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Multiplication of polynomials

= Input. F = Y04 Fl1X7 and G = Y02 G[j]X/
= Output. H=F x G = Y27, 2H[k]Xk

For i = 0 to n-1:
For j = 0 to n-1:
H[i+j] += F[i1*G[j]
= Karatsuba's algorithm: (fo + ngl) . (go + ngl)
= fogo + ((fo+ Ai)(go + &1) — fogo — fig1) X2 + g1 X"
= Toom-Cook algorithm: split F and G in three or more parts

= FFT-based algorithms:
(F G) eval ( (wi),G(wi)) mult. FG( ) interp. LDECTRENye



Time complexity of polynomial arithmetic

= Multiplication: M(n)
= Naive: O(n?)

= Karatsuba: O(n'°823%) = O(n'-58%) Karatsuba (1962)
= Toom-3: O(n'°&:5) = O(n'4%) Toom (1963), Cook (1966)
= FFT-based:
= O(nlog n) with 2n-th root of unity Cooley, Tukey (1965)
= O(nlog nloglog n) Schénhage, Strassen (1971)
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What about space complexity?



Space complexity of polynomial arithmetic

First thought: count extra memory apart from input/output
- Naive algorithm: O(1)
- Karatsuba, Toom-3, FFT: O(n)
- Other tasks: often O(n), sometime O(nlog n)



Space complexity of polynomial arithmetic

First thought: count extra memory apart from input/output
- Naive algorithm: O(1)
- Karatsuba, Toom-3, FFT: O(n)
- Other tasks: often O(n), sometime O(nlog n)

However, need to precise the complexity model !!!
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= Read-write input and output
= Too permissive in general
= Variant: inputs must be restored at the end
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Previous results

Karatsuba's algorithm:

(ﬁﬁxgﬂ)-(go+ng1)=fogo+((fo+f1)(go+g1)*fog07f1gl)xg+f1g1X"
with some intuition space of 2n
= Thomé (2002) : space of n+ O(log n)
— careful use output + n temp. registers + O(log n) stack

= Roche (2009): space of only O(log n)
— half-additive version (h <— hy + fg where deg(hy) < n)
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Previous results

FFT-based algorithms:
(F,G) = (F(w"), G(w')); = FG(w"); — FG
space of 2n : FFT is in-place (overwriting) but # points &~ 2n

= Roche (2009): space of O(1) when n = 2K and w?" =1
— compute half of the result + recurse

= Harvey-Roche (2010): space of O(1) when w?" =1
— same with TFT v.d. Hoeven (2004)



Previous results

Summary of complexities

Algorithms Time complexity | Space complexity
naive 2n? 4+2n—1 O(1)
Karatsuba ('62) < 6.5n'80) < 2n+ 5log(n)
Karatsuba (Thom¢'02) < 7n'eB) < n+5log(n)

Karatsuba (Roche'09) < 10n'°e(3) < 5log(n)
Toom-3 ('63) < B3 plogs(5) < 2n+ 5logs(n)
FFT (CT'65) 9nlog(2n) + O(n) 2n
FFT (Roche'09) 11nlog(2n) + O(n) 0o(1)
TFT (HR'10) O(nlog(n)) 0O(1)
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Our problematic

Can every polynomial multiplication algorithm be performed
without extra memory?

= O(1)-space Karatsuba's algorithm?

= What about Toom-Cook algorithm?

= What about other products (short and middle)?

Results:
= Yes!
= Almost (for other products)



Polynomial products and linear maps
Space-preserving reductions

In-place algorithms from out-of-place algorithms
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Short product
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Short product

<
=] high short product  low short product
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Short product

<
=] high short product  low short product

n—1 n

= Low short product: product of truncated power series
= Useful in other algorithms

= Time complexity: M(n)

= Space complexity: O(n)
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Middle product

= Useful for Newton iteration
» G+ G(1— GF) mod X2 with GF =1+ X"H
= division, square root, ...

