Introduction to treewidth

Ignasi Sau

LIRMM, Université de Montpellier, CNRS

Rencontres virtuelles en théorie des graphes JCRAALMA – 29 mars 2021

1/50

Outline of the talk

1 Definition and simple properties

2 Dynamic programming on tree decompositions

- Two simple algorithms
- Courcelle's theorem
- Introduction to parameterized complexity

3 Brambles and duality

4 Computing treewidth

1 Definition and simple properties

2 Dynamic programming on tree decompositions

- Two simple algorithms
- Courcelle's theorem
- Introduction to parameterized complexity

3 Brambles and duality

4 Computing treewidth

- 1972: Bertelè and Brioschi (dimension).
- 1976: Halin (S-functions of graphs).
- 1984: Arnborg and Proskurowski (partial *k*-trees).
- 1984: Robertson and Seymour (treewidth).

Treewidth measures the (topological) similarity of a graph with a tree.

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

• Number of cycles.

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

- Number of cycles.
- Vertex-deletion distance to a forest (feedback vertex set number).

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

- Number of cycles.
- Vertex-deletion distance to a forest (feedback vertex set number).

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

- Number of cycles.
- Vertex-deletion distance to a forest (feedback vertex set number).

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

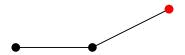
- Number of cycles.
- Vertex-deletion distance to a forest (feedback vertex set number).



Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

- Number of cycles.
- Vertex-deletion distance to a forest (feedback vertex set number).



Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

- Number of cycles.
- Vertex-deletion distance to a forest (feedback vertex set number).

Treewidth measures the (topological) similarity of a graph with a tree.

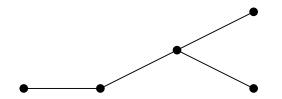
Natural candidates:

- Number of cycles.
- Vertex-deletion distance to a forest (feedback vertex set number).

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

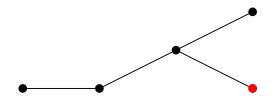
- Number of cycles.
- Vertex-deletion distance to a forest (feedback vertex set number).



Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

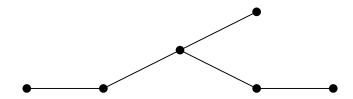
- Number of cycles.
- Vertex-deletion distance to a forest (feedback vertex set number).



Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

- Number of cycles.
- Vertex-deletion distance to a forest (feedback vertex set number).



Example of a 2-tree:

For $k \ge 1$, a k-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a k-clique.

[Figure by Julien Baste]

Example of a 2-tree:

For $k \ge 1$, a k-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a k-clique.

[Figure by Julien Baste]

<ロ > < 部 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 0 < 0 < 6/50

Example of a 2-tree:

For $k \ge 1$, a k-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a k-clique.

[Figure by Julien Baste]

Example of a 2-tree:

For $k \ge 1$, a k-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a k-clique.

[Figure by Julien Baste]

Example of a 2-tree:

For $k \ge 1$, a k-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a k-clique.

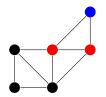
[Figure by Julien Baste]

Example of a 2-tree:

For $k \ge 1$, a k-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a k-clique.

[Figure by Julien Baste]

Example of a 2-tree:

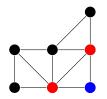


For $k \ge 1$, a *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

[Figure by Julien Baste]

< 고 > < 급 > < 글 > < 글 > < 글 > < 고 <

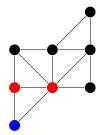
Example of a 2-tree:



For $k \ge 1$, a k-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a k-clique.

[Figure by Julien Baste]

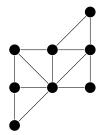
Example of a 2-tree:



[Figure by Julien Baste]

For $k \ge 1$, a *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

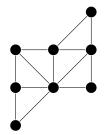
Example of a 2-tree:



[Figure by Julien Baste]

For $k \ge 1$, a *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

Example of a 2-tree:

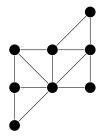


[Figure by Julien Baste]

For $k \ge 1$, a k-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a k-clique.

A partial *k*-tree is a subgraph of a *k*-tree.

Example of a 2-tree:



[Figure by Julien Baste]

For $k \ge 1$, a k-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a k-clique.

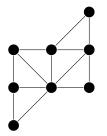
A partial *k*-tree is a subgraph of a *k*-tree.

Treewidth of a graph G, denoted tw(G): smallest integer k such that G is a partial k-tree.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

6/50

Example of a 2-tree:



[Figure by Julien Baste]

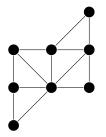
For $k \ge 1$, a k-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a k-clique.

A partial *k*-tree is a subgraph of a *k*-tree.

Treewidth of a graph G, denoted tw(G): smallest integer k such that G is a partial k-tree.

Invariant that measures the topological resemblance of a graph to a forest.

Example of a 2-tree:



[Figure by Julien Baste]

For $k \ge 1$, a k-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a k-clique.

A partial *k*-tree is a subgraph of a *k*-tree.

Treewidth of a graph G, denoted tw(G): smallest integer k such that G is a partial k-tree.

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

• Tree decomposition of a graph G:

```
pair (T, \{X_t \mid t \in V(T)\}), where 
T is a tree, and 
X_t \subseteq V(G) \quad \forall t \in V(T) \text{ (bags)},
```

• Tree decomposition of a graph G:

pair $(T, \{X_t \mid t \in V(T)\})$, where T is a tree, and $X_t \subseteq V(G) \quad \forall t \in V(T) \text{ (bags)},$

• Tree decomposition of a graph G:

pair $(T, \{X_t \mid t \in V(T)\})$, where T is a tree, and $X_t \subseteq V(G) \quad \forall t \in V(T) \text{ (bags)},$

•
$$\bigcup_{t\in V(T)} X_t = V(G)$$
,

• Tree decomposition of a graph G:

pair $(T, \{X_t \mid t \in V(T)\})$, where *T* is a tree, and $X_t \subseteq V(G) \quad \forall t \in V(T) \text{ (bags)},$

- $\bigcup_{t\in V(T)} X_t = V(G)$,
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.

・ロト ・部ト ・ヨト ・ヨト ・ヨ

7/50

• Tree decomposition of a graph G:

pair $(T, \{X_t \mid t \in V(T)\})$, where *T* is a tree, and $X_t \subseteq V(G) \quad \forall t \in V(T) \text{ (bags)},$

- $\bigcup_{t\in V(T)} X_t = V(G)$,
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.
- ∀v ∈ V(G), bags containing v define a connected subtree of T.

• Tree decomposition of a graph G:

pair $(T, \{X_t \mid t \in V(T)\})$, where *T* is a tree, and $X_t \subseteq V(G) \quad \forall t \in V(T) \text{ (bags)},$

- $\bigcup_{t\in V(T)} X_t = V(G)$,
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.
- ∀v ∈ V(G), bags containing v define a connected subtree of T.
- Width of a tree decomposition: $\max_{t \in V(T)} |X_t| - 1.$

(日)

7/50

• Tree decomposition of a graph G:

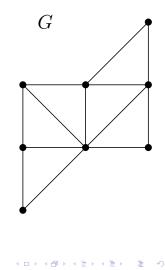
pair $(T, \{X_t \mid t \in V(T)\})$, where T is a tree, and $X_t \subseteq V(G) \quad \forall t \in V(T) \text{ (bags)},$

- $\bigcup_{t\in V(T)} X_t = V(G)$,
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.
- ∀v ∈ V(G), bags containing v define a connected subtree of T.
- Width of a tree decomposition: $\max_{t \in V(T)} |X_t| - 1.$
- Treewidth of a graph *G*, tw(*G*): minimum width of a tree decomposition of *G*.

• Tree decomposition of a graph G:

pair $(T, \{X_t \mid t \in V(T)\})$, where *T* is a tree, and $X_t \subseteq V(G) \quad \forall t \in V(T) \text{ (bags)},$

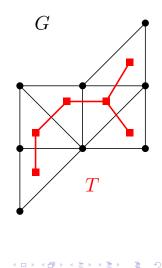
- $\bigcup_{t\in V(T)} X_t = V(G)$,
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.
- ∀v ∈ V(G), bags containing v define a connected subtree of T.
- Width of a tree decomposition: $\max_{t \in V(T)} |X_t| - 1.$
- Treewidth of a graph *G*, tw(*G*): minimum width of a tree decomposition of *G*.



• Tree decomposition of a graph G:

pair $(T, \{X_t \mid t \in V(T)\})$, where *T* is a tree, and $X_t \subseteq V(G) \quad \forall t \in V(T) \text{ (bags)},$

- $\bigcup_{t\in V(T)} X_t = V(G)$,
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.
- ∀v ∈ V(G), bags containing v define a connected subtree of T.
- Width of a tree decomposition: $\max_{t \in V(T)} |X_t| - 1.$
- Treewidth of a graph *G*, tw(*G*): minimum width of a tree decomposition of *G*.

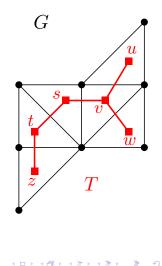


• Tree decomposition of a graph G:

pair $(T, \{X_t \mid t \in V(T)\})$, where *T* is a tree, and $X_t \subseteq V(G) \quad \forall t \in V(T) \text{ (bags)},$

satisfying the following:

- $\bigcup_{t\in V(T)} X_t = V(G)$,
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.
- ∀v ∈ V(G), bags containing v define a connected subtree of T.
- Width of a tree decomposition: $\max_{t \in V(T)} |X_t| - 1.$
- Treewidth of a graph *G*, tw(*G*): minimum width of a tree decomposition of *G*.

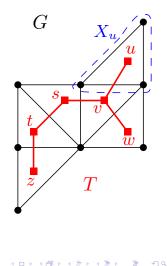


7/50

• Tree decomposition of a graph G:

pair $(T, \{X_t \mid t \in V(T)\})$, where *T* is a tree, and $X_t \subseteq V(G) \quad \forall t \in V(T) \text{ (bags),}$

- $\bigcup_{t\in V(T)} X_t = V(G)$,
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.
- ∀v ∈ V(G), bags containing v define a connected subtree of T.
- Width of a tree decomposition: $\max_{t \in V(T)} |X_t| - 1.$
- Treewidth of a graph *G*, tw(*G*): minimum width of a tree decomposition of *G*.

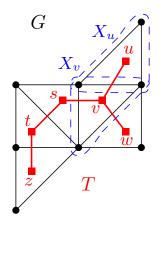


• Tree decomposition of a graph G:

pair $(T, \{X_t \mid t \in V(T)\})$, where *T* is a tree, and $X_t \subseteq V(G) \quad \forall t \in V(T) \text{ (bags),}$

satisfying the following:

- $\bigcup_{t\in V(T)} X_t = V(G)$,
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.
- ∀v ∈ V(G), bags containing v define a connected subtree of T.
- Width of a tree decomposition: $\max_{t \in V(T)} |X_t| - 1.$
- Treewidth of a graph *G*, tw(*G*): minimum width of a tree decomposition of *G*.



