# Memory-efficient polynomial arithmetic

Pascal Giorgi<sup>1</sup> Bruno Grenet<sup>1</sup> Daniel S. Roche<sup>2</sup>

<sup>1</sup> LIRMM, Université de Montpellier

<sup>2</sup> CS Department, US Naval Academy

- Input.  $F = \sum_{i=0}^{n-1} F[i]X^i$  and  $G = \sum_{j=0}^{n-1} G[j]X^j$
- Output.  $H = F \times G = \sum_{k=0}^{2n-2} H[k] X^k$

- Input.  $F = \sum_{i=0}^{n-1} F[i]X^i$  and  $G = \sum_{j=0}^{n-1} G[j]X^j$
- Output.  $H = F \times G = \sum_{k=0}^{2n-2} H[k]X^k$

```
For i = 0 to n-1:
  For j = 0 to n-1:
    H[i+j] += F[i]*G[j]
```

- Input.  $F = \sum_{i=0}^{n-1} F[i]X^i$  and  $G = \sum_{j=0}^{n-1} G[j]X^j$
- Output.  $H = F \times G = \sum_{k=0}^{2n-2} H[k]X^k$

For i = 0 to n-1:  
For j = 0 to n-1:  
H[i+j] += F[i]\*G[j]  
• Karatsuba's algorithm: 
$$(f_0 + X^{\frac{n}{2}}f_1) \cdot (g_0 + X^{\frac{n}{2}}g_1)$$

■ Karatsuba's algorithm: 
$$(f_0 + X^{\frac{n}{2}}f_1) \cdot (g_0 + X^{\frac{n}{2}}g_1)$$
  
=  $f_0g_0 + ((f_0 + f_1)(g_0 + g_1) - f_0g_0 - f_1g_1)X^{\frac{n}{2}} + f_1g_1X^n$ 

- Input.  $F = \sum_{i=0}^{n-1} F[i]X^i$  and  $G = \sum_{j=0}^{n-1} G[j]X^j$
- Output.  $H = F \times G = \sum_{k=0}^{2n-2} H[k]X^k$

- Karatsuba's algorithm:  $\left(f_0 + X^{\frac{n}{2}}f_1\right) \cdot \left(g_0 + X^{\frac{n}{2}}g_1\right)$ =  $f_0g_0 + \left(\left(f_0 + f_1\right)\left(g_0 + g_1\right) - f_0g_0 - f_1g_1\right)X^{\frac{n}{2}} + f_1g_1X^n$
- Toom-Cook algorithm: split F and G in three or more parts

- Input.  $F = \sum_{i=0}^{n-1} F[i]X^i$  and  $G = \sum_{i=0}^{n-1} G[i]X^i$
- Output.  $H = F \times G = \sum_{k=0}^{2n-2} H[k]X^k$

- Karatsuba's algorithm:  $\left(f_0 + X^{\frac{n}{2}}f_1\right) \cdot \left(g_0 + X^{\frac{n}{2}}g_1\right)$ =  $f_0g_0 + \left(\left(f_0 + f_1\right)\left(g_0 + g_1\right) - f_0g_0 - f_1g_1\right)X^{\frac{n}{2}} + f_1g_1X^n$
- Toom-Cook algorithm: split F and G in three or more parts
- FFT-based algorithms:  $(F,G) \xrightarrow{\text{eval.}} (F(\omega^i), G(\omega^i))_i \xrightarrow{\text{mult.}} FG(\omega^i)_i \xrightarrow{\text{interp.}} FG$

# Time complexity of polynomial arithmetic

- Multiplication: M(n)
  - Naïve:  $O(n^2)$
  - Karatsuba:  $O(n^{\log_2 3}) = O(n^{1.585})$  Karatsuba (1962)
  - Toom-3:  $O(n^{\log_3 5}) = O(n^{1.465})$  Toom (1963), Cook (1966)
  - FFT-based:
    - $O(n \log n)$  with 2n-th root of unity Cooley, Tukey (1965)
    - $O(n \log n \log \log n)$  Schönhage, Strassen (1971)

# Time complexity of polynomial arithmetic

- Multiplication: M(n)
  - Naïve:  $O(n^2)$
  - Karatsuba:  $O(n^{\log_2 3}) = O(n^{1.585})$  Karatsuba (1962)
  - Toom-3:  $O(n^{\log_3 5}) = O(n^{1.465})$  Toom (1963), Cook (1966)
  - FFT-based:
    - $O(n \log n)$  with 2n-th root of unity Cooley, Tukey (1965)
    - $O(n \log n \log \log n)$  Schönhage, Strassen (1971)
- Other tasks:
  - Euclidean division: O(M(n))
  - GCD:  $O(M(n) \log n)$
  - Evaluation & interpolation:  $O(M(n) \log n)$
  - . . .

