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Abstract

We prove that every planar graphs has an edge partition into three forests, one
having maximum degree 4. This answers a conjecture of Balogh et al. (J. Combin.
Theory B. 94 (2005) 147-158).We also prove that every planar graphs with girth
g ≥ 6 (resp. g ≥ 7) has an edge partition into two forests, one having maximum
degree 4 (resp. 2).
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1 Introduction

A graph G is covered by subgraphs G1, . . . , Gk of G if every edge of G be-
longs to one of these subgraphs. A graph G is (t, D)-coverable if it can be
covered by t forests and a graph H of maximum degree ∆(H) ≤ D. A graph
is F (d1, . . . , dk)-coverable if it can be covered by k forests F1, . . . , Fk such that
∆(Fi) ≤ di for all 1 ≤ i ≤ k. If di = ∞ the maximum degree of Fi is un-
bounded. By a result of Nash-Williams [8], we know that planar graphs are
(3, 0)-coverable (i.e. F (∞,∞,∞)-coverable) and that planar graphs of girth
g ≥ 4 are (2, 0)-coverable (i.e. F (∞,∞)-coverable). In [6], the authors proved
that planar graphs are (2, 8)-coverable. The authors also asked what could
be the minimal d such that every planar graph is (2, d)-coverable. In [2], the
authors proved that planar graphs are more than (2, 8)-coverable, they are
F (∞,∞, 8)-coverable. They also proved that there exist non-(2, 3)-coverable
planar graphs and they conjectured that planar graphs are (2, 4)-coverable.
Our main result is slightly stronger than this conjecture.
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Fig. 1. From T to Te, Tl and Tr.

Theorem 1 Planar graphs are F (∞,∞, 4)-coverable.

The case of bounded girth planar graphs has also been studied. It is proven
in [6] that planar graphs with girth at least 5 (resp. 7) are (1, 4)-coverable
(resp.(1, 2)-coverable). In [1], the authors proved that planar graphs with girth
at least 10 are (1, 1)-coverable (i.e. F (∞, 1)-coverable). Here we have some
results on forest coverings of planar graphs of girth at least 6 or 7.

Theorem 2 Planar graphs of girth g ≥ 6 are F (∞, 4)-coverable.

Theorem 3 Planar graphs of girth g ≥ 7 are F (∞, 2)-coverable.

2 Planar graphs

A triangulation is a planar graph in which every face is triangular. In [4] the
author proved that planar graphs are coverable by four forests of caterpillars.
His proof works by induction using a decomposition of triangulations into three
smaller triangulations. We prove Theorem 1 using the same decomposition
tool.

Consider an embedded triangulation T with at least four vertices and such
that going counter-clockwise on the external face we successively meet the
vertices u, v and w. For a couple (u, v) of these vertices we define its partner
couple (x, y) of vertices. In a triangulation with at least four vertices, any
edge ab is such that its ends, a and b, have at least two common neighbors.
We consider the sequence of u’s neighbors going in the clockwise sense from w
to v. Let x be the second of these vertices being a neighbor of v (the first one
being w, x 6= w). Note that every common neighbor of u and v other than x
or w is inside the cycle (u, v, x). Then, let y be the first vertex of the sequence
that is a neighbor of x. Since u and x have at least two common neighbors,
one of these vertices appears before v in the sequence, so y 6= v. On the other
hand note that the vertex y may be equal to w. Note that partner couples are
defined for every triangulation T 6= K3.
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Fig. 2. From Te to Tm.

Let Tl (resp. Tr) be the triangulation induced by the vertices on and inside the
cycle (u, v, x) (resp. (u, x, y)). Then let Te be the triangulation induced by the
vertices on and outside the cycle (u, v, x, y) (see Figure 1). Since v /∈ V (Tr)
and w /∈ V (Tl), Tr and Tl have less vertices than T . This is not the case for
Te if (u, v, x) and (u, x, y) both delimit an inner-face of T . In Te, the vertices
u and v (resp. u and x) have only two common neighbors, x and w (resp. u
and y). So in Te, the partner couple of (u, v) is still (x, y).

We construct Tm from Te by deleting three edges, vx, ux and yx, and then
merging u and v in a single vertex u′ (see Figure 2). Since u and x have
only two common neighbors v and y in Te, Tm is a well defined triangulation,
without loop or multiple edges. Since we merged two vertices, Tm has less
vertices than Te. If Tm 6= K3, let (x′, y′) be the partner couple of (u′, v) in Tm.
Note that since u and v have exactly two neighbors in Te, x and w, the vertex
x′ is adjacent to x and not adjacent to u in Te. Using this decomposition, we
prove the following theorem illustrated in Figure 3.

