Rank-width, circle graphs, and vertex-minors

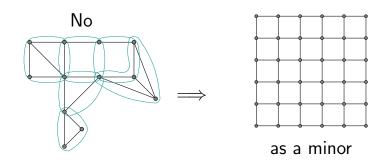
Rose McCarty

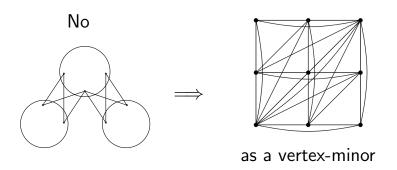
Department of Combinatorics and Optimization

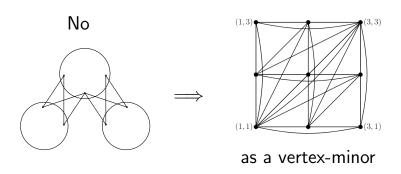
Width Parameters March 2021

Theorem (Robertson-Seymour-86)

Every graph of tree-width $\geq f(t)$ has a $t \times t$ grid as a minor.







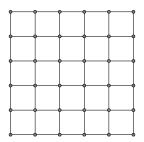
- $rw(G) \le clique\text{-width}(G) \le 2^{rw(G)+1}$ (Oum-Seymour-06)
- H a vertex-minor of $G \implies \operatorname{rw}(H) \le \operatorname{rw}(G)$.
- Comparability grids have $rw = \Theta(t)$.

- $\operatorname{rw}(G) \le \operatorname{clique-width}(G) \le 2^{\operatorname{rw}(G)+1}$ (Oum-Seymour-06)
- H a vertex-minor of $G \implies \operatorname{rw}(H) \le \operatorname{rw}(G)$.
- Comparability grids have $rw = \Theta(t)$.

- $rw(G) \le clique\text{-width}(G) \le 2^{rw(G)+1}$ (Oum-Seymour-06)
- H a vertex-minor of $G \implies \operatorname{rw}(H) \le \operatorname{rw}(G)$.
- Comparability grids have $rw = \Theta(t)$.

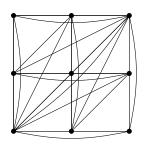
A class of graphs has unbounded

- tree-width iff it has all planar graphs as minors.
- rank-width iff it has all circle graphs as vertex-minors.



A class of graphs has unbounded

- tree-width iff it has all planar graphs as minors.
- rank-width iff it has all circle graphs as vertex-minors.

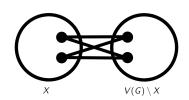


$$X \qquad V(G) \setminus X$$

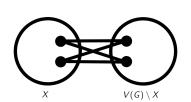
$$X \begin{bmatrix}
0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
\hline
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{bmatrix}$$

$$X \qquad V(G) \setminus X$$

$$X \begin{bmatrix}
0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
\hline
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{bmatrix}$$

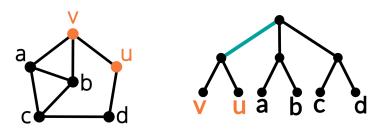


$$V(G) \setminus X \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$



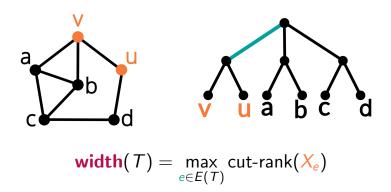
$$\operatorname{\mathsf{cut-rank}}(X) = \operatorname{\mathsf{cut-rank}}(V(G) \setminus X)$$

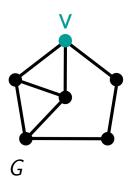
Rank-width(G) is the minimum **width** of a subcubic tree T with leafs V(G).

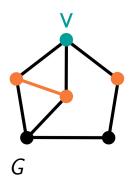


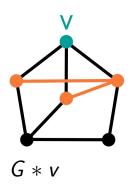
$$\mathbf{width}(T) = \max_{e \in E(T)} \mathsf{cut}\text{-}\mathsf{rank}(X_e)$$

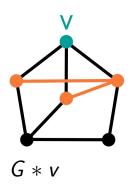
Rank-width(G) is the minimum **width** of a subcubic tree T with leafs V(G).

