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tree-width iff it has all planar graphs as minors.

rank-width iff it has all circle graphs as
vertex-minors.
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G ∗ v ∗ u ∗ v − v for each neighbour u of v .
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Kuratowski’s Theorem

A graph is planar iff and only if it has no K5 or K3,3 minor.

Theorem (Bouchet-94)

A graph is a circle graph iff it has none of the following as a
vertex-minor.
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Menger’s Theorem

For any S ,T ⊆ V (G ) and edge e, either G − e or G/e has no
smaller (S ,T )-separator than G.

Theorem (Oum-05)

For any disjoint S ,T ⊆ V (G ) and vertex v /∈ S ∪ T, at least
two of the three graphs G − v , G ∗ v − v , G ∗ v ∗ u ∗ v − v
have no smaller cut-rank (S ,T )-cut than G.
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Consider a planar graph with a spanning tree T. Draw a curve
closely around T. So E (G ) \ E (T) yields one set of
non-crossing chords and E (T) yields another. The circle graph
is the fundamental graph F(T). What is F(T’)?
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Pivot-minors seem truly harder...

Yet, if G has an H vertex-minor and |V (G )| ≥ 2|V (H)|, then
there exists v ∈ V (G ) \ V (H) s.t. H is a vertex-minor of at
least two of: G − v , G ∗ v − v , G × uv − v .
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Pivot-minors seem truly harder...

A class of graphs has bounded shrub-depth if every graph in
it can be constructed by a bounded depth sequence, where

depth(K1) = 0,
depth(G1 ] G2) = max (depth(G1), depth(G2)), and
for any S ⊆ V (G ), replacing G [S ] by its complement
increases depth by 1.
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Pivot-minors seem truly harder...

A class of graphs has bounded shrub-depth if every graph in
it can be constructed by a bounded depth sequence, where

depth(K1) = 0,
depth(G1 ] G2) = max (depth(G1), depth(G2)), and
for any S ⊆ V (G ), replacing G [S ] by its complement
increases depth by 1.

Theorem (Kwon-McCarty-Oum-Wollan-21)

A class of bipartite graphs has unbounded shrub-depth iff it
has all paths as pivot-minors.



Yet there are classes of unbounded shrub-depth
without all paths as pivot-minors.

Hn



Conjecture

A class of graphs has unbounded shrub-depth iff it has all
paths or all Hn as pivot-minors.

Is it true when rank-width is bounded?!?
See Nešeťril-Ossona de Mendez-Pilipczuk-Rabinovich-Siebertz.

Conjecture (Oum-09)

A class of graphs has unbounded rank-width iff it has all
bipartite circle graphs as pivot-minors.

Conjecture

Every proper vertex-minor-closed class can be characterized
by a finite list of forbidden vertex-minors.
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Thank you!


