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Motivations

Large linear systems are involved
in many mathematical applications

over a field :

» integers factorization [Odlyzko 1999],

» discrete logarithm [Odlyzko 1999 ; Thomé 2003],
over the integers :

» number theory [Cohen 1993],

» group theory [Newman 1972],

» integer programming [Aardal, Hurkens, Lenstra 1999]



Problem

Let A a non-singular matrix and b a vector defined over Z.
Problem : Compute x = A~1h over the rational numbers
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Main difficulty : expression swell
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Let A a non-singular matrix and b a vector defined over Z.
Problem : Compute x = A~1h over the rational numbers
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Main difficulty : expression swell and take advantage of sparsity



Interest in linear algebra

Integer linear systems are central in recent
linear algebra algorithms

» Determinant
[Abbott, Bronstein, Mulders 1999 ; Storjohann 2005]

» Smith Form
[Eberly, Giesbrecht, Villard 2000]

» Nullspace, Kernel
[Chen, Storjohann 2005]

» Diophantine solutions
[Giesbrecht 1997 ; Giesbrecht, Lobo, Saunders 1998 ; Mulders, Storjohann 2003 ; Mulders
2004]



Algorithms for non-singular system solving

Dense matrices :

» Gaussian elimination and CRA
— O (n“*'log||A||) bit operations

» P-adic lifting [Monck, Carter 1979 ; Dixon 1982]
< O7(n®log||Al|) bit operations

» High order lifting [Storjohann 2005]
— O"(n“ log||A||) bit operations

Sparse matrices :

» P-adic lifting or CRA [Wiedemann 1986 ; Kaltofen, Saunders 1991]
< O(yn*(log(n) + log||A||)) bit operations with v non-zero elts.



P-adic algorithm with matrix inversion

Scheme to compute A~1h :

(11 B:=Almodp
(1-2) r:=b
for i := 0 to k

(2-1) X; := B.r mod p
(2-2) r:=(1/p)(r — A.x;)

. k i
(3-1) X:1= ) i oXi.p'
(3-2) rational reconstruction on x
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P-adic algorithm with matrix inversion

Scheme to compute A~1h :

(1-1) B:=A lmodp O (nlog||Al|)
(1-2) r:=b

for i :=0 to k k= 07(n)
(2-1) X; := B.r mod p O (n?log||Al|)
(2-2) r.=(1/p)(r — Ax) O (n*log||A]|)

. k i
(3-1) X 1= ) i oXi.p'
(3-2) rational reconstruction on x

Main operations : matrix inversion and matrix-vector products



Dense linear system in practice

Efficient implementations are available :
LinBox 1.0 [www.linalg.org]
IML Iibrary [www.uwaterloo.ca/~z4chen /iml]

Details :

e level 3 BLAS-based matrix inversion over prime field
e with LQUP factorization [Dumas, Giorgi, Pernet 2004]
e with Echelon form [Chen, Storjohann 2005]

e level 2 BLAS-based matrix-vector product
e use of CRT over the integers

e rational number reconstruction
e half GCD [Schénage 1971]
e heuristic using integer multiplication [NTL library]



Timing for dense linear system solving

use of LinBox library on Pentium 4 - 3.4Ghz, 2Go RAM

e random dense linear system with coefficients over 3 bits :

[n ][ 500 | 1000 | 2000 | 3000 | 4000 | 5000 |
| time [[ 0.6s | 4.3s | 31.1s [ 99.6s [ 236.8s | 449.2s |

e random dense linear system with coefficients over 20 bits :

[ n ] 500 [ 1000 [ 2000 | 3000 | 4000 [ 5000 |
[ time ][ 1.8s [ 12.95 [ 91.5s | 299.7s | 706.4s | MT |

performances improvement by a factor 10
compare to NTL's tuned implementation



what does happen when
matrices are sparse ?

we consider sparse matrices with O(n) non zero elements

< matrix-vector product needs only O(n) operations.



