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Theorem (Robertson-Seymour-86)
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Theorem (Geelen-Kwon-McCarty-Wollan-20)

Every graph of rank-width > f(t) hasat x t
comparability grid as a vertex-minor.

o 1w(G) < clique-width(G) < 2*"(€)+1 (Qum-Seymour-06)
o H a vertex-minor of G = rw(H) < rw(G).
o Comparability grids have rw = ©(t).



A class of graphs has unbounded

o tree-width iff it has all planar graphs as minors.




A class of graphs has unbounded

o tree-width iff it has all planar graphs as minors.

o rank-width iff it has all circle graphs as
vertex-minors.




Cut-rank(X) is the rank (over the binary field) of the matrix
adj[X, V(G) \ X].

X V(G)\ X
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X1 0 1|1 1 0
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00 0|1 0 0
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Cut-rank(X) is the rank (over the binary field) of the matrix
adj[X, V(G) \ X].

X V(G)\ X
01 offT T 0
X1 0 1[t 1 0
0 1 00 0 0
T 1 0|0 1 1
V(G)\Xl 1 1 0 ‘ 100 |
0 0 off1 0 o0 X V(6)\ X

cut-rank(X) = cut-rank(V(G) \ X)



Cut-rank(X) is the rank (over the binary field) of the matrix
adj[X, V(G) \ X].

Rank-width(G) is the minimum width of a subcubic tree T
with leafs V(G).
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Cut-rank(X) is the rank (over the binary field) of the matrix
adj[X, V(G) \ X].

Rank-width(G) is the minimum width of a subcubic tree T
with leafs V(G).

a bc d

width(T) = eénEa(% cut-rank(X.)
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Locally complementing at v replaces the induced subgraph
on the neighbourhood of v by its complement. This yields
local equivalence classes of graphs.

The vertex-minors of G are the induced subgraphs of graphs
in the local equivalence class of G.

\'

Gxv—u



Rank-width only depends on cut-rank(X),
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Rank-width only depends on cut-rank(X), which is invariant
under local complementation.

X V(G)\ X

0 1 01 1 O

X 1 0 1|1 1 O

0 1 0|0 O O

1 1 0|0 1 1

V(G)\X| 1 1 0|1 0 0
0O 0 0|1 0 O X V(G)\ X



Rank-width only depends on cut-rank(X), which is invariant
under local complementation.
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Rank-width only depends on cut-rank(X), which is invariant
under local complementation.
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The following are equivalent for any graph class.

o It has unbounded clique-width.

o It has unbounded rank-width.

o It has all comparability grids as vertex-minors.
o It has all circle graphs as vertex-minors.
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A circle graph is the intersection graph of chords on a circle.
They are closed under local complementation.

u

chord diagram circle graph G xvxu—v



A circle graph is the intersection graph of chords on a circle.
They are closed under local complementation. Every circle
graph is a vertex-minor of a comparability grid.
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A circle graph is the intersection graph of chords on a circle.
They are closed under local complementation. Every circle
graph is a vertex-minor of a comparability grid.

(1,3)

(1,1)
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(3,1)



View a chord diagram as a 3-regular graph and contract the
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View a chord diagram as a 3-regular graph and contract the
chords to get the tour graph. It is invariant under local
complementation, and vertex-deletion works nicely.

chord diagram tour graph
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Lemma

If H is a minor of G and e ¢ E(H), then H is a minor of
either G — e or G/e.

Theorem (Bouchet-88)

If H is a vertex-minor of G and v € V(G)\ V(H), then H is a
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Lemma

If H is a minor of G and e ¢ E(H), then H is a minor of
either G — e or G/e.

Theorem (Bouchet-88)

If H is a vertex-minor of G and v € V(G)\ V(H), then H is a
vertex-minor of either

o G—v,
o Gxv—v, or

o Gxvxuxv—v for each neighbour u of v.
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Pause :)




Kuratowski's Theorem
A graph is planar iff and only if it has no Ks or K33 minor.



Kuratowski's Theorem
A graph is planar iff and only if it has no Ks or K33 minor.

Theorem (Bouchet-94)

A graph is a circle graph iff it has none of the following as a
vertex-minor.
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have no smaller cut-rank (S, T)-cut than G.




Menger's Theorem

Forany S, T C V(G) and edge e, either G — e or G/e has no
smaller (S, T)-separator than G.

Theorem (Oum-05)

For any disjoint S, T C V(G) and vertex v ¢ SU T, at least
two of the three graphs G — v, Gxv —v, Gxv*xu*xv —v
have no smaller cut-rank (S, T)-cut than G.
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Consider a planar graph with a spanning tree T. Draw a curve
closely around T. So £(G)\ E(T) yields one set of
non-crossing chords and E(T) yields another. The circle graph
is the fundamental graph F(T).
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Consider a planar graph with a spanning tree T. Draw a curve
closely around T. So £(G) \ E£(T) yields one set of
non-crossing chords and E(T) yields another. The circle graph
is the fundamental graph F(T). What is F(T")?

>

planar graph fundamental graph F(T’)
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How do we switch out u and v?

1) Exchange their labels.
2) Complement between N(u) — {v} and N(v) — {u}.
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This graphis Gxuxvxu=G*xv*xux*xv.



Pivoting an edge uv of G yields the graph

Gxu =Gxuxvxu=G*xvxuxyv.