# Time complexity of polynomial arithmetic

- Multiplication: M(n)
  - Naïve:  $O(n^2)$
  - Karatsuba:  $O(n^{\log_2 3}) = O(n^{1.585})$  Karatsuba (1962)
  - Toom-3:  $O(n^{\log_3 5}) = O(n^{1.465})$  Toom (1963), Cook (1966)
  - FFT-based:
    - $O(n \log n)$  with 2n-th root of unity Cooley, Tukey (1965)
    - $O(n \log n \log \log n)$  Schönhage, Strassen (1971)
- Other tasks:
  - Euclidean division: O(M(n))
  - GCD:  $O(M(n) \log n)$
  - Evaluation & interpolation:  $O(M(n) \log n)$
  - . . .

### What about space complexity?

# Space complexity of polynomial arithmetic

First thought: count extra memory apart from input/output

- Naive algorithm: O(1)
- Karatsuba, Toom-3, FFT: O(n)
- Other tasks: often O(n), sometime  $O(n \log n)$

# Space complexity of polynomial arithmetic

First thought: count extra memory apart from input/output

- Naive algorithm: O(1)
- Karatsuba, Toom-3, FFT: O(n)
- Other tasks: often O(n), sometime  $O(n \log n)$

However, need to precise the complexity model !!!

- $\rightarrow$  *Standard* registers of size  $O(\log n)$
- ightarrow Algebraic registers containing one coefficient

- $\rightarrow$  *Standard* registers of size  $O(\log n)$
- → *Algebraic* registers containing one coefficient
- Read-only input / write-only output
  - (Close to) classical complexity theory
  - Lower bound  $\Omega(n^2)$  on time  $\times$  space for multiplication

- $\rightarrow$  Standard registers of size  $O(\log n)$
- → *Algebraic* registers containing one coefficient
- Read-only input / write-only output
  - (Close to) classical complexity theory
  - Lower bound  $\Omega(n^2)$  on time  $\times$  space for multiplication
- Read-only input / read-write output
  - Reasonable from a programmer's viewpoint

- $\rightarrow$  Standard registers of size  $O(\log n)$
- → *Algebraic* registers containing one coefficient
- Read-only input / write-only output
  - (Close to) classical complexity theory
  - Lower bound  $\Omega(n^2)$  on time  $\times$  space for multiplication
- Read-only input / read-write output
  - Reasonable from a programmer's viewpoint
- Read-write input and output
  - Too permissive in general
  - Variant: inputs must be restored at the end

- $\rightarrow$  Standard registers of size  $O(\log n)$
- ightarrow Algebraic registers containing one coefficient
- Read-only input / write-only output
  - (Close to) classical complexity theory
  - Lower bound  $\Omega(n^2)$  on time  $\times$  space for multiplication
- ✓ Read-only input / read-write output
  - Reasonable from a programmer's viewpoint
  - Read-write input and output
    - Too permissive in general
    - Variant: inputs must be restored at the end

Karatsuba's algorithm:

$$\left(f_0 + X^{\frac{n}{2}}f_1\right) \cdot \left(g_0 + X^{\frac{n}{2}}g_1\right) = f_0g_0 + ((f_0 + f_1)(g_0 + g_1) - f_0g_0 - f_1g_1)X^{\frac{n}{2}} + f_1g_1X^n$$

with some intuition space of 2n

Karatsuba's algorithm:

$$\left(f_0 + X^{\frac{n}{2}}f_1\right) \cdot \left(g_0 + X^{\frac{n}{2}}g_1\right) = f_0g_0 + \left((f_0 + f_1)(g_0 + g_1) - f_0g_0 - f_1g_1\right)X^{\frac{n}{2}} + f_1g_1X^n$$

with some intuition space of 2n

■ Thomé (2002) : space of  $n + O(\log n)$  $\rightarrow$  careful use output + n temp. registers +  $O(\log n)$  stack