Theorem 4 Given any triangulation T = (V, E) and any triplet (u, v, w) of
vertices on the external face, let (x, y) be the partner couple of (u, v). The
graph T ′ = T\{uv, uw, vw} has an F (∞,∞, 4)-covering by F1, F2 and F3. If
x is defined, this is if T 6= K3 these forests are such that :

- the edges of T ′ incident to v are in F1,
- the edges of T ′ incident to w are in F2,
- the edge ux is in F3,
- the edges of T ′ incident to u strictly between ux and uw are in F1,
- the edges of T ′ incident to u strictly between uv and ux are in F2, and
- the vertices u, v and w are in distinct connected components of Fi, for

1 ≤ i ≤ 3. Furthermore, the connected component of F2 containing the
vertex u only contains u and some vertices inside the cycle (u, v, x).

Note that each of these forests has exactly 3 connected components. Indeed,
an acyclic graph on n vertices with c connected components has n − c edges
and the graph T ′ has 3n− 9 edges. For example the forest F2 has 2 connected
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components of one vertex each, respectively u and v, and a third connected
component containing all the remaining vertices. We can extend this edge-
partition of T ′ to T by putting for example the edges uv and uw in F1 and
the edge vw in F2. This partition clearly implies Theorem 1.

PROOF. This proof works by induction on |V (T )|. The theorem clearly holds
for K3, so we consider the induction step of the proof. Given a triangulation
T with |V (T )| ≥ 4, consider the three triangulations Tm, Tl and Tr obtained
by the decomposition of T described before. Since Tm, Tl and Tr have less
vertices than T , we can use the induction hypothesis. Let F ′

1, F ′
2 and F ′

3 be
the three forests given by the theorem for the triangulation Tm and the triplet
(u′, v, w). These forests cover T ′

m = Tm \ {u′v, u′w, vw} and we use them to
define the graphs F1, F2 and F3 that cover T ′

e = Te \ {uv, uw, vw}.

- F ′
i \ {u, x} ⊂ Fi

- ua ∈ Fi if a 6= x and u′a ∈ F ′
i

- xa ∈ Fi if a 6= u, v or y, and u′a ∈ F ′
i

- vx ∈ F1

- yx ∈ F2

- ux ∈ F3

These forests verify the conditions of the theorem for the triangulation Te and
the triplet (u, v, w).

- The edges incident to u ,v or w are clearly well partitionned.
- The graph F1 is a forest. If F1 had a cycle, this cycle should either pass

through vx or not. In the first case, this would imply that there is a path
from u′ to v in F ′

1 ⊂ T ′
m. In the second case, this would imply that there

is a cycle in F ′
1 ⊂ T ′

m. Both cases are impossible since the partition of T ′
m

verifies the theorem.
Similarly the vertices u ,v and w are in distinct connected components of
F1. If there was a path in F1 linking two of these vertices this path should
either pass through vx or not. In the first case, this would imply that there
is either a path from u′ to w or a cycle (passing through u′) in F ′

1 ⊂ T ′
m. In
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the second case, this would imply that there is a path in F ′
1 ⊂ T ′

m linking
two of the vertices u′, v or w. Both cases are impossible since the partition
of T ′

m verifies the theorem.

- The graph F2 is a forest. If F2 had a cycle, this cycle should either pass
through yx or not. In the first case, this would imply that there is a path
from u′ to y in F ′

2 ⊂ T ′
m. In the second case, this would imply that there

is a cycle in F ′
2 ⊂ T ′

m. Both cases are impossible since the partition of T ′
m

verifies the theorem.
Similarly the vertices u ,v and w are in distinct connected components of
F2. If there was a path in F2 linking two of these vertices this path should
either pass through yx or not. In the first case, this would imply that there
is either a path from u′ to v or w, or a cycle (passing through u′) in F ′

2 ⊂ T ′
m.

In the second case, this would imply that there is a path in F ′
2 ⊂ T ′

m linking
two of the vertices u′, v or w. Both cases are impossible since the partition
of T ′

m verifies the theorem.
Furthermore, since there is no vertex inside (u, v, x) and no edge incident
to u in F2, the connected component of F2 containing u is as expected.