= Time complexity: M(n) — Tellegen's transposition
= Space complexity: O(n)

12



Multiplications as linear maps

Example:

f=3X2+2X+1
g=X>4+2X+4
fg =3X* +8X3 +17X% + 10X + 4
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Multiplications as linear maps

Example:

f=3X2+2X+1
g=X>4+2X+4
fg =3X* +8X3 +17X% + 10X + 4

1 4
2 1 4] |10
3 2 1| 2| = |17
3 1 8
L 3_ _3_
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Multiplications as linear maps

Full product:

X = 2n—1

)
[
[
[
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Multiplications as linear maps

Short products:

14

]
[
[
[



Multiplications as linear maps

Middle product:

3n—1
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Multiplications as linear maps

Middle product:
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Multiplications as linear maps

For simplicity in the presentation we assume

SPi,

FP MP

SP;

Full product Short products Middle product 14



Space-preserving reductions




Relative difficulties of products

= Without space restrictions:
= SP < FP and FP <SPy, + SPy;
= MP = FP (transposition)
= MP <SPy, + SPy; + (n — 1) additions
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= SP < FP and FP <SPy, + SPy;
= MP = FP (transposition)
= MP <SPy, + SPy; + (n — 1) additions

= Size of inputs and outputs:
= FP:(n,n) —=2n—1
= SP,:(n,n)—n
= SPhi:(n—1,n—-1)—n-1
= MP:(2n—1,n) —n

X Reductions unusable in space-restricted settings!

v We provide space/time preserving reductions

5



A relevant notion of reduction

Definitions
= TISP(t(n),s(n)): computable in time t(n) and space s(n)

= A<, B: Ais computable with oracle B

if B € TISP(t(n),s(n)) then

A € TISP(c t(n) + o(t(n)), s(n) + O(1))

s A=.B:A<.Band B< A
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A relevant notion of reduction

Definitions
= TISP(t(n),s(n)): computable in time t(n) and space s(n)

= A<, B: Ais computable with oracle B

if B € TISP(t(n),s(n)) then

A € TISP(c t(n) + o(t(n)), s(n) + O(1))

s A=.B:A<.Band B< A

Example
A =1 B means A and B are equivalent for both time and space
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First results in a nutshell

<2 Il <1 MP

17



Visual proof

Use of fake padding (in input, not in output!)

= SPi,(n) < MP(n); SPhi(n) < MP(n—1)
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Visual proof

Use of fake padding (in input, not in output!)

= SPio(n) < MP(n); SPhi(n) < MP(n—1)

= FP(n) < SPhi(n) + SPi(n) < MP(n) + MP(n—1)

18




Half-additive full product: h< h+f - g

lo*
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Remark FPng = FPITi using reversal polynomials

FP* <, SP and SP <3/, FP*
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From SP to FP*

FP,-(n) < SPio(n) + SPpi(n) +n—1
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From FP* to SP
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From FP* to SP

(fo + x[n/2] ﬂ)'(go + X("/”gl) = fogo+X"?!(fog1+figo) mod X"
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From FP* to SP

(fo + x[n/2] ﬂ)'(go + X("/”gl) = fogo+X"?!(fog1+figo) mod X"

SPio(n) < FP([n/2]) + FPig([n/2]) + FP{([n/2])

21



Converse directions?

= From FP to SP:

= problem with the output size
= without space restriction: is SP(n) ~ FP(n/2)?
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Converse directions?

= From FP to SP:

= problem with the output size
= without space restriction: is SP(n) ~ FP(n/2)?

= From SP to MP:
= partial result:
= up to log(n) increase in time complexity
= techniques from next part
= without space restriction
= FP to MP through Tellegen’s transposition principle
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Summary of results so far

3/2

> iSP k
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iFP \

1

—>
L »iFPT ~+|

oSPk e

Sl s !
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oFP \ S—
lm/n
oFP} .+‘
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In-place algorithms from
out-of-place algorithms




Framework

= In-place algorithms parametrized by out-of-place algorithm
= Qut-of-place: uses cn extra space
= Constant ¢ known to the algorithm
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Framework

= In-place algorithms parametrized by out-of-place algorithm
= Qut-of-place: uses cn extra space
= Constant ¢ known to the algorithm