Karatsuba's algorithm:

$$\left(f_0 + X^{\frac{n}{2}}f_1\right) \cdot \left(g_0 + X^{\frac{n}{2}}g_1\right) = f_0g_0 + ((f_0 + f_1)(g_0 + g_1) - f_0g_0 - f_1g_1)X^{\frac{n}{2}} + f_1g_1X^n$$

with some intuition space of 2n

- Thomé (2002) : space of  $n + O(\log n)$ → careful use output + n temp. registers +  $O(\log n)$  stack
- Roche (2009): space of only  $O(\log n)$  $\rightarrow$  half-additive version ( $h \leftarrow h_{\ell} + fg$  where  $\deg(h_{\ell}) < n$ )

FFT-based algorithms:

$$(F,G) o (F(\omega^i),G(\omega^i))_i o FG(\omega^i)_i o FG$$

FFT-based algorithms:

$$(F,G) \rightarrow (F(\omega^i), G(\omega^i))_i \rightarrow FG(\omega^i)_i \rightarrow FG$$

space of 2n: FFT is in-place (overwriting) but # points  $\approx 2n$ 

FFT-based algorithms:

$$(F,G) \rightarrow (F(\omega^i), G(\omega^i))_i \rightarrow FG(\omega^i)_i \rightarrow FG$$

space of 2n: FFT is in-place (overwriting) but # points  $\approx 2n$ 

- Roche (2009): space of O(1) when  $n=2^k$  and  $\omega^{2n}=1$   $\rightarrow$  compute half of the result + recurse
- Harvey-Roche (2010): space of O(1) when  $\omega^{2n}=1$   $\rightarrow$  same with TFT v.d. Hoeven (2004)

# Summary of complexities

| Algorithms           | Time complexity                | Space complexity       |
|----------------------|--------------------------------|------------------------|
| naive                | $2n^2+2n-1$                    | O(1)                   |
| Karatsuba ('62)      | $< 6.5 n^{\log(3)}$            | $\leq 2n + 5\log(n)$   |
| Karatsuba (Thomé'02) | $<7n^{\log(3)}$                | $\leq n + 5\log(n)$    |
| Karatsuba (Roche'09) | $< 10n^{\log(3)}$              | $\leq 5\log(n)$        |
| Toom-3 ('63)         | $< \frac{73}{4} n^{\log_3(5)}$ | $\leq 2n + 5\log_3(n)$ |
| FFT (CT'65)          | $9n\log(2n) + O(n)$            | 2 <i>n</i>             |
| FFT (Roche'09)       | $11n\log(2n) + O(n)$           | O(1)                   |
| TFT (HR'10)          | $O(n\log(n))$                  | O(1)                   |

Can *every* polynomial multiplication algorithm be performed without extra memory?

# Can *every* polynomial multiplication algorithm be performed without extra memory?

- O(1)-space Karatsuba's algorithm?
- What about Toom-Cook algorithm?

# Can *every* polynomial multiplication algorithm be performed without extra memory?

- O(1)-space Karatsuba's algorithm?
- What about Toom-Cook algorithm?
- What about other products (short and middle)?

# Can *every* polynomial multiplication algorithm be performed without extra memory?

- O(1)-space Karatsuba's algorithm?
- What about Toom-Cook algorithm?
- What about other products (short and middle)?

#### Results:

- Yes!
- Almost (for other products)

#### **Outline**

Polynomial products and linear maps

Space-preserving reductions

In-place algorithms from out-of-place algorithms

Polynomial products and linear maps

# **Short product**



# **Short product**



# **Short product**



- Low short product: product of truncated power series
- Useful in other algorithms
- Time complexity: M(n)
- Space complexity: O(n)

# Middle product



# Middle product



# Middle product



- Useful for Newton iteration
  - $G \leftarrow G(1 GF) \mod X^{2n}$  with  $GF = 1 + X^nH$
  - division, square root, . . .
- Time complexity:  $M(n) \rightarrow$  Tellegen's transposition
- Space complexity: O(n)