Scheme to compute A~1b :

(11) B:=Almodp certainly dense
(1-2) r:=0>b

for i :== 0 to k
(2-1) X; := B.r mod p dense product

(2-2) r:=(1/p)(r — A.x;)

X .
(B-1) X:i=); oX.p'
(3-2) rational reconstruction on x



Sparse linear system and P-adic lifting
P-adic lifting doesn’t improve complexity as in dense case.
< computing the modular inverse is proscribed due to fill-in

Solution [Wiedemann 1986 ; Kaltofen, Saunders 1991] :
< use modular minimal polynomial instead of inverse
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as a linear combination of the Krylov subspace {b, Ab, ..., A"b}

Let M(A) = co + c1A + ... + A9 € Z,[)\] be the minimal polynomial of A
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Sparse linear system and P-adic lifting

P-adic lifting doesn’t improve complexity as in dense case.
< computing the modular inverse is proscribed due to fill-in

Solution [Wiedemann 1986 ; Kaltofen, Saunders 1991] :
< use modular minimal polynomial instead of inverse

Let A € Zy*" of full rank and b € Zj. Then x = A~1h can be expressed
as a linear combination of the Krylov subspace {b, Ab, ..., A"b}

Let M(A) = co + c1A + ... + A9 € Z,[)\] be the minimal polynomial of A
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P-adic algorithm for sparse systems

Scheme to compute A~1h :
(1-1) I := minpoly(A) mod p
(1-2) r:=0>b

for i := 0 to k
degTl
(2-1) X; 1= r_lT:] Z I'I[,-]A’*lr mod p
i=1

(2-2) r:=(1/p)(r — A.x;)

n .
(3-1) Xi1=) ;i oX.p'
(3-2) rational reconstruction on x



P-adic algorithm for sparse systems

Scheme to compute A~1h :

(1-1) M := minpoly(A) mod p O (n*log||A]|)
(1-2) r:=0>b
for i := 0 to k k= 0"(n)
degTl
(2-1) X; = r_lT:] Z I"I[,-]A’*lr mod p O (n?log||Al|)
i=1
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P-adic algorithm for sparse systems

Scheme to compute A~1h :

(1-1) I := minpoly(A) mod p

(1-2) r:=0>b
for i := 0 to k k= 07(n)
degTl
(2-1) X; = r_lT:] ; I"I[,-]A’*lr mod p O (n?log||Al|)

e = (1/p)r - Ax)

n .
(3-1) Xi1=) ;i oX.p'
(3-2) rational reconstruction on x



Integer sparse linear system in practice
use of LinBox library on Itanium Il - 1.3Ghz, 128Go RAM

e random non-singular sparse linear system with coefficients over 3 bits
and 10 non zero elements per row.

system order
400 900 1600 2500 3600

Maple 64.7s 849s 11098s — —
CRA-Wied 14.8s 168s  1017s 3857s 11452s
P-adic-Wied | 10.2s 113s 693s 2629s  8034s
Dixon 09s 10s 42s 178s 429s




Integer sparse linear system in practice

use of LinBox library on Itanium Il - 1.3Ghz, 128Go RAM

e random non-singular sparse linear system with coefficients over 3 bits
and 10 non zero elements per row.

system order
400 900 1600 2500 3600
Maple 64.7s 849s 11098s — —
CRA-Wied 14.8s 168s  1017s 3857s 11452s
P-adic-Wied | 10.2s 113s 693s 2629s  8034s
Dixon 09s 10s 42s 178s 429s
main difference :
(211) x; = B.rmod p (Dixon)
(2-1) Xj = Ifl—[;l] ?igln N A~tr mod p (P-adic-Wied)
Remark :

n sparse matrix applications is far from level 2 BLAS in practice.



Our objectives

In pratice :

Integrate level 2 and 3 BLAS in integer sparse solver

In theory :
Improve bit complexity of sparse linear system solving

— O"(n%) bits operations with § < 37



Integration of BLAS in sparse solver

Our goals :
e minimize the number of sparse matrix-vector products.

e maximize the number of level 2 and 3 BLAS operations.
— Block Wiedemann algorithm seems to be a good candidate

Let s be the blocking factor of Block Wiedemann algorithm.
then

» the number of sparse matrix-vector product is divided by roughly s.

» order s matrix operations are integrated.