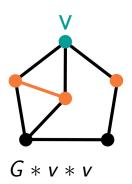


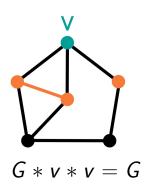


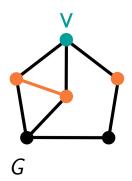


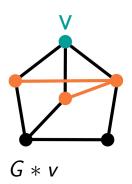


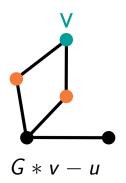




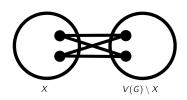






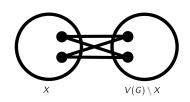


$$V(G) \setminus X = \begin{bmatrix} X & V(G) \setminus X \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$



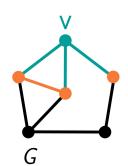
$$V(G) \setminus X$$

$$X \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$



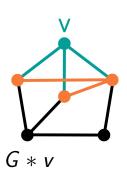
$$V(G)$$

$$V(G) \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$



$$V(G)$$

$$V(G) \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

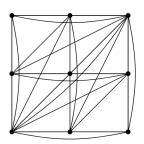


- It has unbounded clique-width.
- It has unbounded rank-width.
- It has all comparability grids as vertex-minors.
- It has all **circle graphs** as vertex-minors.

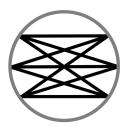
- It has unbounded clique-width.
- It has unbounded rank-width
- It has all comparability grids as vertex-minors.
- It has all **circle graphs** as vertex-minors.

- It has unbounded clique-width.
- It has unbounded rank-width.
- It has all **comparability grids** as vertex-minors.
- It has all circle graphs as vertex-minors.

- It has unbounded clique-width.
- It has unbounded rank-width.
- It has all comparability grids as vertex-minors.
- It has all circle graphs as vertex-minors.

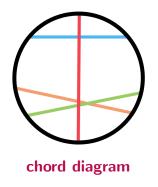


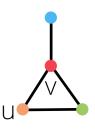
- It has unbounded clique-width.
- It has unbounded rank-width.
- It has all **comparability grids** as vertex-minors.
- It has all circle graphs as vertex-minors.



A circle graph is the intersection graph of chords on a circle.

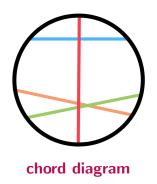
They are closed under local complementation. Every circle graph is a vertex-minor of a comparability grid.

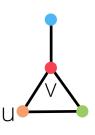




circle graph G

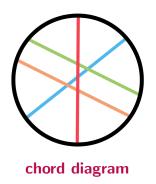
A circle graph is the intersection graph of chords on a circle. They are closed under local complementation. Every circle graph is a vertex-minor of a comparability grid.





circle graph G

A circle graph is the intersection graph of chords on a circle. They are closed under local complementation. Every circle graph is a vertex-minor of a comparability grid.

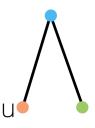


circle graph G * v

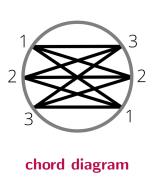


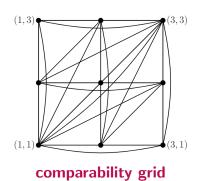
circle graph G * v * u

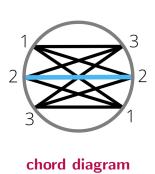




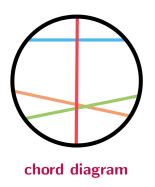
circle graph G * v * u - v

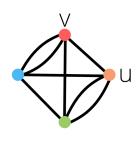




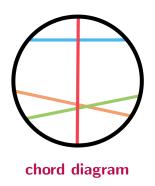


(1, 3) (3, 3) (3, 1) (3, 1) comparability grid

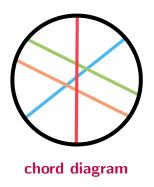




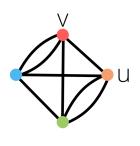
tour graph



tour graph

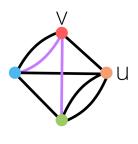


tour graph

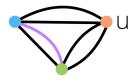


tour graph

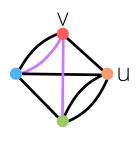
tour graph



tour graph



tour graph



tour graph

If H is a minor of G and $e \notin E(H)$, then H is a minor of either G - e or G/e.