- The graph F3 is a forest. If F3 had a cycle, this cycle should either pass
through ux or not. In the first case, this would imply that there is a cycle
(passing through u′) in F ′

3 ⊂ T ′
m. In the second case, this would imply that

there is a cycle in F ′
3 ⊂ T ′

m. Both cases are impossible since the partition of
T ′

m verifies the theorem.
Similarly the vertices u ,v and w are in distinct connected components of
F3. If there was a path in F3 linking two of these vertices this path should
either pass through ux or not. In the first case, this would imply that there
is a path from u′ to v or w in F ′

3 ⊂ T ′
m. In the second case, this would imply

that there is a path in F ′
3 ⊂ T ′

m linking two of the vertices u′, v or w. Both
cases are impossible since the partition of T ′

m verifies the theorem.
Furthermore note that every vertex a ∈ V (Te)\{u, x} has as many incident
edges in F3 as in F ′

3. Since u and x have respectively one and two incident
edges in F3, F3 has maximum degree at most four.

For the rest of the proof it is important to remember that the theorem holds
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Fig. 5. From Te, Tl and Tr to T .

for Te in such way that x has degree two in F3.

The graph T ′ is the disjoint union of T ′
e, T ′

l = Tl\{uv, ux, vx}, and T ′
r =

Tr\{ux, uy, xy}. We construct an edge-partition of T ′ into three forest F1, F2,
and F3, by partitionning each of T ′

e, T ′
l , and T ′

r into three forests. To do this,
we apply the induction hypothesis to Tl according to the triplet (x, v, u). This
means that the edges incident to v (resp. u) in T ′

l belongs to F1 (resp. F2).
Similarly, we apply the induction hypothesis to Tr according to the triplet
(x, u, y). This means that the edges incident to u (resp. y) in T ′

l belongs to F1

(resp. F2). We have seen that the induction hypothesis holds for Te according
to the triplet (u, v, w), and we consider such partition in which the vertex x
has degree two in F3. This yelds to a partition of T ′ into the three forests
described in the theorem.

- The edges incident to u ,v or w are clearly well partitionned.
- The graph Fi, for any 1 ≤ i ≤ 3, is a forest. If Fi would contain a cycle,

since there is no such cycle in T ′
e, T ′

l , or T ′
r, this cycle should pass through Tl

or Tr. This would imply that there is a path in Fi∩T ′
l or Fi∩T ′

r linking two
of the vertices u, v, x, and y, which is impossible according to the partitions
of T ′

l or T ′
r.

- The graph Fi, for any 1 ≤ i ≤ 3, does not contain any path linking two of
the vertices u, v, and w. If Fi would contain such path, since there is no
such path in T ′

e, this path should pass through T ′
l or T ′

r from u to v, x or y,
or from v to x, which is impossible according to the partitions of T ′

l or T ′
r.

- Since the vertex u has no incident edges in F2 ∩ T ′
e and F2 ∩ T ′

r, and since
there is no path from u to v or x in F2 ∩ T ′

l , the connected component of
F2 containing u only contains u ans some vertices inside (u, v, x).

- The graph F3 is such that, ∆(F3) ≤ 4. Indeed, x has at most 2, 1, and 1
incident edges in F2 ∩ T ′

e, F2 ∩ T ′
l , and F2 ∩ T ′

r; and the other vertices have
as many incident edges in F2 as in F2 ∩ T ′

e, F2 ∩ T ′
l , or F2 ∩ T ′

r.

This complete the proof of the theorem.
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3 Planar graphs of bounded girth

The results in [1, 2, 5, 6] are all proved using discharging methods. We use
this method for proving Theorem 2 and Theorem 3. This method consists
roughly in showing that a counter-example H minimizing |V (H)| would be
too “dense” (i.e. has too many edges per vertex) to verify Euler’s Formula.
This formula says that any connected planar graph G with n vertices, m edges
and f faces verifies m = n + f − 2. Let us define a k-vertex (resp. ≤k-vertex
and ≥k-vertex) as a vertex of degree k (resp. at most k and at least k).

3.1 Planar graphs with girth g ≥ 6

Let H be a counter-example of Theorem 2 minimizing |V (H)|.

Lemma 5 The counter-example H:

(1) is connected,
(2) has minimum degree δ(H) ≥ 2, and
(3) does not contain any edge uv such that deg(u) = 2 and deg(v) ≤ 5.