U Vv Vv U

G G x uv



Pivoting an edge uv of G yields the graph
Gxu =Gxuxvxu=Gxvxux*v.

We can define pivot equivalence and pivot-minors as well.

U Vv Vv U

G G x uv
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Theorem (Bouchet)

The fundamental graphs of two distinct, 2-connected planar
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Theorem (Bouchet)

The fundamental graphs of two distinct, connected binary
matroids are pivot equivalent iff the matroids are dual.

Theorem (de Fraysseix-81)

Every bipartite circle graph is the fundamental graph of a
planar graph, and every circle graph is a vertex-minor of one
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minors — pivot-minors

We can delete edges in £(G) \ £(T) and contract edges in T.

planar graph fundamental graph
F(T)—v—u
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branch-width ~ rank-width

minor ~ pivot-minor
grid ~  comparability grid
planar graphs ~  bip. circle graphs

Kuratowski's Theorem ~ Bouchet's Theorem

Menger's Theorem ~ Oum's Theorem

Minors and vertex-minors are incomparable, but
pivot-minors provide a common generalization.
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Yet, if G has an H vertex-minor and |V(G)| > 2IV(")I then
there exists v € V(G) \ V(H) s.t. H is a vertex-minor of at
least two of: G — v, Gxv —v, G X uv — v.
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Yet, if G has an H vertex-minor and |V(G)| > 2IV(")I then
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Pivot-minors seem truly harder...

Yet, if G has an H vertex-minor and |V(G)| > 2IV(")I then
there exists v € V(G) \ V(H) s.t. H is a vertex-minor of at
least two of: G — v, Gxv —v, G X uv — v.

(VAR

H (Gxv—v)*xu



Pivot-minors seem truly harder...



Pivot-minors seem truly harder...

A class of graphs has bounded shrub-depth if every graph in
it can be constructed by a bounded depth sequence, where

o depth(Ki) =0,



Pivot-minors seem truly harder...

A class of graphs has bounded shrub-depth if every graph in
it can be constructed by a bounded depth sequence, where

o depth(Ki) =0,

o depth(G; W Gy) = max (depth(G;), depth(Gy)), and



Pivot-minors seem truly harder...

A class of graphs has bounded shrub-depth if every graph in
it can be constructed by a bounded depth sequence, where
o depth(Ki) =0,
o depth(G; W Gy) = max (depth(G;), depth(Gy)), and
e for any S C V/(G), replacing G[S] by its complement
increases depth by 1.



Pivot-minors seem truly harder...

A class of graphs has bounded shrub-depth if every graph in
it can be constructed by a bounded depth sequence, where
o depth(Ki) =0,
o depth(G; W Gy) = max (depth(G;), depth(Gy)), and
e for any S C V/(G), replacing G[S] by its complement
increases depth by 1.



Pivot-minors seem truly harder...

A class of graphs has bounded shrub-depth if every graph in
it can be constructed by a bounded depth sequence, where
o depth(Ki) =0,
o depth(G; W Gy) = max (depth(G;), depth(Gy)), and
e for any S C V/(G), replacing G[S] by its complement
increases depth by 1.



Pivot-minors seem truly harder...

A class of graphs has bounded shrub-depth if every graph in
it can be constructed by a bounded depth sequence, where
o depth(Ki) =0,
o depth(G; W Gy) = max (depth(G;), depth(Gy)), and
e for any S C V/(G), replacing G[S] by its complement
increases depth by 1.



Pivot-minors seem truly harder...

A class of graphs has bounded shrub-depth if every graph in
it can be constructed by a bounded depth sequence, where
o depth(Ki) =0,
o depth(G; W Gy) = max (depth(G;), depth(Gy)), and
e for any S C V/(G), replacing G[S] by its complement
increases depth by 1.



Pivot-minors seem truly harder...

A class of graphs has bounded shrub-depth if every graph in
it can be constructed by a bounded depth sequence, where
o depth(K;) =0,
o depth(G; W Gy) = max (depth(G;), depth(Gy)), and
e for any S C V/(G), replacing G[S] by its complement
increases depth by 1.

Theorem (Kwon-McCarty-Oum-Wollan-21)

A class of graphs has unbounded shrub-depth iff it has all
paths as vertex-minors.



Pivot-minors seem truly harder...

A class of graphs has bounded shrub-depth if every graph in
it can be constructed by a bounded depth sequence, where
o depth(K;) =0,
o depth(G; W Gy) = max (depth(G;), depth(Gy)), and
e for any S C V/(G), replacing G[S] by its complement
increases depth by 1.

Theorem (Kwon-McCarty-Oum-Wollan-21)

A class of bipartite graphs has unbounded shrub-depth iff it
has all paths as pivot-minors.



Yet there are classes of unbounded shrub-depth
without all paths as pivot-minors.
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Conjecture
A class of graphs has unbounded shrub-depth iff it has all
paths or all H, as pivot-minors.

Is it true when rank-width is bounded?!?
See Negettil-Ossona de Mendez-Pilipczuk-Rabinovich-Siebertz.

Conjecture (Oum-09)

A class of graphs has unbounded rank-width iff it has all
bipartite circle graphs as pivot-minors.

Conjecture

Every proper vertex-minor-closed class can be characterized
by a finite list of forbidden vertex-minors.



Thank you!