Theorem (Bouchet-88)

- \bullet G-V,
- G * v v, or
- G * v * u * v v for each neighbour u of v

If H is a minor of G and $e \notin E(H)$, then H is a minor of either G - e or G/e.

Theorem (Bouchet-88)

- \circ G-V,
- \bullet G * V V, or
- G * v * u * v v for each neighbour u of v

If H is a minor of G and $e \notin E(H)$, then H is a minor of either G - e or G/e.

Theorem (Bouchet-88)

- \bullet G-v,
- G * V V, or
- G * v * u * v v for each neighbour u of v

If H is a minor of G and $e \notin E(H)$, then H is a minor of either G - e or G/e.

Theorem (Bouchet-88)

- \bullet G-v,
- G * v v, or
- G * v * u * v v for each neighbour u of v

If H is a minor of G and $e \notin E(H)$, then H is a minor of either G - e or G/e.

Theorem (Bouchet-88)

If H is a vertex-minor of G and $v \in V(G) \setminus V(H)$, then H is a vertex-minor of either

- - G * v v, or

 \bullet G-v.

• G * v * u * v - v for each neighbour u of v.

 $\begin{array}{cccc} \text{branch-width} & \sim & \text{rank-width} \\ & \text{minor} & \sim & \text{vertex-minor} \\ & \text{grid} & \sim & \text{comparability grid} \\ & \text{planar graphs} & \sim & \text{circle graphs} \end{array}$

 branch-width \sim rank-width minor \sim vertex-minor grid \sim comparability grid

planar graphs \sim

circle graphs

Pause:)

Kuratowski's Theorem

A graph is planar iff and only if it has no K_5 or $K_{3,3}$ minor.

Theorem (Bouchet-94)

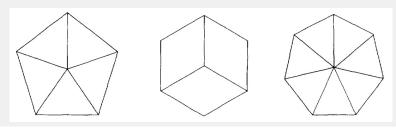
A graph is a circle graph iff it has none of the following as a vertex-minor.

Kuratowski's Theorem

A graph is planar iff and only if it has no K_5 or $K_{3,3}$ minor.

Theorem (Bouchet-94)

A graph is a circle graph iff it has none of the following as a vertex-minor.



For any $S, T \subseteq V(G)$ and edge e, either G - e or G/e has no smaller (S, T)-separator than G.

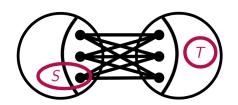
Theorem (Oum-05)

For any $S, T \subseteq V(G)$ and edge e, either G - e or G/e has no smaller (S, T)-separator than G.

Theorem (Oum-05)

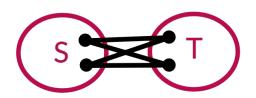
For any $S, T \subseteq V(G)$ and edge e, either G - e or G/e has no smaller (S, T)-separator than G.

Theorem (Oum-05)



For any $S, T \subseteq V(G)$ and edge e, either G - e or G/e has no smaller (S, T)-separator than G.

Theorem (Oum-05)

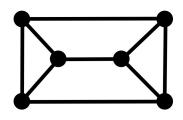


branch-width \sim rank-width minor \sim vertex-minor grid \sim comparability grid planar graphs \sim circle graphs (uratowski's Theorem \sim Bouchet's Theorem Menger's Theorem \sim Oum's Theorem

 branch-width \sim rank-width minor \sim vertex-minor grid \sim comparability grid planar graphs \sim circle graphs Kuratowski's Theorem \sim Bouchet's Theorem Menger's Theorem \sim Oum's Theorem

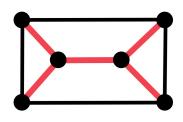
branch-width \sim rank-width minor \sim vertex-minor grid \sim comparability grid planar graphs \sim circle graphs Kuratowski's Theorem \sim Bouchet's Theorem Menger's Theorem \sim Oum's Theorem

Consider a planar graph with a spanning tree T. Draw a curve closely around T. So $E(G) \setminus E(T)$ yields one set of non-crossing chords and E(T) yields another. The circle graph is the **fundamental graph** $\mathcal{F}(T)$. What is $\mathcal{F}(T')$?