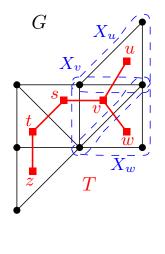
(日)

• Tree decomposition of a graph G:

pair $(T, \{X_t \mid t \in V(T)\})$, where *T* is a tree, and $X_t \subseteq V(G) \quad \forall t \in V(T) \text{ (bags),}$

satisfying the following:

- $\bigcup_{t\in V(T)} X_t = V(G)$,
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.
- ∀v ∈ V(G), bags containing v define a connected subtree of T.
- Width of a tree decomposition: $\max_{t \in V(T)} |X_t| - 1.$
- Treewidth of a graph *G*, tw(*G*): minimum width of a tree decomposition of *G*.



(日)

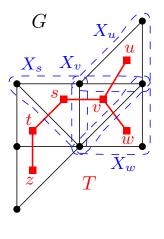
7/50

• Tree decomposition of a graph G:

pair $(T, \{X_t \mid t \in V(T)\})$, where *T* is a tree, and $X_t \subseteq V(G) \quad \forall t \in V(T) \text{ (bags),}$

satisfying the following:

- $\bigcup_{t\in V(T)} X_t = V(G)$,
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.
- ∀v ∈ V(G), bags containing v define a connected subtree of T.
- Width of a tree decomposition: $\max_{t \in V(T)} |X_t| - 1.$
- Treewidth of a graph *G*, tw(*G*): minimum width of a tree decomposition of *G*.



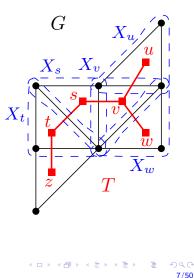
(日)

7/50

• Tree decomposition of a graph G:

pair $(T, \{X_t \mid t \in V(T)\})$, where *T* is a tree, and $X_t \subseteq V(G) \quad \forall t \in V(T) \text{ (bags),}$

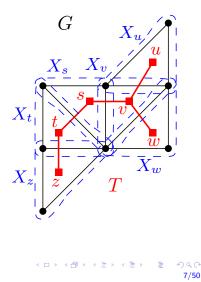
- $\bigcup_{t\in V(T)} X_t = V(G)$,
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.
- ∀v ∈ V(G), bags containing v define a connected subtree of T.
- Width of a tree decomposition: $\max_{t \in V(T)} |X_t| - 1.$
- Treewidth of a graph *G*, tw(*G*): minimum width of a tree decomposition of *G*.

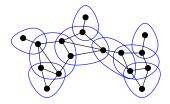


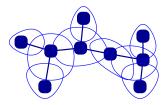
• Tree decomposition of a graph G:

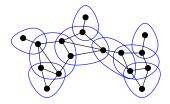
pair $(T, \{X_t \mid t \in V(T)\})$, where *T* is a tree, and $X_t \subseteq V(G) \quad \forall t \in V(T) \text{ (bags)},$

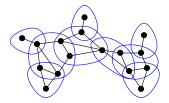
- $\bigcup_{t\in V(T)} X_t = V(G)$,
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.
- ∀v ∈ V(G), bags containing v define a connected subtree of T.
- Width of a tree decomposition: $\max_{t \in V(T)} |X_t| - 1.$
- Treewidth of a graph *G*, tw(*G*): minimum width of a tree decomposition of *G*.

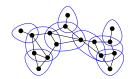


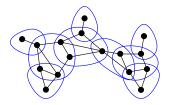


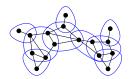


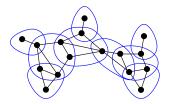


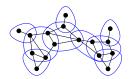










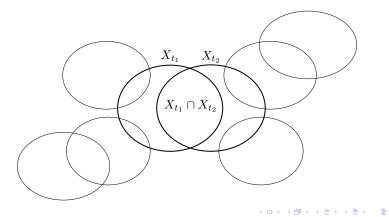


Let $(T, \mathcal{X} = \{X_t \mid t \in V(T)\})$ be a tree decomposition of a graph *G*.

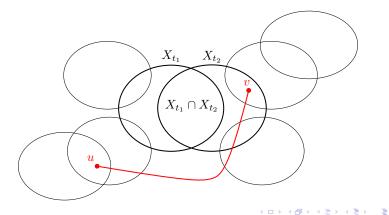
• For every $t \in V(T)$, X_t is a separator in G.

- For every $t \in V(T)$, X_t is a separator in G.
- For every edge $\{t_1, t_2\} \in E(T)$, $X_{t_1} \cap X_{t_2}$ is a separator in G.

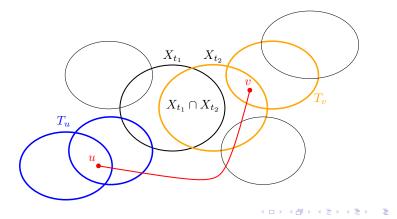
- For every $t \in V(T)$, X_t is a separator in G.
- For every edge $\{t_1, t_2\} \in E(T)$, $X_{t_1} \cap X_{t_2}$ is a separator in G.



- For every $t \in V(T)$, X_t is a separator in G.
- For every edge $\{t_1, t_2\} \in E(T)$, $X_{t_1} \cap X_{t_2}$ is a separator in G.



- For every $t \in V(T)$, X_t is a separator in G.
- For every edge $\{t_1, t_2\} \in E(T)$, $X_{t_1} \cap X_{t_2}$ is a separator in G.



Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique.

Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique. Then there exists a bag $X_t \in \mathcal{X}$ such that $K \subseteq X_t$.

Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique. Then there exists a bag $X_t \in \mathcal{X}$ such that $K \subseteq X_t$.

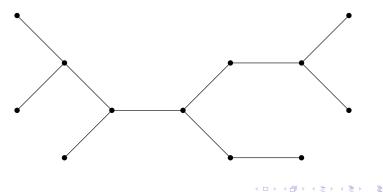
Let $K = \{v_1, \ldots, v_t\}$. Proof by induction on t.

Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique. Then there exists a bag $X_t \in \mathcal{X}$ such that $K \subseteq X_t$.

Let $K = \{v_1, \ldots, v_t\}$. Proof by induction on t. True for $t \leq 2$.

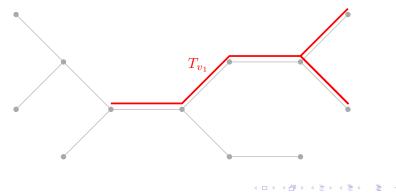
Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique. Then there exists a bag $X_t \in \mathcal{X}$ such that $K \subseteq X_t$.

Let $K = \{v_1, \ldots, v_t\}$. Proof by induction on t. True for $t \leq 2$.



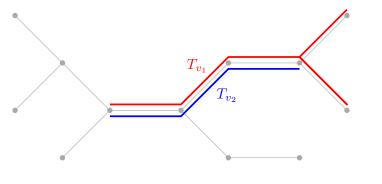
Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique. Then there exists a bag $X_t \in \mathcal{X}$ such that $K \subseteq X_t$.

Let $K = \{v_1, \ldots, v_t\}$. Proof by induction on t. True for $t \leq 2$.



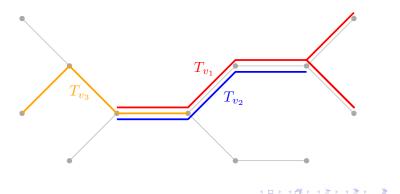
Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique. Then there exists a bag $X_t \in \mathcal{X}$ such that $K \subseteq X_t$.

Let $K = \{v_1, \ldots, v_t\}$. Proof by induction on t. True for $t \leq 2$.



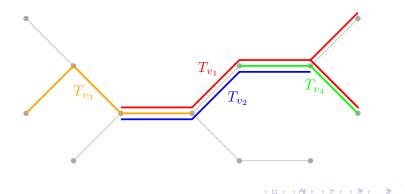
Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique. Then there exists a bag $X_t \in \mathcal{X}$ such that $K \subseteq X_t$.

Let $K = \{v_1, \ldots, v_t\}$. Proof by induction on t. True for $t \leq 2$.



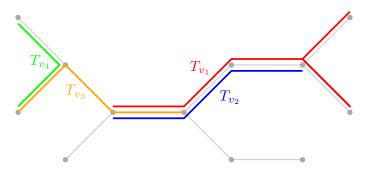
Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique. Then there exists a bag $X_t \in \mathcal{X}$ such that $K \subseteq X_t$.

Let $K = \{v_1, \ldots, v_t\}$. Proof by induction on t. True for $t \leq 2$.



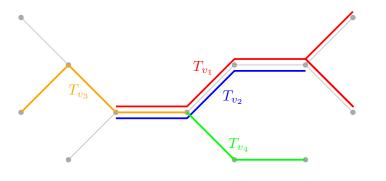
Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique. Then there exists a bag $X_t \in \mathcal{X}$ such that $K \subseteq X_t$.

Let $K = \{v_1, \ldots, v_t\}$. Proof by induction on t. True for $t \leq 2$.



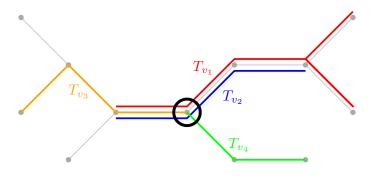
Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique. Then there exists a bag $X_t \in \mathcal{X}$ such that $K \subseteq X_t$.

Let $K = \{v_1, \ldots, v_t\}$. Proof by induction on t. True for $t \leq 2$.



Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique. Then there exists a bag $X_t \in \mathcal{X}$ such that $K \subseteq X_t$.

Let $K = \{v_1, \ldots, v_t\}$. Proof by induction on t. True for $t \leq 2$.



• If F is a forest, then tw(F) = 1.

- If F is a forest, then tw(F) = 1.
- If C is a cycle, then tw(C) = 2.

- If F is a forest, then tw(F) = 1.
- If C is a cycle, then tw(C) = 2.
- If K_n is the clique on *n* vertices, then $tw(K_n) = n 1$.

- If F is a forest, then tw(F) = 1.
- If C is a cycle, then tw(C) = 2.
- If K_n is the clique on *n* vertices, then $tw(K_n) = n 1$.
- If K_{a,b} is the complete bipartite graph with parts of sizes a and b, then tw(K_{a,b}) = min{a, b} + 1.

- If F is a forest, then tw(F) = 1.
- If C is a cycle, then tw(C) = 2.
- If K_n is the clique on *n* vertices, then $tw(K_n) = n 1$.
- If K_{a,b} is the complete bipartite graph with parts of sizes a and b, then tw(K_{a,b}) = min{a, b} + 1.
- If G is an outerplanar graph, or a series-parallel graph, then tw(G) = 2.

- If F is a forest, then tw(F) = 1.
- If C is a cycle, then tw(C) = 2.
- If K_n is the clique on *n* vertices, then $tw(K_n) = n 1$.
- If K_{a,b} is the complete bipartite graph with parts of sizes a and b, then tw(K_{a,b}) = min{a, b} + 1.
- If G is an outerplanar graph, or a series-parallel graph, then tw(G) = 2.
- If G is a planar graph on n vertices, then $tw(G) = O(\sqrt{n})$.