# Multiplications as linear maps

Example:

$$f = 3X^{2} + 2X + 1$$

$$g = X^{2} + 2X + 4$$

$$fg = 3X^{4} + 8X^{3} + 17X^{2} + 10X + 4$$

Example:

$$f = 3X^{2} + 2X + 1$$

$$g = X^{2} + 2X + 4$$

$$fg = 3X^{4} + 8X^{3} + 17X^{2} + 10X + 4$$

$$\begin{bmatrix} 1 & & & \\ 2 & 1 & & \\ 3 & 2 & 1 \\ & 3 & 2 \\ & & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 10 \\ 17 \\ 8 \\ 3 \end{bmatrix}$$

### Full product:



#### Short products:



#### Middle product:



Middle product:



For simplicity in the presentation we assume



# Space-preserving reductions

- Without space restrictions:
  - $SP \le FP$  and  $FP \le SP_{lo} + SP_{hi}$
  - MP ≡ FP (transposition)
  - $\qquad \mathsf{MP} \leq \mathsf{SP}_{\mathsf{lo}} + \mathsf{SP}_{\mathsf{hi}} + (n-1) \mathsf{\ additions}$

- Without space restrictions:
  - $SP \le FP$  and  $FP \le SP_{lo} + SP_{hi}$
  - MP ≡ FP (transposition)
  - $MP \le SP_{lo} + SP_{hi} + (n-1)$  additions
- Size of inputs and outputs:
  - FP:  $(n, n) \to 2n 1$
  - $SP_{lo}:(n,n)\rightarrow n$
  - $SP_{hi}:(n-1,n-1)\to n-1$
  - MP:  $(2n-1, n) \to n$

- Without space restrictions:
  - $SP \le FP$  and  $FP \le SP_{lo} + SP_{hi}$
  - MP ≡ FP (transposition)
  - MP  $\leq$  SP<sub>lo</sub> + SP<sub>hi</sub> + (n-1) additions
- Size of inputs and outputs:
  - FP:  $(n, n) \to 2n 1$
  - $SP_{lo}:(n,n)\rightarrow n$
  - $SP_{hi}: (n-1, n-1) \to n-1$
  - MP:  $(2n-1, n) \to n$

X Reductions unusable in space-restricted settings!

- Without space restrictions:
  - $SP \le FP$  and  $FP \le SP_{lo} + SP_{hi}$
  - MP ≡ FP (transposition)
  - $MP \le SP_{lo} + SP_{hi} + (n-1)$  additions
- Size of inputs and outputs:
  - FP:  $(n, n) \to 2n 1$
  - $SP_{lo}:(n,n)\rightarrow n$
  - $SP_{hi}: (n-1, n-1) \rightarrow n-1$
  - MP:  $(2n-1, n) \to n$

#### X Reductions unusable in space-restricted settings!

✓ We provide space/time preserving reductions

#### A relevant notion of reduction

#### **Definitions**

- TISP(t(n), s(n)): computable in time t(n) and space s(n)
- $A \leq_c B$ : A is computable with oracle B if  $B \in \mathsf{TISP}(t(n),s(n))$  then

$$A \in \mathsf{TISP}(c\ t(n) + o(t(n)), s(n) + O(1))$$

•  $A \equiv_c B$ :  $A \leq_c B$  and  $B \leq_c A$ 

#### A relevant notion of reduction

#### **Definitions**

- TISP(t(n), s(n)): computable in time t(n) and space s(n)
- $A \leq_c B$ : A is computable with oracle B if  $B \in TISP(t(n), s(n))$  then

$$A \in \mathsf{TISP}(c\ t(n) + o(t(n)), s(n) + O(1))$$

•  $A \equiv_c B$ :  $A \leq_c B$  and  $B \leq_c A$ 

#### **Example**

 $A \equiv_1 B$  means A and B are equivalent for both time and space

#### First results in a nutshell

#### **Theorem**



# Visual proof

Use of fake padding (in input, **not** in output!)

•  $SP_{lo}(n) \leq MP(n)$ ;  $SP_{hi}(n) \leq MP(n-1)$ 





# Visual proof

Use of fake padding (in input, **not** in output!)