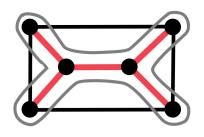
planar graph

Consider a planar graph with a spanning tree T. Draw a curve closely around T. So $E(G) \setminus E(T)$ yields one set of non-crossing chords and E(T) yields another. The circle graph is the fundamental graph $\mathcal{F}(T)$. What is $\mathcal{F}(T')$?

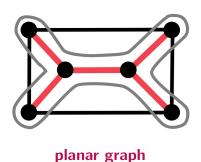


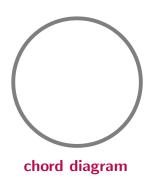
planar graph

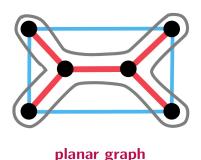
Consider a planar graph with a spanning tree T. Draw a curve closely around T. So $E(G) \setminus E(T)$ yields one set of non-crossing chords and E(T) yields another. The circle graph is the fundamental graph $\mathcal{F}(T)$. What is $\mathcal{F}(T')$?

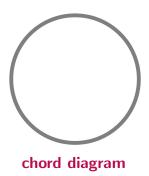


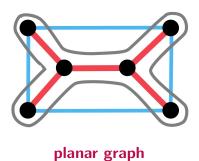
planar graph

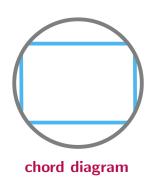


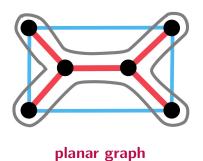




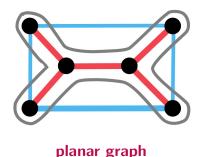


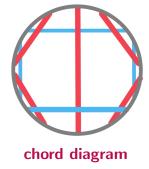


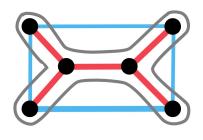




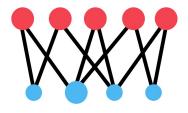




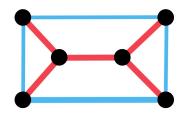




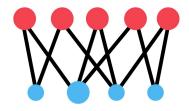
planar graph



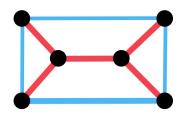
fundamental graph $\mathcal{F}(\mathsf{T})$



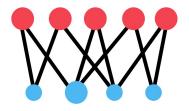
planar graph



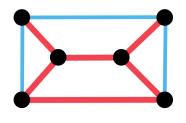
fundamental graph $\mathcal{F}(\mathsf{T})$



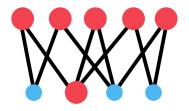
planar graph



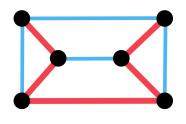
fundamental graph $\mathcal{F}(\mathsf{T})$



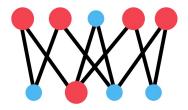
planar graph



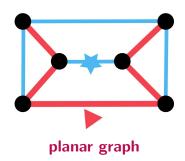
fundamental graph $\mathcal{F}(\mathsf{T})$

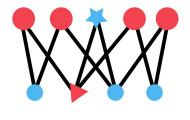


planar graph

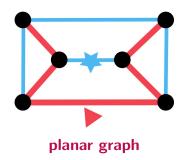


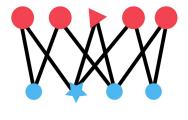
fundamental graph $\mathcal{F}(\mathsf{T})$



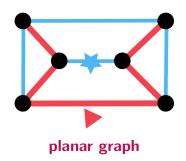


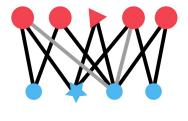
fundamental graph $\mathcal{F}(\mathsf{T})$



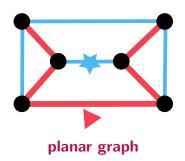


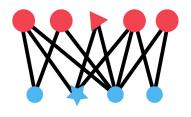
fundamental graph ...





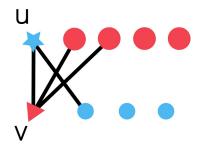
fundamental graph ...



