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Disclaimer :
Everything in this talk is hereditary !
S C V is a separator if G\ S is not connected.

Reminder of Ignasi’s talk :
Every bag of a tree decomposition is a separator.

Question :
Can we say better?
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Balanced Separators
S is a balanced separator if there exists a partition A, B of G\ S
such that :
e max(|A],|B|) < ¥ and,
® A B are anticomplete.

Every tree T has a vertex v such that every component of T \ v

has size < g

Proof :

® Orient the edge u — v if G\ u
contains > % of the vertices.

® The orientation admits a sink.

® A sink vertex satisfies the lemma.
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Balanced separators and treewidth |

Every tree T has balanced separator of size 1. ]

Proof :

® G\ v has components
Ci, ..., G of size at most 7.

® Rank them by increasing size.
e Add C; in A until ngi G >3

Cy

Every graph of treewidth at most k has a balanced separator of
size k + 1.

Proof : Replace nodes by bags.

4/20



Super balanced separators
A separator S is super balanced if A, B have size at most n/2.

If G has a balanced separator of size < k then G has a super
balanced separator of size < ck.
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A separator S is super balanced if A, B have size at most n/2.

If G has a balanced separator of size < k then G has a super
balanced separator of size < ck.

Proof :
® Find a balanced separator S;.
® Put the “small” part A in one of the two sets we are
constructing.
e Cut again B and repeat.
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Super balanced separators
A separator S is super balanced if A, B have size at most n/2.

If G has a balanced separator of size < k then G has a super
balanced separator of size < ck.

Proof :
® Find a balanced separator S;.
® Put the “small” part A in one of the two sets we are
constructing.
e Cut again B and repeat.

3<IBI< %
Gauche| Dr. ‘ ? ‘ Sep.
‘% A B C Si
S,
S, :

Total size of the separator < le.c’fln(2/3)"k =c-k.
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Questions

® When does it exist (small) balanced separators ?
e Why are we looking for (small) balanced separators ?

® When can't we find (small) balanced separators ?
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Theorem (Dvorak, Norin '19)]

Every graph with a balanced separator of size k has treewidth

O(k).

Sketch of the proof of a weaker statement : [Bodlaender '91]
If G has treewidth k then O(k logn))

S

tw < klog(%z//// tw < klog(

AN AN
tw(G) < k + klog(n/2) < k- (log2 + log(n/2) < klogn

3)

N
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Planar graphs

Theorem (Lipton, Tarja n)]

Planar graphs have balanced separators of size O(\/n). ]

Remark :
Q(+/n) is necessary for grids.

Theorem (Alon, Seymour, Thomas)]

Every Ki-minor free graph has a balanced separator of size

O(t3/2,/n).
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Proof 1 - Using Koebe
Proof of Har-Peled 11 :

Theorem (Koebe, Andreev, Thurston '36)]

G is planar iff it is the contact graph of disks on the sphere. ]

Disk = natural separator.
L] L)
/ P : sets of centers.
D : smallest disk of the plane

containing 1/10 of P.
~ Wiog B(0,1).

Let 1 <r<2.S5 ={v/D(0,r)NB(v,r,) # 0}.

= S, separate the “interior” from the “exterior”.

To conclude, we want to prove :
® S, is balanced (no too large component on each side).
® S, is not too big (the expected size of S, is O(+/n)).
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S is balanced

Lemma 1

Every connected component of G \ S has size at most 9n/10. ]

Proof : _
Exterior : v ) a

Interior :
P’= Subset of centers in B(0,2). \
B(0,2d) can be covered by 9 ball of radius

d.

= By minimality of the ball, P’ has size at
most 9n/10.