Treewidth is a fundamental combinatorial tool in graph theory: key role in the Graph Minors project of Robertson and Seymour.

- Treewidth is a fundamental combinatorial tool in graph theory: key role in the Graph Minors project of Robertson and Seymour.
- Treewidth behaves very well algorithmically, and algorithms parameterized by treewidth appear very often in FPT algorithms.

- Treewidth is a fundamental combinatorial tool in graph theory: key role in the Graph Minors project of Robertson and Seymour.
- Treewidth behaves very well algorithmically, and algorithms parameterized by treewidth appear very often in FPT algorithms.
- In many practical scenarios, it turns out that the treewidth of the associated graph is small (programming languages, road networks, ...).

Definition and simple properties

2 Dynamic programming on tree decompositions

- Two simple algorithms
- Courcelle's theorem
- Introduction to parameterized complexity

3 Brambles and duality

4 Computing treewidth

Definition and simple properties

2 Dynamic programming on tree decompositions

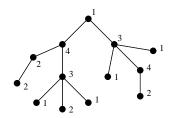
- Two simple algorithms
- Courcelle's theorem
- Introduction to parameterized complexity

3 Brambles and duality

4 Computing treewidth

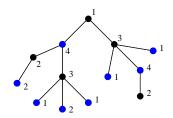
Weighted Independent Set on trees

[slides borrowed from Christophe Paul]

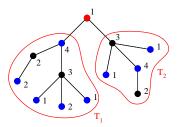


Weighted Independent Set on trees

[slides borrowed from Christophe Paul]



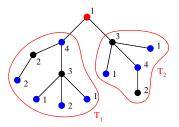
[slides borrowed from Christophe Paul]



Observations:

- Every vertex of a tree is a separator.
- The union of independent sets of distinct connected components is an independent set.

[slides borrowed from Christophe Paul]

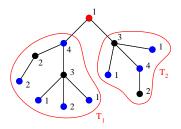


Let x be the root of T, $x_1 \dots x_\ell$ its children, T_1, \dots, T_ℓ subtrees of T - x:

• wIS(T, x): maximum weighted independent set containing x.

• $wIS(T, \overline{x})$: maximum weighted independent set not containing x.

[slides borrowed from Christophe Paul]



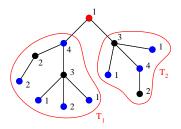
Let x be the root of T, $x_1 \dots x_\ell$ its children, T_1, \dots, T_ℓ subtrees of T - x:

- wlS(T, x): maximum weighted independent set containing x.
- $wIS(T, \overline{x})$: maximum weighted independent set not containing x.

$$U wIS(T, x) = \omega(x) + \sum_{i \in [\ell]} wIS(T_i, \overline{x_i})$$

4

[slides borrowed from Christophe Paul]



Let x be the root of T, $x_1 \dots x_\ell$ its children, T_1, \dots, T_ℓ subtrees of T - x:

- wIS(T, x): maximum weighted independent set containing x.
- $wlS(T, \overline{x})$: maximum weighted independent set not containing x.

$$\begin{cases} wlS(T,x) = \omega(x) + \sum_{i \in [\ell]} wlS(T_i, \overline{x_i}) \\ wlS(T, \overline{x}) = \sum_{i \in [\ell]} \max\{wlS(T_i, x_i), wlS(T_i, \overline{x_i})\} \end{cases}$$

15/50

Dynamic programming on tree decompositions

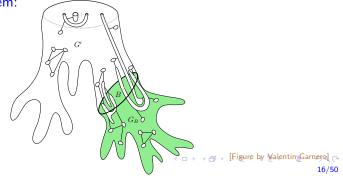
• Typically, FPT algorithms parameterized by treewidth are based on dynamic programming (DP) over a tree decomposition.

Dynamic programming on tree decompositions

- Typically, FPT algorithms parameterized by treewidth are based on dynamic programming (DP) over a tree decomposition.
- Starting from the leaves of the tree decomposition, a set of appropriately defined partial solutions is computed recursively until the root, where a global solution is obtained.

Dynamic programming on tree decompositions

- Typically, FPT algorithms parameterized by treewidth are based on dynamic programming (DP) over a tree decomposition.
- Starting from the leaves of the tree decomposition, a set of appropriately defined partial solutions is computed recursively until the root, where a global solution is obtained.
- The way that these partial solutions are defined depends on each particular problem:



Let $(T, \{X_t \mid t \in V(T)\})$ be a tree decomposition of a graph G.

- For every $t \in V(T)$, X_t is a separator in G.
- For every edge $\{t_1, t_2\} \in E(T)$, $X_{t_1} \cap X_{t_2}$ is a separator in G.

Let $(T, \{X_t \mid t \in V(T)\})$ be a tree decomposition of a graph G.

- For every $t \in V(T)$, X_t is a separator in G.
- For every edge $\{t_1, t_2\} \in E(T)$, $X_{t_1} \cap X_{t_2}$ is a separator in G.

Notation: If we root $(T, \{X_t \mid t \in V(T)\})$, then:

Let $(T, \{X_t \mid t \in V(T)\})$ be a tree decomposition of a graph G.

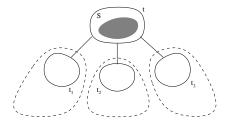
- For every $t \in V(T)$, X_t is a separator in G.
- For every edge $\{t_1, t_2\} \in E(T)$, $X_{t_1} \cap X_{t_2}$ is a separator in G.

Notation: If we root $(T, \{X_t \mid t \in V(T)\})$, then:

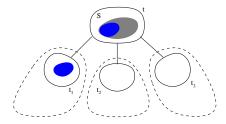
- V_t : all vertices of G appearing in bags that are descendants of t.
- $G_t = G[V_t]$.

 $\forall S \subseteq X_t, IS(S, t) =$ maximum independent set I of G_t s.t. $I \cap X_t = S$

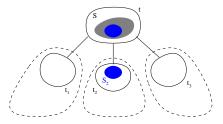
 $\forall S \subseteq X_t, IS(S, t) = maximum independent set I of G_t s.t. I \cap X_t = S$



 $\forall S \subseteq X_t, IS(S, t) = maximum independent set I of G_t s.t. I \cap X_t = S$

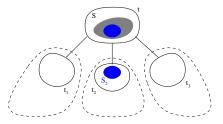


 $\forall S \subseteq X_t, IS(S, t) = maximum independent set I of G_t s.t. I \cap X_t = S$



Lemma If $S \subseteq X_t$ and $S_j = S \cap X_{t_j}$, then $|IS(S, t) \cap V_{t_j}| = |IS(S_j, t_j)|$.

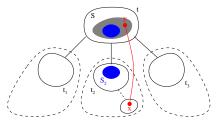
 $\forall S \subseteq X_t, IS(S, t) =$ maximum independent set I of G_t s.t. $I \cap X_t = S$



Lemma If $S \subseteq X_t$ and $S_j = S \cap X_{t_j}$, then $|IS(S, t) \cap V_{t_j}| = |IS(S_j, t_j)|$.

For contradiction: suppose $IS(S, t) \cap V_{t_i}$ is not maximum in G_{t_i} .

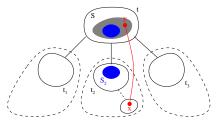
 $\forall S \subseteq X_t, IS(S, t) =$ maximum independent set I of G_t s.t. $I \cap X_t = S$



Lemma If $S \subseteq X_t$ and $S_j = S \cap X_{t_j}$, then $|IS(S, t) \cap V_{t_j}| = |IS(S_j, t_j)|$.

For contradiction: suppose $IS(S, t) \cap V_{t_j}$ is not maximum in G_{t_j} . $\Rightarrow \exists y \in (S \setminus S_j) \subseteq X_t$ and $\exists x \in IS(S_j, t_j) \setminus X_{t_j}$ such that $\{x, y\} \in E(G)$.

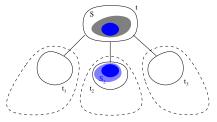
 $\forall S \subseteq X_t, IS(S, t) =$ maximum independent set I of G_t s.t. $I \cap X_t = S$



Lemma If $S \subseteq X_t$ and $S_j = S \cap X_{t_j}$, then $|IS(S, t) \cap V_{t_j}| = |IS(S_j, t_j)|$.

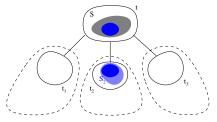
For contradiction: suppose $IS(S, t) \cap V_{t_j}$ is not maximum in G_{t_j} . $\Rightarrow \exists y \in (S \setminus S_j) \subseteq X_t$ and $\exists x \in IS(S_j, t_j) \setminus X_{t_j}$ such that $\{x, y\} \in E(G)$. Contradiction! X_{t_i} is not a separator.

Idea of the dynamic programming algorithm:



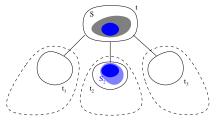
How to compute |IS(S, t)| from $|IS(S_i^i, t_j)|, \forall j \in [\ell], \forall S_i^i \subseteq X_{t_i}$:

Idea of the dynamic programming algorithm:



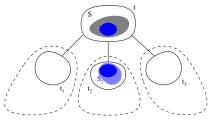
How to compute |IS(S, t)| from $|IS(S_i^i, t_j)|, \forall j \in [\ell], \forall S_i^i \subseteq X_{t_i}$:

Idea of the dynamic programming algorithm:



How to compute |IS(S, t)| from $|IS(S_j^i, t_j)|$, $\forall j \in [\ell]$, $\forall S_j^i \subseteq X_{t_j}$: • verify that $S_j^i \cap X_t = S \cap X_{t_j} = S_j$ and $S_j \subseteq S_j^i$.

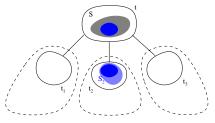
Idea of the dynamic programming algorithm:



How to compute |IS(S, t)| from $|IS(S_j^i, t_j)|$, $\forall j \in [\ell], \forall S_j^i \subseteq X_{t_j}$:

- verify that $S_i^i \cap X_t = S \cap X_{t_i} = S_j$ and $S_j \subseteq S_i^i$.
- verify that S_i^i is an independent set.

Idea of the dynamic programming algorithm:



How to compute |IS(S, t)| from $|IS(S_j^i, t_j)|$, $\forall j \in [\ell]$, $\forall S_j^i \subseteq X_{t_j}$:

• verify that $S_j \cap X_t = S \cap X_{t_j} = S_j$ and $S_j \subseteq S_j^i$.