Block Wiedemann and P-adic
e Replace vector projections by block of vectors projections
s
-
Al v | < bis 1st column of v

s{( v )

Let A € ZI’;X” of full rank, b € Z; and n=m X s.
One can use a column of the minimal generating matrix polynomial
P € 7,,[x]°** of sequence {uA’v} to express A~1b as a linear combination

of block krylov subspace {v, Av,...,A"v}



Block Wiedemann and P-adic

e Replace vector projections by block of vectors projections
s
-

Al v | < bis 1st column of v

s{( v )

Let A € Z;’)X” of full rank, b € Z; and n=m X s.
One can use a column of the minimal generating matrix polynomial
P € 7,,[x]°** of sequence {uA’v} to express A~1b as a linear combination

of block krylov subspace {v, Av,...,A"v}

the cost to compute P is :
> O7(s3m) field op. [Beckermann, Labahn 1994 ; Kaltofen 1995 Thomé 2002],

> O7(s“m) field op. [Giorgi, Jeannerod, Villard 2003].



Block Wiedemann and P-adic

Scheme to compute A~1b :

(1-1) r:=>b
for i := 0 to k

Vi1 i=r

x; .= linear combi (A'v, P) mod p
r:=(1/p)(r — Ax;)

X :
(3-1) X 1= i oX.p'
(3-2) rational reconstruction on x

(2-1)
(2-2) P := block minpoly {uA’v} mod p
(2-3)
(2-4)
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Block Wiedemann and P-adic

Scheme to compute A~1b :

(1-1) r:=>b

for i := 0 to k k= 07(n)
(2-1) Vig =T
(22) P := block minpoly {uA'v} mod p O (s*nlog ||All)
(2-3) X := linear combi (A'v, P) mod p O (n?log||Al|)
(2-4) r:=(1/p)(r — Ax;)

X :
(3-1) X 1= i oX.p'
(3-2) rational reconstruction on x

Not satisfying : computation of block minpoly. at each steps

How to avoid the computation of the block minimal polynomial?



Alternative to Block Wiedemann

Express the inverse of the sparse matrix through a structured form
— block Hankel/Toeplitz structures

Let v € Z5%" and v € Z"** s.t. following matrices are non-singular
p p g g

u

UuA
U= . L V=|v]|Av|...| A"y EZ;’,X"

uAmfl



Alternative to Block Wiedemann

Express the inverse of the sparse matrix through a structured form
— block Hankel/Toeplitz structures

Let u € Zy*" and v € Z;** s.t. following matrices are non-singular

u

UuA
U= . L V=|v]|Av|...| A"y EZ;’,X"

uAmfl

then we can define the block Hankel matrix

al a2 DO am
Qp Q3 - Omy .

H = UAV = . . o= uA'v € 3¢
am Qm o Q2m—1

and thus we have A1 = VH-1U



Alternative to Block Wiedemann

e Nice property on block Hankel matrix inverse [Gohberg, Krupnik 1972, Labahn,
Choi, Cabay 1990]

H =

* * * *

7‘/(1 7—1 Hs 7—2
where H;, H, are block Hankel matrices and Ty, T, are block Toeplitz
matrices



Alternative to Block Wiedemann

e Nice property on block Hankel matrix inverse [Gohberg, Krupnik 1972, Labahn,
Choi, Cabay 1990]

H,]_: . - . . : . .
% £ ES £

Ijl(l ‘721 Hs 7—2
where H;, H, are block Hankel matrices and Ty, T, are block Toeplitz

matrices

e Block coefficients in Hy, H,, T; , T, come from Hermite Pade
approximants of H(z) = a; + apz + ... + Qom_122™72 [Labahn, Choi, Cabay

1990].

e Complexity of H™! reduces to polynomial matrix multiplication [Giorgi,
Jeannerod, Villard 2003].



Alternative to Block Wiedemann
Scheme to compute A~1h :

2m—1
1-1) H(z) = Z uA'v.z'=t mod p
i=1
(1-2) compute H~! mod p from H(z)
(1-3) r:=0>b

for i := 0 to k
(2-1) x;i = VH1U.r mod p
(2-2) r:=(1/p)(r — Ax;)

n .
(1) X:i=); oX.p'
(3-2) rational reconstruction on x



Alternative to Block Wiedemann
Scheme to compute A~1h :

2m—1

(1) H(z):= ) uAv.z"" mod p O (sn? log ||All)
i=1
(1-2) compute H™! mod p from H(z) O (s*nlog ||All)
(1-3) r:=0>b
for i := 0 to k k= 07(n)
(1) x:= VH 'U.r mod p O"((n® + sn) log || Al|)
(2-2) r:=(1/p)(r — Ax) O (nlog||All)

n .
(B-1) X:i=); oX.p'
(3-2) rational reconstruction on x



Alternative to Block Wiedemann
Scheme to compute A~1h :