= Goal:
= Space complexity: O(1)
= Time complexity: closest to the out-of-place algorithm

= Technique:
= Oracle calls in smaller size
= Fake padding
= Tail recursive call

Similar approach for matrix mul. : Boyer, Dumas, Pernet, Zhou (2009)

24



Tail recursion and fake padding

= Tail recursion:
= Only one recursive call 4 last (or first) instruction
= No need of recursive stack ~~ avoid O(log n) extra space
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Tail recursion and fake padding

= Tail recursion:
= Only one recursive call 4 last (or first) instruction
= No need of recursive stack ~~ avoid O(log n) extra space

= Fake padding:
= Pretend to pad inputs with zeroes
= Make the data structure responsible for it
= O(1) increase in memory
= Cf. strides in dense linear algebra

= OK in inputs, not in outputs!

25



Our results

= In-place full product (half additive) in time (2¢ + 7)M(n)
= In-place short product in time (2¢ + 5)M(n)

= In-place middle product in time O(M(n)log n)

26



In-place FP* from out-of-place FP

(fo + X F) - (g0 + X &) = fogo + X*(fo& + Fao) + X?Fg
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In-place FP* from out-of-place FP

(fo + X F) - (g0 + X &) = fogo + X*(fol + Fao) + X?Fg
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In-place FP* from out-of-place FP

(fo + X F) - (g0 + X*&) = fogo + X*(fog + Feo) + X**F&
k
[n/k]
[n/k] —1

27



In-place FP* from out-of-place FP

(fo + X F) - (g0 + X*8) = fogo + X (fog + Fgo) + X? F&
k
[n/k]
[n/k] =1 n—k—1

27



k

[n/k] —1 n—k—1
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k
[n/k]
[n/k] —1 n—k—1
X =
no n—k

+1
s ck+2k-1<n—k = k<

« T(n) = (2[n/k] — 1)(M(K) + 2k — 1) + T(n — k)

28



k
[n/k]
[n/k] —1 n—k—1
X =
no n—k

+1
s ck+2k-1<n—k = k<

« T(n) = (2[n/k] — 1)(M(K) + 2k — 1) + T(n — k)

T(n) < (2c + 7)M(n) + o(M(n)) .



In-place short product
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In-place short product

X =

1 I
= k<n/(c+2)

= T(n) = [/KIM(K)+([/k] =1)M(k=1)+2k([/k] =1)+ T (n—k)

k

[n/k]
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In-place short product

X =

1 I
= k<n/(c+2)

= T(n) = [/KIM(K)+([/k] =1)M(k=1)+2k([/k] =1)+ T (n—k)

k

[n/k]

T(n) < (2¢ +5)M(n) + o(M(n))
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In-place middle product
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In-place middle product

[n/k]
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In-place middle product

[n/k] -
= Recursive call on chunks of f... but with full g!
= T(n,m) = ["/k]M(k) + T(n,m — k)
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In-place middle product

[n/k] -
= Recursive call on chunks of f... but with full g!
= T(n,m) = ["/k]M(k) + T(n,m — k)

c+1

T(n, n) < M(n)loges2(n) + o(M(n)logn) if M(n) is quasi-linear
o O(M(n)) otherwise
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Other operations

Work in progress!

= Use our in-place algorithms as building blocks
= Newton iteration: division, square root, ...
= Evaluation & interpolation

— (at most) log(n) increase in complexity

Remark
= |n place: division with remainder
= Only quotient or only remainder: not clear
= Main difficulty: size of the output
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Summary of the results

> iSP A

e

__iMP |

N

<2c+5 GEPIRENN.

<« log oMP I
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Conclusion

= TISP-reductions between polynomial products
= Self-reductions to obtain in-place algorithms
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Conclusion

= TISP-reductions between polynomial products
= Self-reductions to obtain in-place algorithms

Comparisons
= Better use specialized in-place algorithms. ..
= ... when they exist!

Main open problems
= Remove the log(n) for middle product or prove a lower bound
= General result on Tellegen's transposition principle
= What about integer multiplication?

Thank youl!
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