TD 5 – Morphismes

Exercice 1.

- **1. i.** Montrer que pour tout n > 1, $n\mathbb{Z}$ est isomorphe à \mathbb{Z} en tant que groupes.
 - ii. Pourquoi n'a-t-on pas d'isomorphismes d'anneaux?
- **2.** Soit $A = \mathbb{Z}/6\mathbb{Z}$ et $I = \{[0]_6, [3]_6\}$.
 - i. Montrer que *I* est un idéal de *A*.
 - ii. Montrer que A/I est isomorphe à $\mathbb{Z}/3\mathbb{Z}$.
- **3.** Soit m et n premiers entre eux, et $\Phi : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ définie par $\Phi(\alpha) = m \cdot \alpha$.
 - i. Est-ce un morphisme de groupes ? Et d'anneaux ?
 - ii. Montrer que c'est un automorphisme.
- **4.** Soit m et $n \in \mathbb{Z}_{>0}$, g = PGCD(m, n) et h = PPCM(m, n) = mn/g. Montrer que $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}/g\mathbb{Z} \times \mathbb{Z}/h\mathbb{Z}$. Indication. Considérer les décompositions en facteurs premiers des entiers m, n, g et h.

Exercice 2. L'anneau $\mathbb{Z}[\sqrt{2}]$

Soit $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}.$

- **1.** Montrer que $\mathbb{Z}[\sqrt{2}]$ un anneau.
- **2.** On considère la fonction f de $\mathbb{Z}[\sqrt{2}]$ dans lui-même qui à $a + b\sqrt{2}$ associe $a b\sqrt{2}$. Montrer que f est un automorphisme de $\mathbb{Z}[\sqrt{2}]$.
- **3.** Pour $x \in \mathbb{Z}[\sqrt{2}]$, on pose $N(x) = x \cdot f(x)$. Montrer que pour tout $x, y \in \mathbb{Z}[\sqrt{2}]$, $N(x) \in \mathbb{Z}$ et N(xy) = N(x)N y.
- **4.** Montrer que x est inversible dans $\mathbb{Z}[\sqrt{2}]$ si et seulement si $N(x) = \pm 1$. Donner des exemples d'éléments inversibles dans $\mathbb{Z}[\sqrt{2}]$.

Exercice 3. Anneau $\mathbb{Q}^{(m)}$

Soit $m \in \mathbb{Z}_{>0}$ et $\mathbb{Q}^{(m)}$ l'ensemble des nombres rationnels a/b où PGCD(b,m)=1.

- **1.** Montrer que $\mathbb{Q}^{(m)}$ est un anneau, inclus dans \mathbb{Q} .
- **2.** Caractériser les inversibles de $\mathbb{Q}^{(m)}$.
- **3.** On définit $\Phi: \mathbb{Q}^{(m)} \to \mathbb{Z}/m\mathbb{Z}$ par $\Phi(a/b) = [a]_m [b]_m^{-1}$.
 - i. Montrer que Φ est bien définie, c'est-à-dire que si a/b = c/d, alors $[a]_m[b]_m^{-1} = [c]_m[d]_m^{-1}$.
 - ii. Montrer que Φ est un morphisme d'anneaux.
 - iii. Calculer l'image et le noyau de Φ .