*® is defined

such that :
1. K(RA,v) and K((RA)T,u") are non-singular,

2. R can be applied to a vector with O7(n) operations,

T

3. u, u”, vand v can be applied to a vector with O"(n) operations.




A suitable sparse block projection

Theorem [Eberly, Giesbrecht, Giorgi, Storjohann, Villard - ISSAC'07 submission] :

Let vi = (I, ... 1) € IF"*® (m copies of s x s identity) and
let D = diag(d1,...,01,02,...,02,...,0m,...,0m) be an n x n diagonal
matrix with m distinct indeterminates ¢;, each occurring s times.

If the leading ks x ks minor of A is non-zero for 1 < k < m, then
K(DAD,v) € F"*" is invertible.




A suitable sparse block projection

Theorem [Eberly, Giesbrecht, Giorgi, Storjohann, Villard - ISSAC'07 submission] :

Let vi = (I, ... 1) € IF"*® (m copies of s x s identity) and
let D = diag(d1,...,01,02,...,02,...,0m,...,0m) be an n x n diagonal
matrix with m distinct indeterminates ¢;, each occurring s times.

If the leading ks x ks minor of A is non-zero for 1 < k < m, then
K(DAD,v) € F"*" is invertible.

Assuming that #IF > n(n + 1)

Let A € TF"*" a non-singular matrix with all leading minors being non
zero and D € TF"*" a diagonal matrix. Then the triple (R, i, ¥) such that
R =D? &" = D7 'v and ¥ = Dv define a suitable block projection.




A suitable sparse block projection

Theorem [Eberly, Giesbrecht, Giorgi, Storjohann, Villard - ISSAC'07 submission] :

Let vi = (I, ... 1) € IF"*® (m copies of s x s identity) and
let D = diag(d1,...,01,02,...,02,...,0m,...,0m) be an n x n diagonal
matrix with m distinct indeterminates ¢;, each occurring s times.

If the leading ks x ks minor of A is non-zero for 1 < k < m, then
K(DAD,v) € F"*" is invertible.

Assuming that #IF > n(n + 1)

Let A € TF"*" a non-singular matrix with all leading minors being non
zero and D € TF"*" a diagonal matrix. Then the triple (R, i, ¥) such that
R =D? &" = D7 'v and ¥ = Dv define a suitable block projection.

Remark : The same result holds for arbitrary non-singular matrices
(Toeplitz preconditioners achieve generic rank profile [Kaltofen, Saunders 1991].)




Our new algorithm

Scheme to compute A~1b :

(1-1)

(1-2)

(1-3)

(1-4)

(1-5)

choose R and blocks 1, ¥
set A:= R.Aand b:= R.b

2m—1
H(z):= ) GA%.Z ' modp
i=1
compute H ! mod p from H(z)
r.=»>b

for i :=0 to k
xi == VH 'U.r mod p
r:=(1/p)(r — A.x;)

.k i
Xi= ) i XD
rational reconstruction on x



Our new algorithm

Scheme to compute A~1b :

(1-1)

(1-2)

(1-3)

choose R and blocks 1, ¥
set A:= R.Aand b:= R.b

2m—1
H(z):= ) A%z ' modp
i=1
compute H ! mod p from H(z)
r.=»>b

for i :=0 to k
x;i == VH 'U.r mod p
r:=(1/p)(r — A.x;)

.k i
Xi= ) i XD
rational reconstruction on x

O"(n* log ||Al])
O"(snlog||A]l)
k = O (n)

O"((mn + sn) log |Al|)
O (nlog||Al])



Our new algorithm

Scheme to compute A~1b :

(1-1)

(1-2)

(1-3)

(1-4)

(1-5)

choose R and blocks 1, ¥
set A:= R.Aand b:= R.b

2m—1
H(z):= ) GA%.Z ' modp
i=1
compute H ! mod p from H(z)
r.=»>b

for i := 0 to k k = O (n)
x; = VH 1U.r mod p O ((mn + sn) log ||A]|)
r:=(1/p)(r — A.x;)

.k i
Xi= ) i XD
rational reconstruction on x

taking the optimal m = s = \/n gives a complexity of O"(n?® log ||A||)



Outline

I1l. what are benefits in practice ?