PROOF. (1) If H was disconnected, one of its connected component would
be a smaller counter-example. (2) If H had a 1-vertex u, the graph H \ {u}
would have girth g ≥ 6 and would have an F (∞, 4)-covering by F1 and F2.
Adding the incident edge of u in F1 we would obtain an F (∞, 4)-covering of H ,
which is impossible. (3) Consider that H had an edge uv such that deg(u) = 2
and deg(v) ≤ 5. Since H is minimal, the graph H\{u} has an F (∞, 4)-covering
by F1 and F2. We extend those forests to obtain an F (∞, 4)-covering of H .
Let w be the second neighbor of u. If all the edges incident to v in H\{u} are
in F2 then let F ′

1 = F1 ∪ {wu, uv} and F ′
2 = F2. Else, v has degree at most 3

in F2 and let F ′
1 = F1 ∪{wu} and F ′

2 = F2 ∪{uv}. In both cases the forests F ′
1

and F ′
2 cover H , and ∆(F ′

2) ≤ 4. Since H is not F (∞, 4)-coverable we have a
contradiction and H does not contain such edge uv.

We now use a discharging procedure on the vertices of H in order to estimate
2|E(H)|/|V (H)|. Let the intitial charge of the vertices be equal to their degree,
ch(v) = deg(v) for all v ∈ V (H). Then, every ≥6-vertex gives charge 1

2
to its

neigbhors of degree 2. After this procedure the total charge of the graph is
preserved and all the vertices have a final charge ch∗(v) ≥ 3. Indeed :

• If deg(v) = 2, then v receives 1
2

from each of its neighbors (Lemma 5.(3))
and ch∗(v) = 2 + 21

2
= 3.
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• If 3 ≤ deg(v) ≤ 5, then v does not give any charge, so ch∗(v) ≥ 3.
• If 6 ≤ deg(v), then v gives at most 1

2
to each of its neigbors, so ch∗(v) ≥

6 − 61
2

= 3.

So we have that 2|E(H)| =
∑

v∈V (H) deg(v) =
∑

v∈V (H) ch∗(v) ≥ 3|V (H)|. Let
n, m and f denote respectively the number of vertices, edges and faces in
H . We know that 2m ≥ 3n and since H has girth at least 6, each face is
bounded by at least 6 edges and 2m ≥ 6f . Combining these two equations we
obtain that m ≥ n + f contradicting Euler’s Formula. So H does not exist
and Theorem 2 holds.

3.2 Planar graphs with girth g ≥ 7

Let H be a counter-example of Theorem 3 minimizing |V (H)|.

Lemma 6 The counter-example H:

(1) is connected,
(2) has minimum degree δ(H) ≥ 2,
(3) does not contain any edge uv such that deg(u) = 2 and deg(v) ≤ 3, and
(4) does not contain any 3-vertex u adjacent to three 3-vertices.

PROOF. (1) If H was disconnected, one of its connected component would
be a smaller counter-example. (2) If H had a 1-vertex u, the graph H \ {u}
would have girth g ≥ 6 and would have an F (∞, 4)-covering by F1 and F2.
Adding the incident edge of u in F1 we would obtain an F (∞, 4)-covering of
H , which is impossible.

For the cases (3) and (4) we consider the graph H\{u}. By minimality of
|V (H)|, the graph H\{u} has an F (∞, 4)-covering by F1 and F2. We consider
a pair (F1, F2) maximizing the number of edges in F1. This implies that every
2-vertex in H\{u} has at most one incident edge in F2. In case (3), let w be the
second neighbor of u. Since v has degree at most one in F2, the forests F1∪{uw}
and F2∪{uv} would be an F (∞, 4)-covering of H , which is impossible. In case
(4), let v1, v2 and v3 be the neighbors of u. Since v1, v2 and v3 have degree at
most two in H\{u}, they have degree at most one in F2. Since each connected
component of F2 contains at most two ≤1-vertices, two of the vertices v1, v2

and v3 are in distinct connected components of F2, say v1 and v2. In this case,
the forests F1 ∪ {uv3} and F2 ∪ {uv1, uv2} would be an F (∞, 4)-covering of
H , which is impossible.

Since δ(H) ≥ 2, we distinguish 6 types of edges in H :

8



(a) For every 2-vertex v, let one of its incident edges be an a-edge and the other
one be an a-edge.

Let us distinguish 2 types of 3-vertices. An isolated 3-vertex has no 3-vertex
in its neighborhood. The rest of the 3-vertices are linked 3-vertices, this means
adjacent to at least one 3-vertex.

(b) For every isolated 3-vertex v, let one of its incident edges be a b-edge and
the two remaining ones be b-edges.