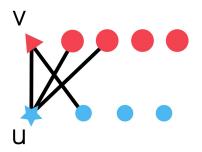


fundamental graph $\mathcal{F}(\mathbf{T}')$

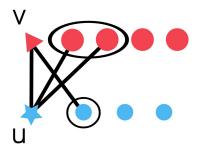
- 1) Exchange their labels.
- 2) Complement between $N(u) \{v\}$ and $N(v) \{u\}$.



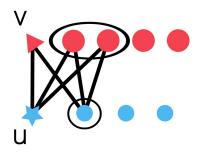
- 1) Exchange their labels.
- 2) Complement between $N(u) \{v\}$ and $N(v) \{u\}$



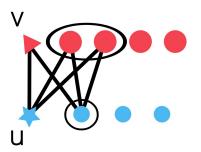
- 1) Exchange their labels.
- 2) Complement between $N(u) \{v\}$ and $N(v) \{u\}$.



- 1) Exchange their labels.
- 2) Complement between $N(u) \{v\}$ and $N(v) \{u\}$.



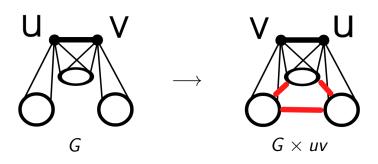
- 1) Exchange their labels.
- 2) Complement between $N(u) \{v\}$ and $N(v) \{u\}$.



Pivoting an edge *uv* of *G* yields the graph

$$G \times uv := G * u * v * u = G * v * u * v.$$

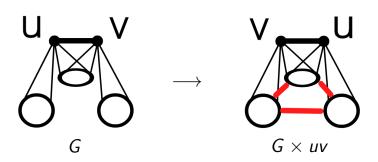
We can define **pivot equivalence** and **pivot-minors** as well.



Pivoting an edge *uv* of *G* yields the graph

$$G \times uv := G * u * v * u = G * v * u * v.$$

We can define **pivot equivalence** and **pivot-minors** as well.



pivot-equivalent

bipartite circle graphs

via fundamental graphs

planar graphs

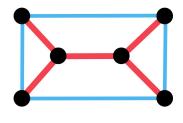
pivot-equivalent

bipartite circle graphs

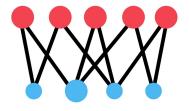
via fundamental graphs

planar graphs \longleftrightarrow

The fundamental graphs of two distinct, 2-connected planar graphs are pivot equivalent iff the planar graphs are dual.

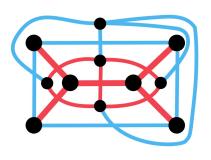


planar graph

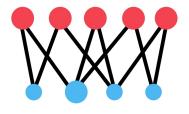


fundamental graph $\mathcal{F}(\mathsf{T})$

The fundamental graphs of two distinct, 2-connected planar graphs are pivot equivalent iff the planar graphs are dual.

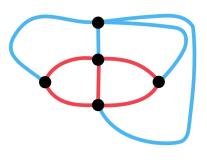


planar graph

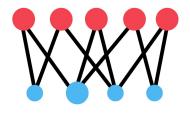


fundamental graph $\mathcal{F}(\mathbf{T})$

The fundamental graphs of two distinct, 2-connected planar graphs are pivot equivalent iff the planar graphs are dual.

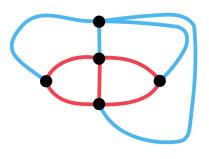


planar graph

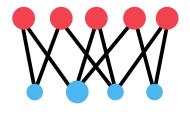


fundamental graph $\mathcal{F}(\mathsf{T}^*)$

The fundamental graphs of two distinct, connected binary matroids are pivot equivalent iff the matroids are dual.



planar graph



fundamental graph $\mathcal{F}(\mathsf{T}^*)$

The fundamental graphs of two distinct, connected binary matroids are pivot equivalent iff the matroids are dual.

Theorem (de Fraysseix-81)

Every bipartite circle graph is the fundamental graph of a planar graph, and every circle graph is a vertex-minor of one that is bipartite.

vertex connectivity \longrightarrow **cut-rank**

The fundamental graphs of two distinct, connected binary matroids are pivot equivalent iff the matroids are dual.