• verify that Sⁱ is an independent set.

$$|IS(S,t)| = \begin{cases} |S| + \\ \sum_{i \in [\ell]} \max & \{|IS(S_j^i, t_j)| - |S_j| : \\ S_j^i \cap X_t = S_j \land S_j \subseteq S_j^i \text{ independent} \} \end{cases}$$

Analysis of the running time, with bags of size *k*:

$$|IS(S,t)| = \begin{cases} |S| + \\ \sum_{i \in [\ell]} \max & \{|IS(S_j^i, t_j)| - |S_j| : \\ S_j^i \cap X_t = S_j \land S_j \subseteq S_j^i \text{ independent} \} \end{cases}$$

Analysis of the running time, with bags of size *k*:

• Computing IS(S, t): $O(2^k \cdot k^2 \cdot \ell)$.

$$|IS(S,t)| = \begin{cases} |S| + \\ \sum_{i \in [\ell]} \max & \{|IS(S_j^i, t_j)| - |S_j| : \\ S_j^i \cap X_t = S_j \land S_j \subseteq S_j^i \text{ independent} \} \end{cases}$$

20/50

Analysis of the running time, with bags of size k:

- Computing IS(S, t): $O(2^k \cdot k^2 \cdot \ell)$.
- Computing IS(S, t) for every $S \subseteq X_t$: $\mathcal{O}(2^k \cdot 2^k \cdot k^2 \cdot \ell)$.

$$|IS(S,t)| = \begin{cases} |S| + \\ \sum_{i \in [\ell]} \max & \{|IS(S_j^i, t_j)| - |S_j| : \\ S_j^i \cap X_t = S_j \land S_j \subseteq S_j^i \text{ independent} \} \end{cases}$$

Analysis of the running time, with bags of size *k*:

- Computing IS(S, t): $O(2^k \cdot k^2 \cdot \ell)$.
- Computing IS(S, t) for every $S \subseteq X_t$: $\mathcal{O}(2^k \cdot 2^k \cdot k^2 \cdot \ell)$.
- Computing an optimal solution: $\mathcal{O}(4^k \cdot k^2 \cdot n)$.

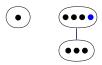
$$|IS(S,t)| = \begin{cases} |S| + \\ \sum_{i \in [\ell]} \max & \{|IS(S_j^i, t_j)| - |S_j| : \\ S_j^i \cap X_t = S_j \land S_j \subseteq S_j^i \text{ independent} \} \end{cases}$$

Analysis of the running time, with bags of size *k*:

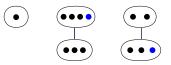
- Computing IS(S, t): $O(2^k \cdot k^2 \cdot \ell)$.
- Computing IS(S, t) for every $S \subseteq X_t$: $\mathcal{O}(2^k \cdot 2^k \cdot k^2 \cdot \ell)$.
- Computing an optimal solution: $\mathcal{O}(4^k \cdot k^2 \cdot n)$.
- ★ We have to add the time in order to compute a "good" tree decomposition of the input graph (we discuss this later).

A rooted tree decomposition $(T, \{X_t : t \in T\})$ of a graph *G* is nice if every node $t \in V(T) \setminus \text{root}$ is of one of the following four types:

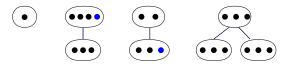
• Leaf: no children and $|X_t| = 1$.



- Leaf: no children and $|X_t| = 1$.
- Introduce: a unique child t' and $X_t = X_{t'} \cup \{v\}$ with $v \notin X_{t'}$.

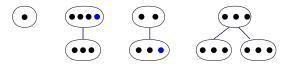


- Leaf: no children and $|X_t| = 1$.
- Introduce: a unique child t' and $X_t = X_{t'} \cup \{v\}$ with $v \notin X_{t'}$.
- Forget: a unique child t' and $X_t = X_{t'} \setminus \{v\}$ with $v \in X_{t'}$.



- Leaf: no children and $|X_t| = 1$.
- Introduce: a unique child t' and $X_t = X_{t'} \cup \{v\}$ with $v \notin X_{t'}$.
- Forget: a unique child t' and $X_t = X_{t'} \setminus \{v\}$ with $v \in X_{t'}$.
- Join: two children t_1 and t_2 with $X_t = X_{t_1} = X_{t_2}$.

A rooted tree decomposition $(T, \{X_t : t \in T\})$ of a graph *G* is nice if every node $t \in V(T) \setminus \text{root}$ is of one of the following four types:



- Leaf: no children and $|X_t| = 1$.
- Introduce: a unique child t' and $X_t = X_{t'} \cup \{v\}$ with $v \notin X_{t'}$.
- Forget: a unique child t' and $X_t = X_{t'} \setminus \{v\}$ with $v \in X_{t'}$.
- Join: two children t_1 and t_2 with $X_t = X_{t_1} = X_{t_2}$.

Lemma

A tree decomposition $(T, \{X_t : t \in T\})$ of width k and x nodes of an n-vertex graph G can be transformed in time $\mathcal{O}(k^2 \cdot n)$ into a nice tree decomposition of G of width k and $k \cdot x$ nodes.

How to compute IS(S, t) for every $S \subseteq X_t$:

How to compute IS(S, t) for every $S \subseteq X_t$:

• If t is a leaf: trivial.

How to compute IS(S, t) for every $S \subseteq X_t$:

- If t is a leaf: trivial.
- *t* is an introduce node: $X_t = X_{t'} \cup \{v\}$

$$|IS(S,t)| = \begin{cases} |IS(S,t')| & \text{if } v \notin S \\ |IS(S \setminus \{v\}, t')| + 1 & \text{if } v \in S \text{ and } S \text{ independent} \\ -\infty & \text{otherwise} \end{cases}$$

How to compute IS(S, t) for every $S \subseteq X_t$:

- If t is a leaf: trivial.
- *t* is an introduce node: $X_t = X_{t'} \cup \{v\}$

$$|IS(S,t)| = \begin{cases} |IS(S,t')| & \text{if } v \notin S \\ |IS(S \setminus \{v\}, t')| + 1 & \text{if } v \in S \text{ and } S \text{ independent} \\ -\infty & \text{otherwise} \end{cases}$$

• If t is a forget node: $X_t = X_{t'} \setminus \{v\}$

$$|IS(S,t)| = \max\{|IS(S,t')|, |IS(S \cup \{v\},t')|\}$$

How to compute IS(S, t) for every $S \subseteq X_t$:

- If *t* is a leaf: trivial.
- *t* is an introduce node: $X_t = X_{t'} \cup \{v\}$

$$|IS(S,t)| = \begin{cases} |IS(S,t')| & \text{if } v \notin S \\ |IS(S \setminus \{v\}, t')| + 1 & \text{if } v \in S \text{ and } S \text{ independent} \\ -\infty & \text{otherwise} \end{cases}$$

• If t is a forget node: $X_t = X_{t'} \setminus \{v\}$

 $|IS(S,t)| = \max\{|IS(S,t')|, |IS(S \cup \{v\}, t')|\}$

• If t is a join node: $X_t = X_{t_1} = X_{t_2}$ $|IS(S,t)| = |IS(S,t_1)| + |IS(S,t_2)| - |S|$

How to compute IS(S, t) for every $S \subseteq X_t$:

- If *t* is a leaf: trivial.
- *t* is an introduce node: $X_t = X_{t'} \cup \{v\}$

$$|IS(S,t)| = \begin{cases} |IS(S,t')| & \text{if } v \notin S \\ |IS(S \setminus \{v\}, t')| + 1 & \text{if } v \in S \text{ and } S \text{ independent} \\ -\infty & \text{otherwise} \end{cases}$$

• If t is a forget node: $X_t = X_{t'} \setminus \{v\}$

$$|IS(S,t)| = \max\{|IS(S,t')|, |IS(S \cup \{v\}, t')|\}$$

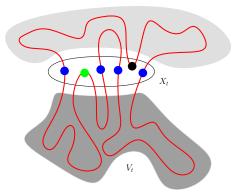
• If t is a join node: $X_t = X_{t_1} = X_{t_2}$ $|IS(S, t)| = |IS(S, t_1)| + |IS(S, t_2)| - |S|$

Complexity: $\mathcal{O}(2^k \cdot k^2 \cdot n) = \times (\mathbb{B}) \times (\mathbb{B}) \times (\mathbb{B}) \times (\mathbb{B})$

HAMILTONIAN CYCLE on tree decompositions

[slides borrowed from Christophe Paul]

- Let C be a Hamiltonian cycle.
 - Note that C ∩ G[V_t] is a collection of paths.

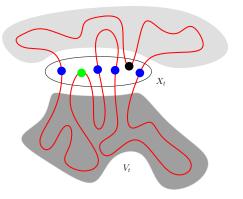


HAMILTONIAN CYCLE on tree decompositions

[slides borrowed from Christophe Paul]

Let C be a Hamiltonian cycle.

- Note that C ∩ G[V_t] is a collection of paths.
- Partition of the bag X_t :
 - X_t^0 : isolated in $G[V_t]$.
 - X¹_t: extremities of paths.
 - X_t^2 : internal vertices.

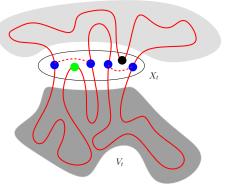


HAMILTONIAN CYCLE on tree decompositions

[slides borrowed from Christophe Paul]

Let C be a Hamiltonian cycle.

- Note that C ∩ G[V_t] is a collection of paths.
- Partition of the bag X_t :
 - X_t^0 : isolated in $G[V_t]$.
 - X_t^1 : extremities of paths.
 - X_t^2 : internal vertices.



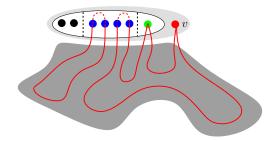
For every node t of the tree decomposition, we need to know if

 (X_t^0, X_t^1, X_t^2, M)

where *M* is a matching on X_t^1 , corresponds to a partial solution.

Forget node

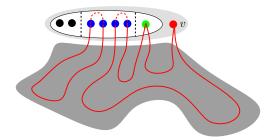
Let t be a forget node and t' its child such that $X_t = X_{t'} \setminus \{v\}$.



Claim X_t is a separator \Rightarrow $\forall v \in V_t \setminus X_t$, v is internal in every partial solution.

Forget node

Let t be a forget node and t' its child such that $X_t = X_{t'} \setminus \{v\}$.



 $\begin{array}{l} \hline \text{Claim} \quad X_t \text{ is a separator} \Rightarrow \\ \forall v \in V_t \setminus X_t, \ v \text{ is internal in every partial solution.} \\ (X_{t'}^0, X_{t'}^1, X_{t'}^2 \setminus \{v\}, M) \text{ is a partial solution for } t \\ \Leftrightarrow \\ (X_{t'}^0, X_{t'}^1, X_{t'}^2, M) \text{ is a partial solution for } t \\ \leftrightarrow \\ (X_{t'}^0, X_{t'}^1, X_{t'}^2, M) \text{ is a partial solution for } t \\ \leftrightarrow \\ \hline \end{array}$

Introduce node

Let *t* be an introduce node and *t'* its child such that $X_t = X_{t'} \cup \{v\}$.

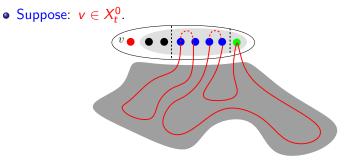
Introduce node

Let *t* be an introduce node and *t'* its child such that $X_t = X_{t'} \cup \{v\}$.

• Suppose: $v \in X_t^0$.

Introduce node

Let t be an introduce node and t' its child such that $X_t = X_{t'} \cup \{v\}$.