(c) We consider the subgraph K of H induced by the linked 3-vertices. This
subgraph K is such that ∆(K) ≤ 2 (by Lemma 6.(4)) and δ(K) ≥ 1 (by
definition of linked 3-vertices). Let C ⊆ E(K) be the smallest set of edges
in K such that all the linked 3-vertices have an incident edge in C. The
minimality of |C| implies that in each connected component of K (a cycle
or a path), there is at most one vertex with two incident edges in C. The
edges of C are the c-edges and all the edges of H (not just K) adjacent to
a c-edge are c-edges.

It is clear given Lemma 6 that the sets of a-, b-, c-, a-, b- and c-edges, respec-
tively A, B, C, A, B and C, are pairwise disjoint. Now we transform H into
another graph H ′ by contracting the a-, b- and c-edges. Since every 2-vertex
(resp. 3-vertex) is adjacent to a ≥4-vertex (resp. ≥3-vertex) by an a-edge (resp.
b- or c-edge), and since it has at most one (resp. two) incident a-edge (resp.
b- or c-edges), there is no more vertices of degree less than 4 in H ′.

Lemma 7 The graph H ′ is connected and after the transformation every cycle
C in H becomes a cycle C′ in H ′.

(1) If C has length 7 and if all its vertices are 3-vertices, then the cycle C′ has
length 3 and contains a 5-vertex.

(2) Else, the cycle C′ has length l(C′) ≥ 4.

PROOF. It is clear that, by contracting edges, a graph remains connected.
For the cycles we distinguish the two cases. In case (1), since C has 4 c-
edges and 3 c-edges, the cycle C′ has length 3 and the two consecutive c-edges
produce a 5-vertex. In case (2), the cycle C contains at least one ≥4-vertex
(case (2.1)) or contains only 3-vertices and has length l ≥ 8 (case(2.2)).

In case (2.1), consider any path P = (v0, v1, . . . , vk) ⊆ C linking two ≥4-
vertices, v0 and vk, and going through ≤3-vertices. Actually this path may be
a cycle if v0 = vk.

Claim 8 There is at least as many a-edges (resp. b-edges and c-edges) in P
than a-edges (resp. b-edges and c-edges).

9



Indeed :

(-) If P is just an edge linking two ≥4-vertices, then this edge is not an a-, b-
or c-edge.

(a) If P goes through a 2-vertex, then P has length 2 and contains exactly one
a-edge and one a-edge.

(b) If P goes through an isolated 3-vertex, then P has length 2 and contains at
most one b-edge and at least one b-edge.

(c) If P goes through (k− 1) 3-vertices, then P contains
⌈

k−1
2

⌉

c-edges and the

remaining k −
⌈

k−1
2

⌉

edges are c-edges.

This claim implies that at most half of the edges in C are contracted. Since
l(C) ≥ 7 this implies that C′ has length l′ ≥ 4.

In case (2.2), the cycle C has length l ≥ 8 and contains
⌈

l

2

⌉

c-edges and the

remaining
⌊

l

2

⌋

edges are c-edges Since
⌊

l

2

⌋

≥ 4 when l ≥ 8, we have l(C′) ≥ 4
and the lemma holds.

Let n4 and n≥5 be the number of 4-vertices and ≥5-vertices in H ′. Let c3 be
the number of cycles of length 3 in H ′. Note that all the cycles of length 3 in
H ′ contain a 5-vertex. Since these cycles of length 3 in H ′ come from cycles of
3-vertices in H , Lemma 6.(4) implies that these cycles of length 3 are vertex
disjoint. This implies that n≥5 ≥ c3. Let f3 and f≥4 be the number of faces of
length respectively l = 3 and l ≥ 4 in H ′. Since c3 ≥ f3, we have n≥5 ≥ f3.
Now, let n, m and f be the number of vertices, edges and faces in H ′. It is
clear that n = n4 +n≥5 and f = f3 +f≥4. Since the edges have two end points
and are incident to at most two faces, we have :

2m ≥ 4n4 + 5n≥5 = 4n + n≥5 ≥ 4n + f3

2m ≥ 3f3 + 4f≥4 = 4f − f3

Suming these two equations we obtain that m ≥ n + f contradicting Euler’s
Formula. So H ′ and H do not exist and Theorem 3 holds.

4 Perspectives

In [3] Colin de Verdière introduced a graph parameter µ. For a graph G this
parameter is defined by spectral properties of matrices associated to G. This
parameter is such that :

- µ(G) ≤ 1 iff G is a forest of paths.
- µ(G) ≤ 2 iff G is an outerplanar graph.

10



- µ(G) ≤ 3 iff G is a planar graph.