Theorem (de Fraysseix-81)

Every bipartite circle graph is the fundamental graph of a planar graph, and every circle graph is a vertex-minor of one that is bipartite.

vertex connectivity \longrightarrow **cut-rank**

The fundamental graphs of two distinct, connected binary matroids are pivot equivalent iff the matroids are dual.

Theorem (de Fraysseix-81)

Every bipartite circle graph is the fundamental graph of a planar graph, and every circle graph is a vertex-minor of one that is bipartite.

vertex connectivity —> cut-rank

minors ---> pivot-minors

The fundamental graphs of two distinct, connected binary matroids are pivot equivalent iff the matroids are dual.

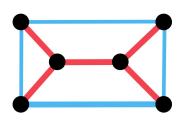
Theorem (de Fraysseix-81)

Every bipartite circle graph is the fundamental graph of a planar graph, and every circle graph is a vertex-minor of one that is bipartite.

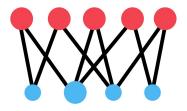
vertex connectivity —> cut-rank

minors \longrightarrow **pivot-minors**

We can delete edges in $E(G) \setminus E(T)$ and contract edges in T.

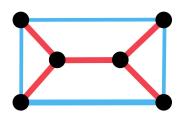


planar graph

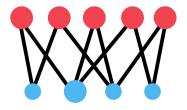


fundamental graph $\mathcal{F}(\mathbf{T})$

We can delete edges in $E(G) \setminus E(T)$ and contract edges in T.

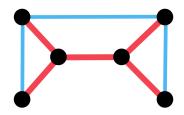


planar graph

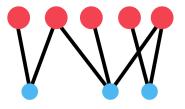


 $\begin{array}{c} \text{fundamental graph} \\ \mathcal{F}(\mathbf{T}) \end{array}$

We can delete edges in $E(G) \setminus E(T)$ and contract edges in T.

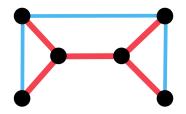


planar graph

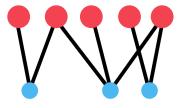


fundamental graph $\mathcal{F}(\mathbf{T}) - v$

We can delete edges in $E(G) \setminus E(T)$ and contract edges in T.



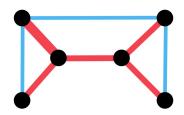
planar graph



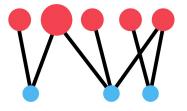
fundamental graph $\mathcal{F}(\mathbf{T}) - v$

minors \longrightarrow **pivot-minors**

We can delete edges in $E(G) \setminus E(T)$ and contract edges in T.



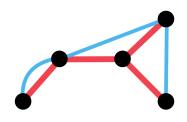
planar graph



fundamental graph $\mathcal{F}(\mathbf{T}) - v$

minors \longrightarrow **pivot-minors**

We can delete edges in $E(G) \setminus E(T)$ and contract edges in T.

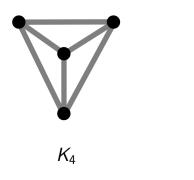


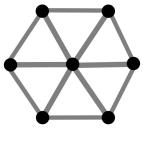
fundamental graph

$$\mathcal{F}(\mathsf{T}) - v - u$$

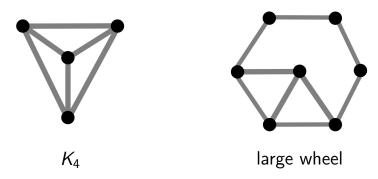
branch-width \sim rank-width minor \sim **pivot-minor** grid \sim comparability grid planar graphs \sim **bip.** circle graphs Kuratowski's Theorem \sim Bouchet's Theorem Menger's Theorem \sim Oum's Theorem