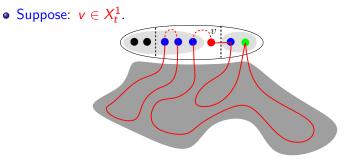


 $(X_{t'}^{0} \cup \{v\}, X_{t'}^{1}, X_{t'}^{2}, M) \text{ is a partial solution for } t \\ \Leftrightarrow \\ (X_{t'}^{0}, X_{t'}^{1}, X_{t'}^{2}, M) \text{ is a partial solution for } t'$

Let *t* be an introduce node and *t'* its child such that $X_t = X_{t'} \cup \{v\}$.

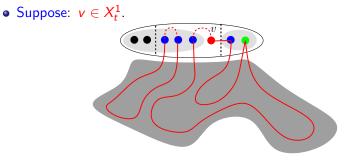
• Suppose: $v \in X_t^1$.

Let t be an introduce node and t' its child such that $X_t = X_{t'} \cup \{v\}$.



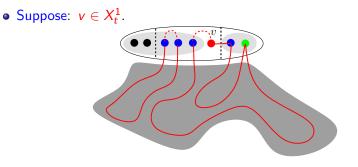
Fact $X_{t'}$ is a separator $\Rightarrow N(v) \cap V_t \subseteq X_t$.

Let t be an introduce node and t' its child such that $X_t = X_{t'} \cup \{v\}$.



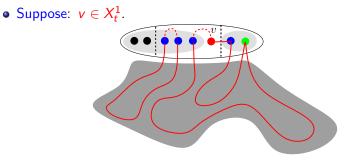
Fact $X_{t'}$ is a separator $\Rightarrow N(v) \cap V_t \subseteq X_t$. • a vertex $u \in X_{t'}^1$ becomes internal $\Rightarrow u \in X_t^2$.

Let t be an introduce node and t' its child such that $X_t = X_{t'} \cup \{v\}$.



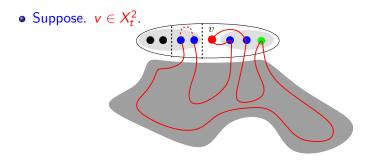
Fact $X_{t'}$ is a separator $\Rightarrow N(v) \cap V_t \subseteq X_t$. • a vertex $u \in X_{t'}^1$ becomes internal $\Rightarrow u \in X_t^2$. $(X_{t'}^0, X_{t'}^1 \cup \{v\} \setminus \{u\}, X_{t'}^2 \cup \{u\}, M')$ is a partial solution for t \Leftrightarrow $(X_{t'}^0, X_{t'}^1, X_{t'}^2, M)$ is a partial solution for t'

Let t be an introduce node and t' its child such that $X_t = X_{t'} \cup \{v\}$.



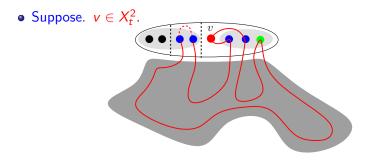
- Fact $X_{t'}$ is a separator $\Rightarrow N(v) \cap V_t \subseteq X_t$.
 - a vertex $u \in X_{t'}^1$ becomes internal $\Rightarrow u \in X_t^2$.
 - or a vertex $w \in X_{t'}^0$ becomes extremity of a path $\Rightarrow w \in X_t^1$ (similar).

Let *t* be an introduce node and *t'* its child such that $X_t = X_{t'} \cup \{v\}$.



Fact $X_{t'}$ is a separator $\Rightarrow N(v) \cap V_t \subseteq X_t$.

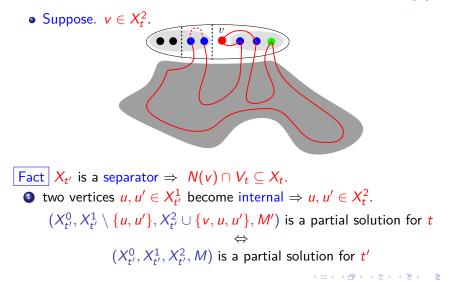
Let *t* be an introduce node and *t'* its child such that $X_t = X_{t'} \cup \{v\}$.



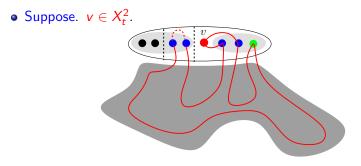
Fact $X_{t'}$ is a separator $\Rightarrow N(v) \cap V_t \subseteq X_t$.

• two vertices $u, u' \in X_{t'}^1$ become internal $\Rightarrow u, u' \in X_t^2$.

Let *t* be an introduce node and *t'* its child such that $X_t = X_{t'} \cup \{v\}$.

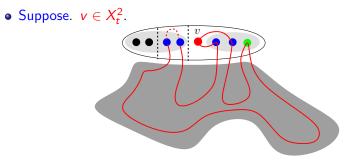


Let t be an introduce node and t' its child such that $X_t = X_{t'} \cup \{v\}$.



Fact $X_{t'}$ is a separator $\Rightarrow N(v) \cap V_t \subseteq X_t$. • two vertices $u, u' \in X_{t'}^1$ become internal $\Rightarrow u, u' \in X_t^2$. • two vertices $w, w' \in X_{t'}^0$ become extremities $\Rightarrow w, w' \in X_t^1$.

Let t be an introduce node and t' its child such that $X_t = X_{t'} \cup \{v\}$.



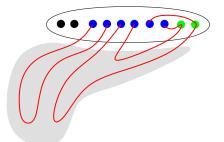
Fact $X_{t'}$ is a separator $\Rightarrow N(v) \cap V_t \subseteq X_t$.

• two vertices $u, u' \in X_{t'}^1$ become internal $\Rightarrow u, u' \in X_t^2$.

② two vertices $w, w' \in X_{t'}^0$ become extremities $\Rightarrow w, w' \in X_t^1$.

Join node

Let t be a join node and t_1, t_2 its children such that $X_t = X_{t_1} = X_{t_2}$



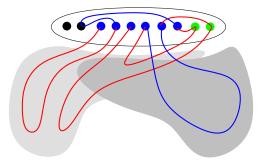
Fact For being compatible, partial solutions should verify:

- $X_{t_1}^2 \subseteq X_{t_2}^0$ and $X_{t_1}^1 \subseteq X_{t_2}^1 \cup X_{t_2}^0$.
- $X_{t_2}^2 \subseteq X_{t_1}^0$ and $X_{t_2}^1 \subseteq X_{t_1}^1 \cup X_{t_1}^0$.

• The union of matchings M_1 et M_2 does not create any cycle.

Join node

Let t be a join node and t_1, t_2 its children such that $X_t = X_{t_1} = X_{t_2}$



Fact For being compatible, partial solutions should verify:

- $X_{t_1}^2 \subseteq X_{t_2}^0$ and $X_{t_1}^1 \subseteq X_{t_2}^1 \cup X_{t_2}^0$.
- $X_{t_2}^2 \subseteq X_{t_1}^0$ and $X_{t_2}^1 \subseteq X_{t_1}^1 \cup X_{t_1}^0$.
- The union of matchings M_1 et M_2 does not create any cycle.

Analysis of the running time, given a tree decomposition of width k:

Analysis of the running time, given a tree decomposition of width k:

• Number of subproblems at each node: $: 3^k \cdot k!$.

Analysis of the running time, given a tree decomposition of width k:

- Number of subproblems at each node: $: 3^k \cdot k!$.
- Number of nodes in a nice tree decomposition: $k \cdot n$.

Analysis of the running time, given a tree decomposition of width k:

- Number of subproblems at each node: : $3^k \cdot k!$.
- Number of nodes in a nice tree decomposition: $k \cdot n$.

Total running time of the algorithm: $k^{\mathcal{O}(k)} \cdot n$.

Analysis of the running time, given a tree decomposition of width k:

- Number of subproblems at each node: : $3^k \cdot k!$.
- Number of nodes in a nice tree decomposition: $k \cdot n$.

Total running time of the algorithm: $k^{\mathcal{O}(k)} \cdot n$.

Analysis of the running time, given a tree decomposition of width k:

- Number of subproblems at each node: $: 3^k \cdot k!$.
- Number of nodes in a nice tree decomposition: $k \cdot n$.

Total running time of the algorithm: $k^{\mathcal{O}(k)} \cdot n$.

Can this approach be generalized to more problems?

Definition and simple properties

2 Dynamic programming on tree decompositions

Two simple algorithms

Courcelle's theorem

Introduction to parameterized complexity

3 Brambles and duality

4 Computing treewidth

We represent a graph G = (V, E) with a structure $\mathcal{G} = (U, \text{vertex}, \text{edge}, I)$, where

We represent a graph G = (V, E) with a structure $\mathcal{G} = (U, \text{vertex}, \text{edge}, I)$, where

• $U = V \cup E$ is the universe.

We represent a graph G = (V, E) with a structure $\mathcal{G} = (U, \text{vertex}, \text{edge}, I)$, where

- $U = V \cup E$ is the universe.
- "vertex" and "edge" are unary relations that allow to distinguish vertices and edges.

We represent a graph G = (V, E) with a structure $\mathcal{G} = (U, \text{vertex}, \text{edge}, I)$, where

• $U = V \cup E$ is the universe.

- "vertex" and "edge" are unary relations that allow to distinguish vertices and edges.
- $I = \{(v, e) \mid v \in V, e \in E, v \in e\}$ is the incidence relation.

We represent a graph G = (V, E) with a structure $\mathcal{G} = (U, \text{vertex}, \text{edge}, I)$, where

• $U = V \cup E$ is the universe.

- "vertex" and "edge" are unary relations that allow to distinguish vertices and edges.
- $I = \{(v, e) \mid v \in V, e \in E, v \in e\}$ is the incidence relation.

An MSO formula is built using the following:

We represent a graph G = (V, E) with a structure $\mathcal{G} = (U, \text{vertex}, \text{edge}, I)$, where

• $U = V \cup E$ is the universe.

- "vertex" and "edge" are unary relations that allow to distinguish vertices and edges.
- $I = \{(v, e) \mid v \in V, e \in E, v \in e\}$ is the incidence relation.

An MSO formula is built using the following:

• Logical connectors \lor , \land , \Rightarrow , \neg , =, \neq .

We represent a graph G = (V, E) with a structure $\mathcal{G} = (U, \text{vertex}, \text{edge}, I)$, where

• $U = V \cup E$ is the universe.

- "vertex" and "edge" are unary relations that allow to distinguish vertices and edges.
- $I = \{(v, e) \mid v \in V, e \in E, v \in e\}$ is the incidence relation.

An MSO formula is built using the following:

- Logical connectors \lor , \land , \Rightarrow , \neg , =, \neq .
- Predicates $\operatorname{adj}(u, v)$ and $\operatorname{inc}(e, v)$.

We represent a graph G = (V, E) with a structure $\mathcal{G} = (U, \text{vertex}, \text{edge}, I)$, where

• $U = V \cup E$ is the universe.

- "vertex" and "edge" are unary relations that allow to distinguish vertices and edges.
- $I = \{(v, e) \mid v \in V, e \in E, v \in e\}$ is the incidence relation.