Since forests of paths, outerplanar graphs [2], and planar graphs are respec-
tively F (2)-, F (∞, 3)-, and F (∞,∞, 4)-coverable we conjecture the following.

Conjecture 9 Every graph G has an edge partition into µ(G) forests, one
having maximum degree ∆ ≤ µ(G) + 1.

A weaker result would be that every graph G is (µ(G)−1, µ(G)+1)-coverable.
This result would be sharp, indeed:

Theorem 10 For any integer k ≥ 1 there is a graph G with µ(G) = k that is
not (k − 1, k)-coverable.

PROOF. It is know for k ≤ 3, so consider that k ≥ 4. For any pair of positive
integers (k, l) with k ≥ 4 and l ≥ 0 we define the graph Gl

k. Let G0
k = Kk+1.

For l > 0 we construct the graph Gl
k from Gl−1

k by adding, for each copy of
Kk in Gl−1

k that contain a k-vertex a new vertex adjacent to the vertices in
this copy of Kk. According to [7] we have µ(Gl

k) = k for any k and l.

Claim 11 For any l ≥ 1, the graph Gl
k has (k + 1)kl−1 k-vertices that form

an independant set and (k + 1)
(

1 +
∑

l−2
i=0 ki

)

>k-vertices. Furthermore, this

graph has k(k+1)
2

+(k+1)
(

∑

l−1
i=1 ki

)

edges linking two >k-vertices and (k+1)kl

edges linking a k-vertex and a >k-vertex.

Indeed, it is clear for l = 1 and for the induction we just note that each of the
(k + 1)kl−2 k-vertices in Gl−1

k belongs to k copies of Kk. Since these vertices
form an independant set there is k × (k + 1)kl−2 copies of Kk in Gl−1

k that
contain a vertex of degree k. So Gl

k has (k + 1)kl−1 new vertices of degree k
and all the vertices that were in Gl−1

k have now degree more than k, and there

are (k + 1)
(

1 +
∑

l−2
i=0 ki

)

such vertices. Furthermore, since every k-vertex of

Gl
k is incident to >k-vertices, these k-vertices clearly form an independant set.

For the number of edges, it is clear that from Gl−1
k to Gl

k we add k new edges
per new vertex (of degree k) and that every edge present in Gl−1

k
link two

>k-vertices in Gl
k.

We consider now the following theorem of Balogh et al. [2].

Theorem 12 For every (t, D)-coverable graph G and any two disjoint subsets
A and B of V (G),

ft(A) + e(A, B) ≤ D|A| + t(|A| + |B| − 1)

where e(X, Y ) denotes the number of edges of G with one end in X and the
other in Y , and where ft(A) = e(A, A) if e(A, A) ≤ t(|A| − 1), and ft(A) =

11



2e(A, A) − t(|A| − 1) otherwise.

For any k ≥ 4 consider the graph G3
k, let A be the set of >k-vertices and let B

be the set of k-vertices. This theorem says that if G3
k was (k − 1, k)-coverable

we should have

fk−1(A) + e(A, B) ≤ k|A| + (k − 1)(|A| + |B| − 1)

Note that according to Claim 11 |A| = (k + 1)(k + 2) and e(A, A) = k(k +
1)(k+3/2), so we have e(A, A) > (k−1)(|A|−1). This implies that fk−1(A) =
2e(A, A)−(k−1)(|A|−1) = 1

2
(k2+7k+2). Thus if G3

k was (k−1, k)-coverable
we should have

1

2
(k2 + 7k + 2) + (k + 1)k3 ≤ k(k + 1)(k + 2)+ (k− 1)((k + 1)(2 + k + k2)− 1)

, which is equivalent to

2 + 6k − 6k2 − k3 + k4 ≤ 0

, and which does not hold for k ≥ 4. Thus G3
k is not (k − 1, k)-coverable for

k ≥ 4 and this complete the proof of the theorem.

Another interesting question concerns the consequences of Theorem 1. Since
the forests of maximum degree four are coverable by two linear forests or by
two star forests with maximum degree three we have the following corollary.

Corollary 13 Planar graphs are coverable by :

- 6 star forests, two of them having maximum degree at most three.
- 2 forests and 2 linear forests.

Planar graphs with girth g ≥ 6 are coverable by :

- 4 star forests, two of them having maximum degree at most three.
- 1 forest and 2 linear forests.

We have seen that Theorem 1 is optimal, we wonder if it is also the case for
Theorem 2, Theorem 3 and for this corollary.
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