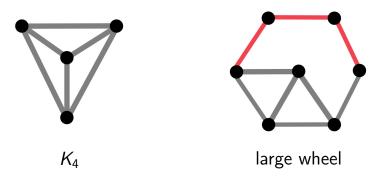
Pause

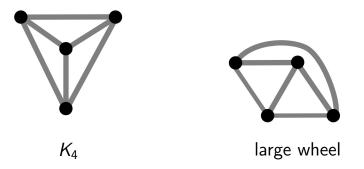


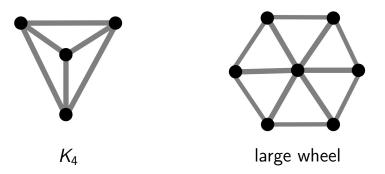


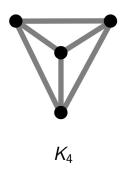
large wheel

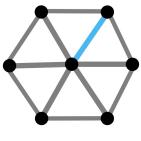




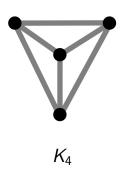


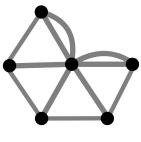




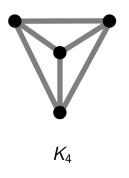


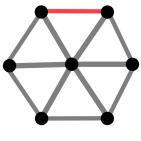
large wheel



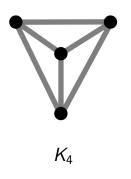


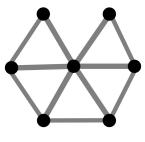
large wheel



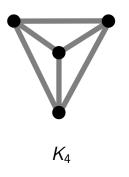


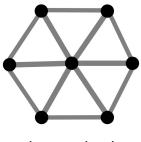
large wheel





large wheel



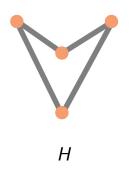


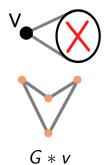
large wheel

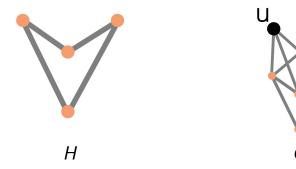
Yet, if G has an H vertex-minor and $|V(G)| \ge 2^{|V(H)|}$, then there exists $v \in V(G) \setminus V(H)$ s.t. H is a vertex-minor of at least **two** of: G - v, G * v - v, $G \times uv - v$.

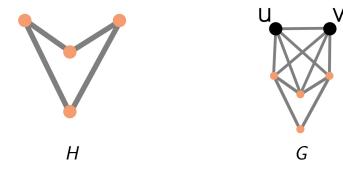
Η

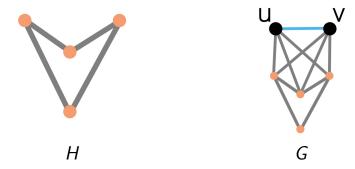


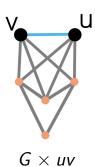


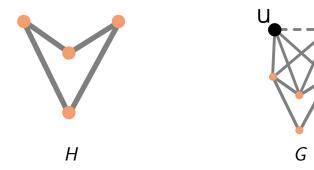


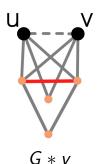












Yet, if G has an H vertex-minor and $|V(G)| \ge 2^{|V(H)|}$, then there exists $v \in V(G) \setminus V(H)$ s.t. H is a vertex-minor of at least **two** of: G - v, G * v - v, $G \times uv - v$.

Н

$$(G * v - v) * u$$

A class of graphs has **bounded shrub-depth** if every graph in it can be constructed by a bounded depth sequence, where

- $\operatorname{depth}(K_1) = 0$,
- $\operatorname{depth}(G_1 \uplus G_2) = \max(\operatorname{depth}(G_1), \operatorname{depth}(G_2))$, and
- ullet for any $S\subseteq V(G)$, replacing G[S] by its complemental increases depth by L

A class of graphs has **bounded shrub-depth** if every graph in it can be constructed by a bounded depth sequence, where

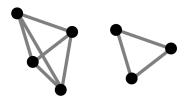
- \bullet depth $(K_1)=0$,
- $\operatorname{depth}(G_1 \uplus G_2) = \max(\operatorname{depth}(G_1), \operatorname{depth}(G_2))$, and
- for any $S \subseteq V(G)$, replacing G[S] by its complement increases depth by 1.

- \bullet depth $(K_1)=0$,
- \bullet depth $(G_1 \uplus G_2) = \max(\operatorname{depth}(G_1), \operatorname{depth}(G_2))$, and
- for any $S \subseteq V(G)$, replacing G[S] by its complement increases depth by 1.