•  $SP_{lo}(n) \leq MP(n)$ ;  $SP_{hi}(n) \leq MP(n-1)$ 



•  $\mathsf{FP}(n) \leq \mathsf{SP}_{\mathsf{hi}}(n) + \mathsf{SP}_{\mathsf{lo}}(n) \leq \mathsf{MP}(n) + \mathsf{MP}(n-1)$ 









**Remark**  $FP_{lo}^+ \equiv_1 FP_{hi}^+$  using reversal polynomials



**Remark**  $FP_{lo}^+ \equiv_1 FP_{hi}^+$  using reversal polynomials

Theorem  $\mathsf{FP}^+ \leq_2 \mathsf{SP}$  and  $\mathsf{SP} \leq_{3/2} \mathsf{FP}^+$ 











$$\mathsf{FP}^+_{\mathsf{lo}}(\mathit{n}) \leq \mathsf{SP}_{\mathsf{lo}}(\mathit{n}) + \mathsf{SP}_{\mathsf{hi}}(\mathit{n}) + \mathit{n} - 1$$

$$\left(f_0 + X^{\lceil n/2 \rceil} f_1\right) \cdot \left(g_0 + X^{\lceil n/2 \rceil} g_1\right) = f_0 g_0 + X^{\lceil n/2 \rceil} (f_0 g_1 + f_1 g_0) \mod X^n$$

$$\left(f_0 + X^{\lceil n/2 \rceil} f_1\right) \cdot \left(g_0 + X^{\lceil n/2 \rceil} g_1\right) = f_0 g_0 + X^{\lceil n/2 \rceil} \left(f_0 g_1 + f_1 g_0\right) \mod X^n$$



$$\left(f_0 + X^{\lceil n/2 \rceil} f_1\right) \cdot \left(g_0 + X^{\lceil n/2 \rceil} g_1\right) = f_0 g_0 + X^{\lceil n/2 \rceil} \left(f_0 g_1 + f_1 g_0\right) \mod X^n$$

$$\times \begin{bmatrix} \\ \\ \\ \end{bmatrix} = \begin{bmatrix} \\ \\ \\ \end{bmatrix}$$

$$\left(f_0 + X^{\lceil n/2 \rceil} f_1\right) \cdot \left(g_0 + X^{\lceil n/2 \rceil} g_1\right) = f_0 g_0 + X^{\lceil n/2 \rceil} \left(f_0 g_1 + f_1 g_0\right) \mod X^n$$



$$\mathsf{SP}_{\mathsf{lo}}(n) \leq \mathsf{FP}(\lfloor n/2 \rfloor) + \mathsf{FP}^+_{\mathsf{lo}}(\lfloor n/2 \rfloor) + \mathsf{FP}^+_{\mathsf{hi}}(\lceil n/2 \rceil)$$

#### Converse directions?

- From FP to SP:
  - problem with the output size
  - without space restriction: is  $SP(n) \simeq FP(n/2)$ ?

#### Converse directions?

- From FP to SP:
  - problem with the output size
  - without space restriction: is  $SP(n) \simeq FP(n/2)$ ?
- From SP to MP:
  - partial result:
    - up to log(n) increase in time complexity
    - techniques from next part
  - without space restriction
    - FP to MP through Tellegen's transposition principle

# Summary of results so far



In-place algorithms from

out-of-place algorithms

- In-place algorithms parametrized by out-of-place algorithm
  - Out-of-place: uses *cn* extra space
  - Constant c known to the algorithm

- In-place algorithms parametrized by out-of-place algorithm
  - Out-of-place: uses *cn* extra space
  - Constant c known to the algorithm
- Goal:
  - Space complexity: *O*(1)
  - Time complexity: closest to the out-of-place algorithm

- In-place algorithms parametrized by out-of-place algorithm
  - Out-of-place: uses cn extra space
  - Constant c known to the algorithm
- Goal:
  - Space complexity: *O*(1)
  - Time complexity: closest to the out-of-place algorithm
- Technique:
  - Oracle calls in smaller size
  - Fake padding
  - Tail recursive call

- In-place algorithms parametrized by out-of-place algorithm
  - Out-of-place: uses *cn* extra space
  - Constant c known to the algorithm
- Goal:
  - Space complexity: *O*(1)
  - Time complexity: closest to the out-of-place algorithm
- Technique:
  - Oracle calls in smaller size
  - Fake padding
  - Tail recursive call