2m—1
1-1) H(z) = Z uA'v.z'=t mod p
i=1
(1-2) compute H~! mod p from H(z)
(1-3) r:=0>b

for i := 0 to k k= 07(n)
21 x:=V U.r mod p O ((n? ) log ||Al])
(2-2) r:=(1/p)(r — A.x;)

n .
(B-1) X:i=); oX.p'
(3-2) rational reconstruction on x

Not yet satisfying : applying matrices U and V is too costly




Applying block Krylov subspaces
V= | vlAv]...|A" v | € ngn and v € ZZXS
can be rewrite as

V=|v +A v + ...+ AT

Therefore, applying V to a vector corresponds to :
e m — 1 linear combinations of columns of v

e m — 1 applications of A
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Applying block Krylov subspaces

V = | v|Av|...|A™ v | € ngn and v € ZZXS

can be rewrite as

V=1|v + A v + ...+ AT v

Therefore, applying V to a vector corresponds to :
e m — 1 linear combinations of columns of v O(m x snlog ||A]||)

e m — 1 applications of A

How to improve the complexity 7

= using special block projections v and v



Candidates as suitable block projections

Considering A € Zp*" non-singular and n = m x s.

Let us denote K(A,v):=[ v |Av |--- | A" 1y | € Z7*"

A suitable block projection is defined through the triple
(Ryu,v) € Zp*" X 3" x Lp*®

such that :
1. K(RA,v) and K((RA)T,uT) are non-singular,

2. R can be applied to a vector with O”(n) operations,

T

3. u, u”, vand v can be applied to a vector with O"(n) operations.




Candidates as suitable block projections

Considering A € Zp*" non-singular and n = m x s.

Let us denote K(A,v):=[ v |Av |--- | A" 1y | € Z7*"

A suitable block projection is defined through the triple
(Ryu,v) € Zp*" X 3" x Lp*®

such that :
1. K(RA,v) and K((RA)T,uT) are non-singular,
2. R can be applied to a vector with O”(n) operations,

3. u, u”, vand v can be applied to a vector with O"(n) operations.

Conjecture :
for any non-singular A € Z;*" and s|n there exists a suitable
block projection (R, u, v)




A structured block projection

Let u and v be defined as follow

up ... Upy
Uny1l --- Um € 75%n
. P

Up—m+1 -.- Up
Vi...Vp
T _ Vmtl - Vo sXn
. €z

Viem+1 -+ Vp

where u; and v; are chosen randomly from a sufficient large set.



A structured block projection

Let u and v be defined as follow

up ... Upy
Unpt1 --- Uom

Up—m+1 ---

Vi...Vp
T _ Vm41l .- V2m

Voem+1 -

sxn
€ Z,

Up

sSXn
€z

Vn

where u; and v; are chosen randomly from a sufficient large set.

open question : Let R diagonal and v as defined above,

is L(RA, v) necessarily non-singular ?

We prooved it for case s = 2 but answer is still unknown for s > 2



Our new algorithm

Scheme to compute A~1h :

(1-1)

(1-2)

(1-3)

choose block projection u and v

choose R and A:= R.A, b:=R.b
2m—1 ) )

H(z) = Z uA'v.z~ mod p
=il

compute H~! mod p from H(z)

r==>b

for i := 0 to k
x; = VH™1U.r mod p
r:=(1/p)(r — Ax;)

Nk i
X 1= o0Xi.P
rational reconstruction on x



Our new algorithm

Scheme to compute A~1h :

(1-1)

(1-2)

(1-3)

choose block projection u and v

choose R and A:= R.A, b:=R.b
2m—1 ) )

H(z) = Z uA'v.z = mod p
=il

compute H~! mod p from H(z)

r==>b

for i := 0 to k
x; = VH™1U.r mod p
r:=(1/p)(r — Ax;)

Nk i
X 1= o0Xi.P
rational reconstruction on x

O"(n? log [|Al|)
O (s?nlog ||Al|)
k= 0(n)

O"((mn + sn) log||Al|)
O (nlog [|Al])



Our new algorithm

Scheme to compute A~1h :

(1-1)

(1-2)

(1-3)

choose block projection u and v

choose R and A:= R.A, b:=R.b
2m—1 ) )