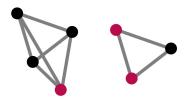
- \bullet depth $(K_1)=0$,
- \bullet depth $(G_1 \uplus G_2) = \max(\operatorname{depth}(G_1), \operatorname{depth}(G_2))$, and
- for any $S \subseteq V(G)$, replacing G[S] by its complement increases depth by 1.

- \bullet depth $(K_1)=0$,
- $\operatorname{depth}(G_1 \uplus G_2) = \max(\operatorname{depth}(G_1), \operatorname{depth}(G_2))$, and
- for any $S \subseteq V(G)$, replacing G[S] by its complement increases depth by 1.

- \bullet depth $(K_1)=0$,
- \bullet depth $(G_1 \uplus G_2) = \max(\operatorname{depth}(G_1), \operatorname{depth}(G_2))$, and
- for any $S \subseteq V(G)$, replacing G[S] by its complement increases depth by 1.



- \bullet depth $(K_1)=0$,
- \bullet depth($G_1 \uplus G_2$) = max(depth(G_1), depth(G_2)), and
- for any $S \subseteq V(G)$, replacing G[S] by its complement increases depth by 1.



- \bullet depth $(K_1)=0$,
- \bullet depth $(G_1 \uplus G_2) = \max(\operatorname{depth}(G_1), \operatorname{depth}(G_2))$, and
- for any $S \subseteq V(G)$, replacing G[S] by its complement increases depth by 1.

A class of graphs has **bounded shrub-depth** if every graph in it can be constructed by a bounded depth sequence, where

- \bullet depth $(K_1) = 0$,
- $\operatorname{depth}(G_1 \uplus G_2) = \max(\operatorname{depth}(G_1), \operatorname{depth}(G_2))$, and
- for any $S \subseteq V(G)$, replacing G[S] by its complement increases depth by 1.

Theorem (Kwon-McCarty-Oum-Wollan-21)

A class of graphs has unbounded shrub-depth iff it has all paths as vertex-minors.

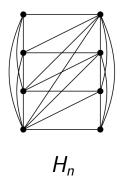
A class of graphs has **bounded shrub-depth** if every graph in it can be constructed by a bounded depth sequence, where

- \bullet depth $(K_1) = 0$,
- $\operatorname{depth}(G_1 \uplus G_2) = \max(\operatorname{depth}(G_1), \operatorname{depth}(G_2))$, and
- for any $S \subseteq V(G)$, replacing G[S] by its complement increases depth by 1.

Theorem (Kwon-McCarty-Oum-Wollan-21)

A class of bipartite graphs has unbounded shrub-depth iff it has all paths as pivot-minors.

Yet there are classes of unbounded shrub-depth without all paths as pivot-minors.



A class of graphs has unbounded shrub-depth iff it has all paths or all H_n as pivot-minors.

Is it true when rank-width is bounded?!? See Nešetřil-Ossona de Mendez-Pilipczuk-Rabinovich-Siebertz

Conjecture (Oum-09)

A class of graphs has unbounded rank-width iff it has all bipartite circle graphs as pivot-minors.

Conjecture

A class of graphs has unbounded shrub-depth iff it has all paths or all H_n as pivot-minors.

Is it true when rank-width is bounded?!? See Nešetřil-Ossona de Mendez-Pilipczuk-Rabinovich-Siebertz.

Conjecture (Oum-09)

A class of graphs has unbounded rank-width iff it has all bipartite circle graphs as pivot-minors.

Conjecture

A class of graphs has unbounded shrub-depth iff it has all paths or all H_n as pivot-minors.

Is it true when rank-width is bounded?!? See Nešetřil-Ossona de Mendez-Pilipczuk-Rabinovich-Siebertz.

Conjecture (Oum-09)

A class of graphs has unbounded rank-width iff it has all bipartite circle graphs as pivot-minors.

Conjecture

A class of graphs has unbounded shrub-depth iff it has all paths or all H_n as pivot-minors.

Is it true when rank-width is bounded?!? See Nešetřil-Ossona de Mendez-Pilipczuk-Rabinovich-Siebertz.

Conjecture (Oum-09)

A class of graphs has unbounded rank-width iff it has all bipartite circle graphs as pivot-minors.

Conjecture

Thank you!