Similar approach for matrix mul. : Boyer, Dumas, Pernet, Zhou (2009)

# Tail recursion and fake padding

- Tail recursion:
  - Only one recursive call + last (or first) instruction
  - No need of recursive stack  $\rightsquigarrow$  avoid  $O(\log n)$  extra space

### Tail recursion and fake padding

- Tail recursion:
  - Only one recursive call + last (or first) instruction
  - No need of recursive stack  $\rightsquigarrow$  avoid  $O(\log n)$  extra space
- Fake padding:
  - Pretend to pad inputs with zeroes
  - Make the data structure responsible for it
    - O(1) increase in memory
    - Cf. strides in dense linear algebra
  - OK in inputs, not in outputs!

### Our results

- In-place full product (half additive) in time (2c + 7)M(n)
- In-place short product in time (2c + 5)M(n)
- In-place middle product in time  $O(M(n) \log n)$











# **Analysis**



# **Analysis**



• 
$$ck + 2k - 1 \le n - k \implies k \le \frac{n+1}{c+3}$$

$$T(n) = (2\lceil n/k \rceil - 1)(M(k) + 2k - 1) + T(n - k)$$

# **Analysis**



• 
$$ck + 2k - 1 \le n - k \implies k \le \frac{n+1}{c+3}$$

$$T(n) = (2\lceil n/k \rceil - 1)(M(k) + 2k - 1) + T(n - k)$$

$$T(n) \le (2c+7)M(n) + o(M(n))$$













- $k \le n/(c+2)$
- $T(n) = \lceil n/k \rceil M(k) + (\lceil n/k \rceil 1) M(k-1) + 2k(\lceil n/k \rceil 1) + T(n-k)$



- $k \le n/(c+2)$
- $T(n) = \lceil n/k \rceil M(k) + (\lceil n/k \rceil 1) M(k-1) + 2k(\lceil n/k \rceil 1) + T(n-k)$

$$T(n) \le (2c+5)\mathsf{M}(n) + o(\mathsf{M}(n))$$









- Recursive call on chunks of f... but with full g!
- $T(n,m) = \lceil n/k \rceil M(k) + T(n,m-k)$



- Recursive call on chunks of f... but with full g!
- $T(n,m) = \lceil n/k \rceil M(k) + T(n,m-k)$

$$T(n,n) \le egin{cases} \mathsf{M}(n)\log_{\frac{c+2}{c+1}}(n) + o(\mathsf{M}(n)\log n) & \text{if } \mathsf{M}(n) \text{ is quasi-linear} \ O(\mathsf{M}(n)) & \text{otherwise} \end{cases}$$

# Other operations

Work in progress!

### Other operations

# Work in progress!

- Use our in-place algorithms as building blocks
  - Newton iteration: division, square root, . . .
  - Evaluation & interpolation
  - $\rightarrow$  (at most)  $\log(n)$  increase in complexity

### Other operations

# Work in progress!

- Use our in-place algorithms as building blocks
  - Newton iteration: division, square root, ...
  - Evaluation & interpolation
  - $\rightarrow$  (at most)  $\log(n)$  increase in complexity

#### Remark

- In place: division with remainder
- Only quotient or only remainder: not clear
- Main difficulty: size of the output

# **Summary of the results**



- TISP-reductions between polynomial products
- Self-reductions to obtain in-place algorithms

- TISP-reductions between polynomial products
- Self-reductions to obtain in-place algorithms

### **Comparisons**

- Better use specialized in-place algorithms. . .
- ... when they exist!

- TISP-reductions between polynomial products
- Self-reductions to obtain in-place algorithms

#### **Comparisons**

- Better use specialized in-place algorithms. . .
- ... when they exist!

### Main open problems

- Remove the log(n) for middle product or prove a lower bound
- General result on Tellegen's transposition principle
- What about integer multiplication?

- TISP-reductions between polynomial products
- Self-reductions to obtain in-place algorithms

### **Comparisons**

- Better use specialized in-place algorithms. . .
- ... when they exist!

### Main open problems

- Remove the log(n) for middle product or prove a lower bound
- General result on Tellegen's transposition principle
- What about integer multiplication?

# Thank you!