An MSO formula is built using the following:

- Logical connectors \lor , \land , \Rightarrow , \neg , =, \neq .
- Predicates $\operatorname{adj}(u, v)$ and $\operatorname{inc}(e, v)$.
- Relations \in , \subseteq on vertex/edge sets.

We represent a graph G = (V, E) with a structure $\mathcal{G} = (U, \text{vertex}, \text{edge}, I)$, where

• $U = V \cup E$ is the universe.

- "vertex" and "edge" are unary relations that allow to distinguish vertices and edges.
- $I = \{(v, e) \mid v \in V, e \in E, v \in e\}$ is the incidence relation.

An MSO formula is built using the following:

- Logical connectors \lor , \land , \Rightarrow , \neg , =, \neq .
- Predicates $\operatorname{adj}(u, v)$ and $\operatorname{inc}(e, v)$.
- Relations \in , \subseteq on vertex/edge sets.
- Quantifiers \exists , \forall on vertex/edge variables or vertex/edge sets .

31/50

 (MSO_1/MSO_2)

Example 1 Expressing that $\{u, v\} \in E(G)$: $\exists e \in E, inc(u, e) \land inc(v, e)$.

Example 2 Expressing that a set $S \subseteq V(G)$ is a dominating set.

 $\texttt{DomSet}(S): \quad \forall v \in V(G) \setminus S, \exists u \in S : \{u, v\} \in E(G).$

 $\texttt{DomSet}(S): \quad \forall v \in V(G) \setminus S, \exists u \in S : \{u, v\} \in E(G).$

Example 3 Expressing that a graph G = (V, E) is connected.

 $\texttt{DomSet}(S): \quad \forall v \in V(G) \setminus S, \exists u \in S : \{u, v\} \in E(G).$

Example 3 Expressing that a graph G = (V, E) is connected.

• For every bipartition de V, there is a transversal edge:

Example 1 Expressing that $\{u, v\} \in E(G)$: $\exists e \in E, inc(u, e) \land inc(v, e)$. Example 2 Expressing that a set $S \subseteq V(G)$ is a dominating set. DomSet(S): $\forall v \in V(G) \setminus S, \exists u \in S : \{u, v\} \in E(G).$ Example 3 Expressing that a graph G = (V, E) is connected. • For every bipartition de V, there is a transversal edge: Expressing that two sets V_1 , V_2 define a bipartition of V: $\forall v \in V, (v \in V_1 \lor v \in V_2) \land (v \in V_1 \Rightarrow v \notin V_2) \land (v \in V_2 \Rightarrow v \notin V_1).$

Example 1 Expressing that $\{u, v\} \in E(G)$: $\exists e \in E, inc(u, e) \land inc(v, e)$. Example 2 Expressing that a set $S \subseteq V(G)$ is a dominating set. DomSet(S): $\forall v \in V(G) \setminus S, \exists u \in S : \{u, v\} \in E(G).$ Example 3 Expressing that a graph G = (V, E) is connected. • For every bipartition de V, there is a transversal edge: Expressing that two sets V_1 , V_2 define a bipartition of V: $\forall v \in V, (v \in V_1 \lor v \in V_2) \land (v \in V_1 \Rightarrow v \notin V_2) \land (v \in V_2 \Rightarrow v \notin V_1).$ Connected: \forall bipartition $V_1, V_2, \exists v_1 \in V_1, \exists v_2 \in V_2, \{v_1, v_2\} \in E(G)$.

Example 1 Expressing that $\{u, v\} \in E(G)$: $\exists e \in E, inc(u, e) \land inc(v, e)$. Example 2 Expressing that a set $S \subseteq V(G)$ is a dominating set. DomSet(S): $\forall v \in V(G) \setminus S, \exists u \in S : \{u, v\} \in E(G).$ Example 3 Expressing that a graph G = (V, E) is connected. • For every bipartition de V, there is a transversal edge: Expressing that two sets V_1 , V_2 define a bipartition of V: $\forall v \in V, (v \in V_1 \lor v \in V_2) \land (v \in V_1 \Rightarrow v \notin V_2) \land (v \in V_2 \Rightarrow v \notin V_1).$ Connected: \forall bipartition $V_1, V_2, \exists v_1 \in V_1, \exists v_2 \in V_2, \{v_1, v_2\} \in E(G)$.

Other properties that can be expressed in MSO_2 :

• a set being a vertex cover, independent set.

Example 1 Expressing that $\{u, v\} \in E(G)$: $\exists e \in E, inc(u, e) \land inc(v, e)$. Example 2 Expressing that a set $S \subseteq V(G)$ is a dominating set. $DomSet(S): \forall v \in V(G) \setminus S, \exists u \in S : \{u, v\} \in E(G).$ Example 3 Expressing that a graph G = (V, E) is connected. • For every bipartition de V, there is a transversal edge: Expressing that two sets V_1 , V_2 define a bipartition of V: $\forall v \in V, (v \in V_1 \lor v \in V_2) \land (v \in V_1 \Rightarrow v \notin V_2) \land (v \in V_2 \Rightarrow v \notin V_1).$ Connected: \forall bipartition $V_1, V_2, \exists v_1 \in V_1, \exists v_2 \in V_2, \{v_1, v_2\} \in E(G)$.

Other properties that can be expressed in MSO₂:

- a set being a vertex cover, independent set.
- a graph being k-colorable (for fixed k), having a Hamiltonian cycle.

Every problem expressible in MSO_2 can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

Every problem expressible in MSO_2 can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

The function f(tw) depends on the structure of the MSO₂ formula.

Every problem expressible in MSO_2 can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

The function f(tw) depends on the structure of the MSO₂ formula.

Withing the same running time, one can also optimize the size of a vertex/edge set satisfying an MSO_2 formula.

Every problem expressible in MSO_2 can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

The function f(tw) depends on the structure of the MSO₂ formula.

Withing the same running time, one can also optimize the size of a vertex/edge set satisfying an MSO_2 formula.

Examples: VERTEX COVER, DOMINATING SET, HAMILTONIAN CYCLE, CLIQUE, INDEPENDENT SET, *k*-COLORING for fixed *k*, ...

Every problem expressible in MSO_2 can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

The function f(tw) depends on the structure of the MSO₂ formula.

Withing the same running time, one can also optimize the size of a vertex/edge set satisfying an MSO_2 formula.

Examples: VERTEX COVER, DOMINATING SET, HAMILTONIAN CYCLE, CLIQUE, INDEPENDENT SET, k-COLORING for fixed k, ...

In parameterized complexity: FPT parameterized by treewidth.

Definition and simple properties

2 Dynamic programming on tree decompositions

- Two simple algorithms
- Courcelle's theorem
- Introduction to parameterized complexity

3 Brambles and duality

4 Computing treewidth

Idea Measure the complexity of an algorithm in terms of the input size and an additional parameter.

This theory started in the late 80's, by Downey and Fellows:

Today, it is a well-established and very active area.

Parameterized problems

A parameterized problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$, where Σ is a fixed, finite alphabet.

For an instance $(x, k) \in \Sigma^* \times \mathbb{N}$, k is called the parameter.

Parameterized problems

A parameterized problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$, where Σ is a fixed, finite alphabet.

For an instance $(x, k) \in \Sigma^* \times \mathbb{N}$, k is called the parameter.

- k-VERTEX COVER: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \leq k$, containing at least an endpoint of every edge?
- k-CLIQUE: Does a graph G contain a set S ⊆ V(G), with |S| ≥ k, of pairwise adjacent vertices?
- VERTEX *k*-COLORING: Can the vertices of a graph be colored with $\leq k$ colors, so that any two adjacent vertices get different colors?

Parameterized problems

A parameterized problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$, where Σ is a fixed, finite alphabet.

For an instance $(x, k) \in \Sigma^* \times \mathbb{N}$, k is called the parameter.

- k-VERTEX COVER: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \leq k$, containing at least an endpoint of every edge?
- k-CLIQUE: Does a graph G contain a set S ⊆ V(G), with |S| ≥ k, of pairwise adjacent vertices?
- VERTEX *k*-COLORING: Can the vertices of a graph be colored with $\leq k$ colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?

• k-VERTEX COVER: Solvable in time $\mathcal{O}(2^k \cdot (m+n))$

• *k*-CLIQUE: Solvable in time $\mathcal{O}(k^2 \cdot n^k)$

• VERTEX *k*-COLORING: NP-hard for fixed k = 3.

• *k*-CLIQUE: Solvable in time $\mathcal{O}(k^2 \cdot \mathbf{n}^k) = f(k) \cdot \mathbf{n}^{g(k)}$.

• VERTEX *k*-COLORING: NP-hard for fixed k = 3.

The problem is **FPT** (fixed-parameter tractable)

• *k*-CLIQUE: Solvable in time $\mathcal{O}(k^2 \cdot \mathbf{n}^k) = f(k) \cdot \mathbf{n}^{g(k)}$.

• VERTEX *k*-COLORING: NP-hard for fixed k = 3.

37/50

The problem is **FPT** (fixed-parameter tractable)

• *k*-CLIQUE: Solvable in time $\mathcal{O}(k^2 \cdot \mathbf{n}^k) = f(k) \cdot \mathbf{n}^{g(k)}$.

The problem is XP | (slice-wise polynomial)

• VERTEX *k*-COLORING: NP-hard for fixed k = 3.

The problem is **FPT** (fixed-parameter tractable)

• *k*-CLIQUE: Solvable in time $\mathcal{O}(k^2 \cdot \mathbf{n}^k) = f(k) \cdot \mathbf{n}^{g(k)}$.

The problem is XP (slice-wise polynomial)

• VERTEX *k*-COLORING: NP-hard for fixed k = 3.

The problem is para-NP-hard

37/50

Why *k*-CLIQUE may not be FPT?

Why *k*-CLIQUE may not be FPT?

So far, nobody has managed to find an FPT algorithm. (also, nobody has found a poly-time algorithm for 3-SAT)

Why *k*-CLIQUE may not be FPT?

So far, nobody has managed to find an FPT algorithm. (also, nobody has found a poly-time algorithm for 3-SAT)

Working hypothesis of parameterized complexity: *k***-CLIQUE** is not FPT (in classical complexity: 3-SAT cannot be solved in poly-time)

How to transfer hardness among parameterized problems?

Let $A, B \subseteq \Sigma^* \times \mathbb{N}$ be two parameterized problems.

How to transfer hardness among parameterized problems?

Let $A, B \subseteq \Sigma^* \times \mathbb{N}$ be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance
$$(x, k)$$
 of A time $f(k) \cdot |x|^{\mathcal{O}(1)}$ Instance

Instance
$$(x', k')$$
 of B

A parameterized reduction from A to B is an algorithm such that:

Instance (x, k) of A time $f(k) \cdot |x|^{\mathcal{O}(1)}$ Instance (x', k') of B(x, k) is a YES-instance of $A \Leftrightarrow (x', k')$ is a YES-instance of B. ($x, k' \leq g(k)$ for some computable function $g : \mathbb{N} \to \mathbb{N}$.