High level implementation

LinBox project (Canada-France-USA) : www.linalg.org

Our tools :
e BLAS-based matrix multiplication and matrix-vector product

e polynomial matrix arithmetic (block Hankel inversion)
— FFT, Karatsuba, middle product

e fast application of H~! is needed to get O"(n*°log||A||)
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High level implementation

LinBox project (Canada-France-USA) : www.linalg.org

Our tools :
e BLAS-based matrix multiplication and matrix-vector product
e polynomial matrix arithmetic (block Hankel inversion)
— FFT, Karatsuba, middle product
e fast application of H~! is needed to get O"(n*°log||A||)
» Lagrange's representation of H~* at the beginning (Horner’s scheme)

» use evaluation/interpolation on polynomial vectors

— use Vandermonde matrix to have dense matrix operations



www.linalg.org
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Is our new algorithm efficient in practice ?
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Comparing performances

use of LinBox library on Itanium Il - 1.3Ghz, 128Gb RAM

random systems with 3 bits entries and 10 elts/row (plus identity)

system order

900 1600 2500 3600 4900

Maple 10 849s 11098s — — —
CRA-Wied 168s 1017s 3857s 11452s =~ 28000s
P-adic-Wied | 113s 693s 2629s 8034s ~ 20000s
Dixon 10s 42s 178s 429s 1257s
Our algo. 15s 61ls 175s 426s 937s

The expected \/n improvement is unfortunately amortized by a high
constant in the complexity.



Sparse solver vs Dixon's algorithm

sparsity = 10elts/row sparsity = 30elts/row
6 — : T T T . 6 , T T T
Our algo. —»— Our algo. —»— é
Dixon e Dixon e 7
p
5r 7 4 5r
4 - ) 1 4 -
A é B
< <
o i o
Z 3+ d =gt
() (o]
(= =
= =
2 1 2
1F g il [
0 T L L L L L 0 L L L L L L
4900 6400 8100 10000 12100 14400 4900 6400 8100 10000 12100 14400
System order System order

Our algorithm performances are depending on matrix sparsity



Practical effect of blocking factors
v/n blocking factor value is theoretically optimal

Is this still true in practice?



Practical effect of blocking factors
v/n blocking factor value is theoretically optimal

Is this still true in practice?

system order = 10000, optimal block = 100
block size [ 80 | 125 | 200 [ 400 | 500
timing 7213s 5264s 4059s 3833s 4332s

system order = 20000, optimal block ~ 140

block size | 125 | 160 | 200 | 500 | 800

timing 44720s 35967s 30854s 28502s 37318s




Practical effect of blocking factors

v/n blo

cking factor value is theoretically optimal

Is this still true in practice?

system order = 10000, optimal block = 100

block size

80 | 125 | 200 | 400 | 500

timing

7213s 5264s 4059s 3833s 4332s

system order = 20000, optimal block ~ 140

block size

125 | 160 | 200 | 500 | 800

timing

44720s 35967s 30854s 28502s 37318s

best practical blocking factor is dependent upon the ratio of
sparse matrix/dense matrix operations efficiency




Outline

IV. conclusion and future work




Conclusions

We provide a new approach for solving sparse integer linear systems :
e improve the best known complexity by a factor \/n.

e improve efficiency by minimizing sparse matrix operations and
maximizing dense block operations.

minor drawback : not taking advantage of low degree minimal polynomial

Our sparse block projections yield other improvement for sparse linear al-
gebra [Eberly, Giesbrecht, Giorgi, Storjohann, Villard - ISSAC’'07 submission] :

e sparse matrix inversion over a field in O"(n??) field op.

e integer sparse matrix determinant & Smith form in O”(n%%%) bit op.



Future work

» provide an automatic choice of block dimension (non square ?)
» handle the case of singular matrix
> optimize code (minimize the constant)

» introduce fast matrix multiplication in the complexity

» asymptotic implications in exact linear algebra
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introduce fast matrix multiplication in the complexity

v

asymptotic implications in exact linear algebra

our LinBox library is available at
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Questions ?
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Sparse solver vs Dixon's algorithm

sparsity=0.07% —*—

sparsity=0.30% @

sparsity=1.00%
crossover line

speed up

L L L L

15 = :
1000 2000 3000 4000 5000 6000

System order

The sparser the matrices are, the earlier the crossover appears