Fig. Har-Peled
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S is not too big

Lemma 2
With high probability :

S| = 0(v/n)
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S is not too big

Lemma 2
With high probability :

|S| = O(v/n)

(Very sketchy) proof :
® For every disk D; of radius r; :
P(D(x,r) N D; #0) < 2r;.
® D; uses an area of 7Tr,-2.
® Total area is 4r.
® Using Cauchy-Scharwz :
E(S) = XX P(D(x, ) N D; # 0)
E(S) <312
E(S) < /(Z 4 (S )
E(S) = O(/n). 11720
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Proof by Lokshtanov
Note :
Instead of proving the existence of a separator, we will prove a
bound on the treewidth of planar graphs!

4 U

® |ayering partition.

® Label every layer according to its value modulo +/n.
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First try

® Peel the graphs into layers of a BFS.

® Every layer is an outerplanar graph.
= Every layer has treewidth at most 2.

e Combine the tree decompositions of each layer?

Problem : How to do it?
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Layered treewidth

A layering of G is a partition Vi,..., V; of V such that every edge
lies in a layer or between two consecutive layers.

Layered width= maximum for i € {1,...,t} of the treewidth of
(T, G[Vi]).
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Layered treewidth

A layering of G is a partition Vi,..., V; of V such that every edge
lies in a layer or between two consecutive layers.

Layered width= maximum for i € {1,...,t} of the treewidth of
(T, G[Vi]).

Layered treewidth= Minimum over the layerings of G and the
tree decompositions of G of the layered width.

Remark :

1. tw(G) < tw(G).

2. { consecutive layers induce a subgraph of treewidth < 7 /tw(G).
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Example
Grids have layered treewidth 2.

Theorem (Dujmovi¢, Morin, Wood '17)]

Every planar graph has layered treewidth at most 3 ]
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Application 1 - Universal Graphs

A universal graph U, of G is a graph that contains every graph of
G of size n as a subgraph.
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Theorem

Planar graphs have a universal graph with O(n%/?) edges. ]

Proof : By induction.

® Every planar graph has a super
balanced separator of size cy/n.

¢ Join a clique of ¢y/n to two
universal graphs of size n/2.
e Total number of edges ~ n®/2.
Remarks :
1. [Esperet, Joret, Morin '"21-+| Planar graphs have a universal
graph with O(n'*<) edges.
2. 0(n%/?) still the best upper bound for minor closed classes.
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Application 2 - Approximation of MIS

Theorem

MAXIMUM INDEPENDENT SET has a PTAS in planar graphs. ]

Remark 1: x(G) <4 = MIS(G) > 7 for every planar graph G.
— A poly-time algorithm to compute a MIS after the removal of
o(n) vertices = A (1 + ¢)-approximation algorithm.

Roadmap : Divide and conquer

® Delete a balanced separator of size

O(ﬁ) Total size = o(n)
® Apply induction on both sides.

\

e Stop when components have size

< log n. % ﬂ

— A careful counting ensures that only o(n)

vertices have been removed.
17/20
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Expanders
Border of S C V :

0(S)={ w/we N(S) and w ¢ S}

Expansion of G :

()]
h(G)_|sT'sng S|

A graph G is a c-expander if h(G) > c.

Theorem

The following are equivalent
® G is a c-expander for ¢ > 0.

® G has linear treewidth.
® G has no sublinear balanced separator.
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Building expanders ?
Remark :
A graph of maximum degree 2 is not an expander.
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Zig-zag product G o H : graph of degree d? that has the
(essentially) expansion of G.

“Replace” every vertex v € V(G) by a “cloud” of size D which is
connected in a “dirty” way to the original neighbors of v in G.
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Theorem (Reingold, Vadhan, Wigderson '00) ]

There exist cubic-expanders. ]

Rough idea : Zig-zag product
G a "large graph” of large degree D that is expanding.
H a “small graph” of size D and degree d which is an expander.

Zig-zag product G o H : graph of degree d? that has the
(essentially) expansion of G.

“Replace” every vertex v € V(G) by a “cloud” of size D which is
connected in a “dirty” way to the original neighbors of v in G.

Thanks for your attention !
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