A parameterized reduction from A to B is an algorithm such that:

Instance (x, k) of A time $f(k) \cdot |x|^{\mathcal{O}(1)}$ **(**(x, k) is a YES-instance of $A \Leftrightarrow (x', k')$ is a YES-instance of B. 2 $k' \leq g(k)$ for some computable function $g: \mathbb{N} \to \mathbb{N}$.

W[1]-hard problem: \exists parameterized reduction from k-CLIQUE to it.

W[2]-hard problem: \exists param. reduction from *k*-DOMINATING SET to it.

Instance (x', k') of B

Instance (x, k) of A time $f(k) \cdot |x|^{\mathcal{O}(1)}$

A parameterized reduction from A to B is an algorithm such that:

(x, k) is a YES-instance of A ⇔ (x', k') is a YES-instance of B.
k' ≤ g(k) for some computable function g : N → N.

W[1]-hard problem: \exists parameterized reduction from *k*-CLIQUE to it.

W[2]-hard problem: \exists param. reduction from *k*-DOMINATING SET to it.

W[i]-hard: strong evidence of not being FPT.

Instance (x', k') of B

Instance (x, k) of A

A parameterized reduction from A to B is an algorithm such that:

time $f(k) \cdot |x|^{\mathcal{O}(1)}$

(x, k) is a YES-instance of A ⇔ (x', k') is a YES-instance of B.
k' ≤ g(k) for some computable function g : N → N.

W[1]-hard problem: \exists parameterized reduction from *k*-CLIQUE to it.

W[2]-hard problem: \exists param. reduction from *k*-DOMINATING SET to it.

W[*i*]-hard: strong evidence of not being FPT. Hypothesis: $|FPT \neq W[1]|$

Instance (x', k') of B

Back to treewidth: only good news?

Theorem (Courcelle. 1990)

Every problem expressible in MSO_2 can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

Back to treewidth: only good news?

Theorem (Courcelle. 1990)

Every problem expressible in MSO_2 can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

Are all "natural" graph problems FPT parameterized by treewidth?

Theorem (Courcelle. 1990)

Every problem expressible in MSO_2 can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

- Are all "natural" graph problems FPT parameterized by treewidth?
 The vast majority, but not all of them:
 - LIST COLORING is W[1]-hard parameterized by treewidth.

[Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider, Thomassen. 2007]

Theorem (Courcelle. 1990)

Every problem expressible in MSO_2 can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

• Are all "natural" graph problems FPT parameterized by treewidth?

The vast majority, but not all of them:

• LIST COLORING is W[1]-hard parameterized by treewidth.

[Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider, Thomassen. 2007]

• Some problems are even NP-hard on graphs of constant treewidth: STEINER FOREST (tw = 3), BANDWIDTH (tw = 1).

Theorem (Courcelle. 1990)

Every problem expressible in MSO_2 can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

• Are all "natural" graph problems FPT parameterized by treewidth?

The vast majority, but not all of them:

• LIST COLORING is W[1]-hard parameterized by treewidth.

[Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider, Thomassen. 2007]

- Some problems are even NP-hard on graphs of constant treewidth: STEINER FOREST (tw = 3), BANDWIDTH (tw = 1).
- Most natural problems (VERTEX COVER, DOMINATING SET, ...) do not admit polynomial kernels parameterized by treewidth.

Definition and simple properties

2 Dynamic programming on tree decompositions

- Two simple algorithms
- Courcelle's theorem
- Introduction to parameterized complexity

3 Brambles and duality

4 Computing treewidth

How to provide a lower bound on the treewidth of a graph?

How to provide a lower bound on the treewidth of a graph?

Two sets $A, B \subseteq V(G)$ touch if either $A \cap B \neq \emptyset$ or there is an edge in G from A to B.

How to provide a lower bound on the treewidth of a graph?

Two sets $A, B \subseteq V(G)$ touch if either $A \cap B \neq \emptyset$ or there is an edge in G from A to B.

A set $S \subseteq V(G)$ is connected if G[S] is connected.

How to provide a lower bound on the treewidth of a graph?

Two sets $A, B \subseteq V(G)$ touch if either $A \cap B \neq \emptyset$ or there is an edge in G from A to B.

A set $S \subseteq V(G)$ is connected if G[S] is connected.

A bramble in a graph G is a family \mathcal{B} of pairwise touching connected vertex sets of G.

How to provide a lower bound on the treewidth of a graph?

Two sets $A, B \subseteq V(G)$ touch if either $A \cap B \neq \emptyset$ or there is an edge in G from A to B.

A set $S \subseteq V(G)$ is connected if G[S] is connected.

A bramble in a graph G is a family \mathcal{B} of pairwise touching connected vertex sets of G.

The order of a bramble \mathcal{B} in a graph G is the minimum size of a vertex set $S \subseteq V(G)$ intersecting all the sets in \mathcal{B} .

How to provide a lower bound on the treewidth of a graph?

Two sets $A, B \subseteq V(G)$ touch if either $A \cap B \neq \emptyset$ or there is an edge in G from A to B.

A set $S \subseteq V(G)$ is connected if G[S] is connected.

A bramble in a graph G is a family \mathcal{B} of pairwise touching connected vertex sets of G.

The order of a bramble \mathcal{B} in a graph G is the minimum size of a vertex set $S \subseteq V(G)$ intersecting all the sets in \mathcal{B} .

Theorem (Robertson and Seymour. 1993)

For every $k \ge 0$ and graph G, the treewidth of G is at least k if and only if G contains a bramble of order at least k + 1.

くロン 人間 とくほ とくほど

[slides borrowed from Christophe Paul]

• Two sets $Y, Z \subseteq V(G)$, with |Y| = |Z|, are separable if there is a set $S \subseteq V(G)$ with |S| < |Y| and such that G - S contains no path between $Y \setminus S$ and $Z \setminus S$.

[slides borrowed from Christophe Paul]

- Two sets $Y, Z \subseteq V(G)$, with |Y| = |Z|, are separable if there is a set $S \subseteq V(G)$ with |S| < |Y| and such that G S contains no path between $Y \setminus S$ and $Z \setminus S$.
- For $k \ge 1$, a set $X \subseteq V(G)$ is k-linked if $|X| \ge k$ and $\forall Y, Z \subseteq X$, $|Y| = |Z| \le k$, Y and Z are not separable.

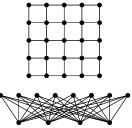
[slides borrowed from Christophe Paul]

- Two sets $Y, Z \subseteq V(G)$, with |Y| = |Z|, are separable if there is a set $S \subseteq V(G)$ with |S| < |Y| and such that G S contains no path between $Y \setminus S$ and $Z \setminus S$.
- For $k \ge 1$, a set $X \subseteq V(G)$ is k-linked if $|X| \ge k$ and $\forall Y, Z \subseteq X$, $|Y| = |Z| \le k$, Y and Z are not separable.

The $(k \times k)$ -grid is k-linked

[slides borrowed from Christophe Paul]

- Two sets $Y, Z \subseteq V(G)$, with |Y| = |Z|, are separable if there is a set $S \subseteq V(G)$ with |S| < |Y| and such that G - S contains no path between $Y \setminus S$ and $Z \setminus S$.
- For $k \ge 1$, a set $X \subseteq V(G)$ is k-linked if $|X| \ge k$ and $\forall Y, Z \subseteq X, |Y| = |Z| \le k, Y$ and Z are not separable.



The $(k \times k)$ -grid is k-linked

 $K_{2k,k}$ is also k-linked

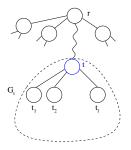
Lemma

If G contains a (k + 1)-linked set X with $|X| \ge 3k$, then tw(G) $\ge k$.

Lemma

If G contains a (k + 1)-linked set X with $|X| \ge 3k$, then tw $(G) \ge k$.

Contradiction: Consider a tree decomposition of G of width < k.



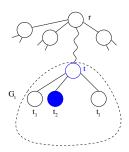
Let *t* be a "lowest" node with $|V_t \cap X| > 2k$.

▶ skii

Lemma

If G contains a (k + 1)-linked set X with $|X| \ge 3k$, then tw $(G) \ge k$.

Contradiction: Consider a tree decomposition of G of width < k.



Let *t* be a "lowest" node with $|V_t \cap X| > 2k$.

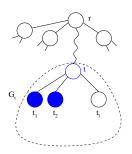
If $\exists i \in [\ell]$ such that $|V_{t_i} \cap X| \ge k$, then we can choose $Y \subseteq V_{t_i} \cap X$, |Y| = k and $Z \subseteq (V \setminus V_{t_i}) \cap X$, |Z| = k.

But $S = X_{t_i} \cap X_t$ separates Y and Z and $|S| \le k - 1$.

Lemma

If G contains a (k + 1)-linked set X with $|X| \ge 3k$, then tw $(G) \ge k$.

Contradiction: Consider a tree decomposition of G of width < k.



Let *t* be a "lowest" node with $|V_t \cap X| > 2k$.

Otherwise, let $W = V_{t_1} \cup \cdots \cup V_{t_i}$ with $|W \cap X| > k$ and $|(W \setminus V_{t_j}) \cap X| < k$ for $1 \le j \le i$.

 $Y \subseteq W \cap X$, |Y| = k + 1 and $Z \subseteq (V \setminus W) \cap X$, |Z| = k + 1.

But $S = X_t$ separates Y from Z and $|S| \leq k$.

・ロト ・ 四ト ・ ヨト ・ ヨ

Lemma

Given a vertex set X of a graph G and $k \leq |X|$, it is possible to decide whether X est k-linked in time $f(k) \cdot n^{\mathcal{O}(1)}$.

Lemma

Given a vertex set X of a graph G and $k \leq |X|$, it is possible to decide whether X est k-linked in time $f(k) \cdot n^{\mathcal{O}(1)}$.

• For every pair of subsets $Y, Z \subseteq X$ with $|Y| = |Z| \le k$, we can test whether Y and Z are separable in polynomial time (flow algorithm).

Lemma

Given a vertex set X of a graph G and $k \leq |X|$, it is possible to decide whether X est k-linked in time $f(k) \cdot n^{\mathcal{O}(1)}$.

- For every pair of subsets $Y, Z \subseteq X$ with $|Y| = |Z| \le k$, we can test whether Y and Z are separable in polynomial time (flow algorithm).
- Complexity: $4^k \cdot n^{O(1)}$.

Lemma

Given a vertex set X of a graph G and $k \leq |X|$, it is possible to decide whether X est k-linked in time $f(k) \cdot n^{\mathcal{O}(1)}$.

- For every pair of subsets $Y, Z \subseteq X$ with $|Y| = |Z| \le k$, we can test whether Y and Z are separable in polynomial time (flow algorithm).
- Complexity: $4^k \cdot n^{O(1)}$.

Remark If X is not k-linked we can find, within the same running time, two separable subsets $Y, Z \subseteq X$.