H(z) = Z uA'v.z~ mod p
=il

compute H~! mod p from H(z)

r==>b

for i := 0 to k k= 0(n)
xi .= VH™'U.r mod p O"((mn + sn) log ||A[|)
r:=(1/p)(r — Ax;)

Nk i
X 1= o0Xi.P
rational reconstruction on x

taking the optimal m = s = \/n gives a complexity of O"(n** log ||A||)



High level implementation

LinBox project (Canada-France-USA) : www.linalg.org

Our tools :
e BLAS-based matrix multiplication and matrix-vector product

e polynomial matrix arithmetic (block Hankel inversion)
— FFT, Karatsuba, middle product

e fast application of H~! is needed to get O"(n*°log||A||)


www.linalg.org

High level implementation

LinBox project (Canada-France-USA) : www.linalg.org

Our tools :
e BLAS-based matrix multiplication and matrix-vector product
e polynomial matrix arithmetic (block Hankel inversion)
— FFT, Karatsuba, middle product
e fast application of H~! is needed to get O"(n*°log||A||)

» Lagrange's representation of H™! at the beginning (Horner's scheme)

> use evaluation/interpolation on polynomial vectors

— use Vandermonde matrix to have dense matrix operations


www.linalg.org

Is our new algorithm efficient in practice ?



Performances

use of LinBox library on Itanium Il - 1.3Ghz, 128Go RAM

e random non-singular sparse linear system with coefficients over 3 bits
and 10 non zero elements per row.

system order
400 900 1600 2500 3600

Maple 64.7s 849s 11098s — —
CRA-Wied 14.8s 168s 1017s 3857s 11452s
P-adic-Wied | 10.2s 113s 693s 2629s  8034s
Dixon 09s 10s 42s  178s 429s
Our algo. 2.4s  15s 61s 175s 426s

The expected /n improvement is unfortunately amortized by a high
constant in the complexity.



Sparse solver vs Dixon's algorithm

sparsity = 10elts/row sparsity = 30elts/row
6 , T T T . 6 , T T T T
Our algo. —=— Our algo. —=—
Dixon e o Dixon e
5r 1 5r 1
2
4 r ; 1 4 r 1
@ ¢ @
< : <
o § o
Z 3¢t {4 T 3t 1
() (9]
€ £
= =
2 1 2 r 1
1+ — 1r 1
0 T L L L L L 0 L L L L L L
4900 6400 8100 10000 12100 14400 4900 6400 8100 10000 12100 14400
System order System order

Our algorithm performances are depending on matrix sparsity



Sparse solver vs Dixon's algorithm

sparsity=0.07% —*—

sparsity=0.30% @

sparsity=1.00%
crossover line

speed up

1000 2000 3000 4000 5000 6000
System order

The sparser the matrices are, the earlier the crossover appears



Practical effect on blocking factors

v/n blocking factor value is theoretically optimal

Is this still true in practice ?
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system order = 20000, optimal block =~ 140
block size 125 [ 160 | 200 | 500 [ 800
timing 44720s 35967s 30854s 28502s 37318s




Practical effect on blocking factors

v/n blocking factor value is theoretically optimal

Is this still true in practice ?

system order = 10000, optimal block = 100

blocksize | 80 | 125 | 200 | 400 | 500

timing 7213s  5264s  4059s 3833s  4332s

system order = 20000, optimal block =~ 140

block size | 125 | 160 | 200 | 500 | 800

timing 44720s 35967s 30854s 28502s 37318s

best practical blocking factor is certainly depending on the ratio of
sparse matrix/dense matrix operations efficiency



Conclusions

We provide a new approach for solving sparse integer linear systems :
» improve the complexty by a factor \/n (heuristic).

» allow efficiency by minimizing sparse matrix operations and
maximizing BLAS use.

We introduce special block projections for sparse linear algebra
< inverse of sparse matrix in O(n?°) field op.

drawback : not taking advantage of low degree minimal polynomial




Conclusions

We provide a new approach for solving sparse integer linear systems :
» improve the complexty by a factor \/n (heuristic).

» allow efficiency by minimizing sparse matrix operations and
maximizing BLAS use.

We introduce special block projections for sparse linear algebra
< inverse of sparse matrix in O(n?°) field op.

drawback : not taking advantage of low degree minimal polynomial

On going work :
> provide an automatic choice of block dimension (non square?)
» proove conjecture for special block projections
» how to handle the case of singular matrix ?

» how to introduce fast matrix multiplication in the complexity ?