Definition and simple properties

2 Dynamic programming on tree decompositions

- Two simple algorithms
- Courcelle's theorem
- Introduction to parameterized complexity

3 Brambles and duality

4 Computing treewidth

Given a graph G on n vertices and a positive integer k:

• Deciding whether $tw(G) \le k$ is NP-complete. [Arnborg, Corneil, Proskurowski. 1987]

- Deciding whether $tw(G) \le k$ is NP-complete. [Arnborg, Corneil, Proskurowski. 1987]
- Can be solved in time $k^{\mathcal{O}(k^3)} \cdot n$. [Bodlaender. 1996]

- Deciding whether $tw(G) \le k$ is NP-complete. [Arnborg, Corneil, Proskurowski. 1987]
- Can be solved in time $k^{\mathcal{O}(k^3)} \cdot n$. [Bodlaender. 1996]
- Either concludes that $tw(G) \ge k$ or finds a tree decomposition of width at most 4k in time $\mathcal{O}(3^{3k} \cdot k \cdot n^2)$. [Robertson and Seymour. 1995]

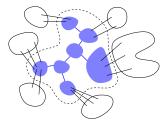
- Deciding whether $tw(G) \le k$ is NP-complete. [Arnborg, Corneil, Proskurowski. 1987]
- Can be solved in time $k^{\mathcal{O}(k^3)} \cdot n$. [Bodlaender. 1996]
- Either concludes that $tw(G) \ge k$ or finds a tree decomposition of width at most 4k in time $\mathcal{O}(3^{3k} \cdot k \cdot n^2)$. [Robertson and Seymour. 1995]
- Either concludes that $tw(G) \ge k$ or finds a tree decomposition of width at most 9k/2 in time $\mathcal{O}(2^{3k} \cdot k^{3/2} \cdot n^2)$. [Amir. 2010]

- Deciding whether $tw(G) \le k$ is NP-complete. [Arnborg, Corneil, Proskurowski. 1987]
- Can be solved in time $k^{\mathcal{O}(k^3)} \cdot n$. [Bodlaender. 1996]
- Either concludes that $tw(G) \ge k$ or finds a tree decomposition of width at most 4k in time $\mathcal{O}(3^{3k} \cdot k \cdot n^2)$. [Robertson and Seymour. 1995]
- Either concludes that $tw(G) \ge k$ or finds a tree decomposition of width at most 9k/2 in time $\mathcal{O}(2^{3k} \cdot k^{3/2} \cdot n^2)$. [Amir. 2010]
- Either concludes that $tw(G) \ge k$ or finds a tree decomposition of width at most 5k + 4 in time $2^{\mathcal{O}(k)} \cdot n$. [Bodlaender et al. 2016]

- Deciding whether $tw(G) \le k$ is NP-complete. [Arnborg, Corneil, Proskurowski. 1987]
- Can be solved in time $k^{\mathcal{O}(k^3)} \cdot n$. [Bodlaender. 1996]
- Either concludes that $tw(G) \ge k$ or finds a tree decomposition of width at most 4k in time $\mathcal{O}(3^{3k} \cdot k \cdot n^2)$. [Robertson and Seymour. 1995]
- Either concludes that $tw(G) \ge k$ or finds a tree decomposition of width at most 9k/2 in time $\mathcal{O}(2^{3k} \cdot k^{3/2} \cdot n^2)$. [Amir. 2010]
- Either concludes that $tw(G) \ge k$ or finds a tree decomposition of width at most 5k + 4 in time $2^{\mathcal{O}(k)} \cdot n$. [Bodlaender et al. 2016]
- Either concludes that $tw(G) \ge k$ or finds a tree decomposition of width at most $\mathcal{O}(k \cdot \sqrt{\log k})$ in time $n^{\mathcal{O}(1)}$.

- Deciding whether $tw(G) \le k$ is NP-complete. [Arnborg, Corneil, Proskurowski. 1987]
- Can be solved in time $k^{\mathcal{O}(k^3)} \cdot n$. [Bodlaender. 1996]
- ★ Either concludes that $tw(G) \ge k$ or finds a tree decomposition of width at most 4k in time $\mathcal{O}(3^{3k} \cdot k \cdot n^2)$. [Robertson and Seymour. 1995]
 - Either concludes that $tw(G) \ge k$ or finds a tree decomposition of width at most 9k/2 in time $\mathcal{O}(2^{3k} \cdot k^{3/2} \cdot n^2)$. [Amir. 2010]
 - Either concludes that $tw(G) \ge k$ or finds a tree decomposition of width at most 5k + 4 in time $2^{\mathcal{O}(k)} \cdot n$. [Bodlaender et al. 2016]
 - Either concludes that $tw(G) \ge k$ or finds a tree decomposition of width at most $\mathcal{O}(k \cdot \sqrt{\log k})$ in time $n^{\mathcal{O}(1)}$.

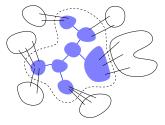
[slides borrowed from Christophe Paul]



Idea

• We add vertices to a set U in a greedy way, until U = V(G).

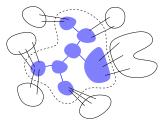
[slides borrowed from Christophe Paul]



Idea

- We add vertices to a set U in a greedy way, until U = V(G).
- We maintain a tree decomposition \mathcal{T}_U of G[U] s.t. width $(\mathcal{T}_U) < 4k$,

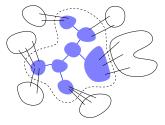
[slides borrowed from Christophe Paul]



ldea

- We add vertices to a set U in a greedy way, until U = V(G).
- We maintain a tree decomposition \mathcal{T}_U of G[U] s.t. width $(\mathcal{T}_U) < 4k$, unless we stop the algorithm and conclude that tw $(G) \ge k$.

[slides borrowed from Christophe Paul]



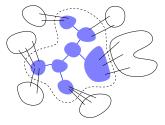
Idea

- We add vertices to a set U in a greedy way, until U = V(G).
- We maintain a tree decomposition \mathcal{T}_U of G[U] s.t. width $(\mathcal{T}_U) < 4k$, unless we stop the algorithm and conclude that tw $(G) \ge k$.

Invariant

• Every connected component of G - U has at most 3k neighbors in U.

[slides borrowed from Christophe Paul]



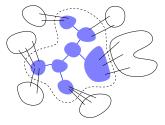
Idea

- We add vertices to a set U in a greedy way, until U = V(G).
- We maintain a tree decomposition \mathcal{T}_U of G[U] s.t. width $(\mathcal{T}_U) < 4k$, unless we stop the algorithm and conclude that tw $(G) \ge k$.

Invariant

- Every connected component of G U has at most 3k neighbors in U.
- There exists a bag X_t of T_U containing all these neighbors.

[slides borrowed from Christophe Paul]



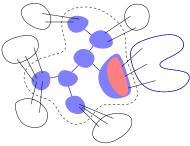
Idea

- We add vertices to a set U in a greedy way, until U = V(G).
- We maintain a tree decomposition \mathcal{T}_U of G[U] s.t. width $(\mathcal{T}_U) < 4k$, unless we stop the algorithm and conclude that tw $(G) \ge k$.

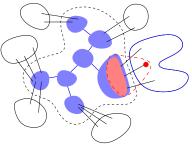
Invariant

- Every connected component of G U has at most 3k neighbors in U.
- There exists a bag X_t of T_U containing all these neighbors.

Initially, we start with U being any set of 3k vertices.

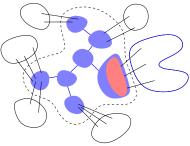


Let X be the neighbors of a component C and t be the node s.t. $X \subseteq X_t$.



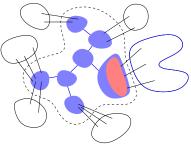
Let X be the neighbors of a component C and t be the node s.t. $X \subseteq X_t$.

• If |X| < 3k: we add a node t' neighbor of t such that $X_{t'} = \{x\} \cup X$, with $x \in C$ being a neighbor of X_t .



Let X be the neighbors of a component C and t be the node s.t. $X \subseteq X_t$.

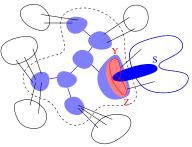
• If |X| = 3k: we test whether X is (k + 1)-linked in time $f(k) \cdot n^{\mathcal{O}(1)}$:



Let X be the neighbors of a component C and t be the node s.t. $X \subseteq X_t$.

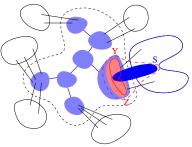
If |X| = 3k: we test whether X is (k + 1)-linked in time f(k) ⋅ n^{O(1)}:
If X is (k + 1)-linked, then tw(G) ≥ k, and we stop.

49/50



Let X be the neighbors of a component C and t be the node s.t. $X \subseteq X_t$.

- If |X| = 3k: we test whether X is (k + 1)-linked in time f(k) ⋅ n^{O(1)}:
 If X is (k + 1)-linked, then tw(G) ≥ k, and we stop.
 - 3 Otherwise, we find sets Y, Z, S with $|S| < |Y| = |Z| \le k + 1$ and such that S separates Y and Z.

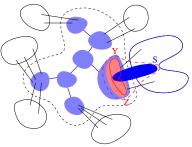


Let X be the neighbors of a component C and t be the node s.t. $X \subseteq X_t$.

• If |X| = 3k: we test whether X is (k + 1)-linked in time $f(k) \cdot n^{\mathcal{O}(1)}$:

If X is (k+1)-linked, then $tw(G) \ge k$, and we stop.

 Otherwise, we find sets Y, Z, S with |S| < |Y| = |Z| ≤ k + 1 and such that S separates Y and Z.
 We create a node t' neighbor of t s.t. X_{t'} = (S ∩ C) ∪ X.

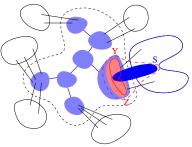


Let X be the neighbors of a component C and t be the node s.t. $X \subseteq X_t$.

• If |X| = 3k: we test whether X is (k + 1)-linked in time $f(k) \cdot n^{\mathcal{O}(1)}$:

If X is (k+1)-linked, then $tw(G) \ge k$, and we stop.

Otherwise, we find sets Y, Z, S with |S| < |Y| = |Z| ≤ k + 1 and such that S separates Y and Z. We create a node t' neighbor of t s.t. X_{t'} = (S ∩ C) ∪ X. Obs: the neighbors of every new component C' ⊆ C are in (X \ Z) ∪ (S ∩ C) or in (X \ Y) ∪ (S ∩ C)



Let X be the neighbors of a component C and t be the node s.t. $X \subseteq X_t$.

• If |X| = 3k: we test whether X is (k + 1)-linked in time $f(k) \cdot n^{\mathcal{O}(1)}$:

If X is (k+1)-linked, then $tw(G) \ge k$, and we stop.

Otherwise, we find sets Y, Z, S with |S| < |Y| = |Z| ≤ k + 1 and such that S separates Y and Z. We create a node t' neighbor of t s.t. X_{t'} = (S ∩ C) ∪ X. Obs: the neighbors of every new component C' ⊆ C are in (X \ Z) ∪ (S ∩ C) or in (X \ Y) ∪ (S ∩ C) ⇒ ≤ 3k neighbors.

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

Gràcies!

