5. Incalculabilité *explicite*

Bruno Grenet

Université Grenoble Alpes – IM²AG
L3 Informatique
UE Modèles de calcul – Machines de Turing

Introduction

Rappel

- L'ensemble des algorithmes est dénombrable
- L'ensemble des fonctions est indénombrable
 - ⇒ il existe des fonctions non calculables

Certes, mais où?

- La preuve est *non constructive* : ne fournit aucune fonction non calculable
- ▶ Une construction possible : $f: \Sigma^* \to \{0,1\}$ définie *aléatoirement*
 - ▶ pour tout $w \in \Sigma^*$, on tire uniformément la valeur $f(w) \in \{0,1\}$
 - on peut montrer que f est incalculable avec probabilité 1

Objectifs

- Construire des fonctions explicites non calculables
- ▶ Réfléchir sur la distinction décidable / reconnaissable

Algorithmes, fonctions, langages, problèmes

$$\Sigma = \{0,1\}$$

Vocabulaire (rappel)

- Fonction (partielle) ou problème $f: \Sigma^* \to \Sigma^*$
- ▶ Langage : $L \subset \Sigma^*$
- ► Algorithme :
 - soit définition informelle et intuitive
 - soit objet dans une formalisation possible

machine de Turing, λ -calcul, ...

Problèmes de décision et langages

- ▶ Problème de décision : fonction $totale f : \Sigma^* \to \{0,1\}$
- Équivalent à un langage : $f \leftrightarrow L_f = \{w : f(w) = 1\}$

Dans la suite

- On ne s'intéresse qu'à des problèmes de décision/langages
 - On utilise les deux formalismes en fonction de ce qui est le plus pratique
 - Machines de Turing avec un état « oui »

Table des matières

1. Machine universelle

2. Le problème de l'arrê

3. Langages non reconnaissables

4. Un peu de recul

Programmes et données

Un programme est une donnée comme un autre!

- Programme dans un langage donné : fichier texte
- Avec un interpréteur : exécution du programme contenu dans le fichier
- Mais aussi: programmes qui modifient d'autres programmes

Machines de Turing

- ▶ Rappel : codage $\langle \mathcal{M} \rangle \in \{0,1\}^*$ d'une machine
- lacktriangle Une machine ${\cal N}$ peut prendre en entrée le code d'une machine $\langle {\cal M}
 angle$

Autres formalisations

- Exactement pareil avec des machines RAM, des automates cellulaires, ...
- Dans toute formalisation d'algorithmes, un algorithme peut prendre en entrée la description d'un algorithme!

Machine universelle

Définition

Une machine de Turing \mathcal{U} est dite universelle si sur l'entrée $(\mathcal{M}, x), \mathcal{U}$ simule le *comportement* de \mathcal{M} sur l'entrée x:

- \triangleright *U* termine sur l'entrée $\langle \mathcal{M}, x \rangle$ si et seulement si \mathcal{M} termine sur l'entrée x
- Si \mathcal{U} termine, elle renvoie la même valeur que \mathcal{M}

Théorème fondamental

Il existe une machine de Turing universelle

Idée de la preuve

- Simular une transition
$$\mathcal{E}(q, a) = (q', b, c)$$

-> Ecrire la sur le ruban 4 et déplace la tête, remplace q pa q' sur le ruba 3.

Utilités théorique et pratique

Théorie

- Dans tout modèle Turing-complet, il existe un algorithme universel
 - ▶ Un algorithme universel permet de calculer toute fonction calculable
 - ► Un algorithme universel peut donc être dit Turing-complet
 - Exemple : le *jeu de la vie* est Turing-complet
- Un modèle est Turing-complet s'il peut simuler une machine universelle
- ▶ Une machine $\mathcal N$ peut prendre $\langle \mathcal M \rangle$ en entrée *et simuler* $\langle \mathcal M \rangle$ *sur l'entrée de son choix*

Pratique

- ► Tout langage de programmation admet un programme universel
 - interpréteur / compilateur
 - écrit dans le langage lui-même
- ► En quel langage est écrit GCC ?

Dans la suite de ce cours

Algorithme = machine de Turing (ou autre...)

- Formalisation implicite
- ► Description des algorithmes en *pseudo-code*
 - traduction possible en machine de Turing ou autre formalisation
 - **>** pseudo-code extrêmement simple \rightarrow pas de triche!
- Pour un algorithme A, $\langle A \rangle$ est sa description binaire

Conséquences de la machine universelle

- Étant donné $\langle A \rangle$ et w, un algorithme peut simuler A(w)
- Étant donné $\langle A \rangle$, un algorithme peut calculer une variante $\langle A' \rangle$ de $\langle A \rangle$
- Exemples :
 - ightharpoonup si A(w) = 1, renvoyer 0; si A(w) = 0, rentrer dans une boucle infinie
 - étant donné $\langle A \rangle$ et w, calculer $\langle A_w \rangle$ qui ignore son entrée et exécute A(w)
- → Difficultés (éventuellement) techniques mais pas conceptuelles

Table des matières

1. Machine universelle

2. Le problème de l'arrêt

3. Langages non reconnaissable

4. Un peu de recu

Définition

Problème de l'arrêt (informel)

Entrées : un algorithme *A* une entrée *w*

Sortie: 1 si A termine sur l'entrée w

0 si A ne termine pas sur l'entrée w

Formalisations

Fonction $H: \{0,1\}^* \to \{0,1\}$ $\langle A, w \rangle \mapsto \begin{cases} 1 & \text{si } A \text{ termine sur l'entrée } w \\ 0 & \text{sinon} \end{cases}$

► Langage $K = \{\langle A, w \rangle : A \text{ termine sur l'entrée } w\} \subset \{0, 1\}^*$

Incalculabilité

Théorème de l'arrêt

Le problème de l'arrêt n'est pas calculable

Preuve

On suppose qu'il cuite makes H by H((A, u)) = {1 si A(w) l

- On construit D: ou l'entrée (A),

1. Simle H((A, A>)

Sinon ronvoyer 1

- Que fait D((D)? -> S: H((D,D))=1, D(D)) 1: impossible
-> S: H((D))=0, D((D)) 1: impossible

D'autres problèmes incalculables

Corollaire

Les langages suivants sont indécidables :

- $\{\langle A \rangle : A \text{ termine sur l'entrée vide} \} \$
- $\{ \langle A \rangle : A \text{ termine sur au moins une entrée} \}$
- $\{\langle A \rangle : A \text{ termine sur toute entrée} \}$
- $\{\langle A \rangle : A \text{ renvoie toujours 1} \}$

versions fonction

est-ce que $A(\varepsilon) \downarrow ?$ est-ce qu'il existe x t.q. $A(x) \downarrow ?$

est-ce que $A(x) \downarrow$ pour tout x? est-ce que A(x) = 1 pour tout x?

Preuve du premier

- Supp. il existe u also T qui décide (x).
- On va utiliser T pour résondre le pl de l'arrêt.
- Or construit H: Su l'atric (A, w>
 1. Calculu (Aw>)
 2. Renvoyer T((Aw>)

 $H(\langle A, \omega \rangle) = T(\langle A_{\omega} \rangle)$ $= \begin{cases} A & \text{if } A_{\omega}() \downarrow \text{ and } A(\omega) \downarrow \\ 0 & \text{if } A_{\omega}() \end{cases}$

Généralisation : théorème de Rice

Définition

- Propriété non triviale des langages reconnaissables :
 - ightharpoonup sous-ensemble $\mathcal P$ des langages reconnaissables
 - $ightharpoonup \mathcal{P}$ n'est ni vide, ni l'ensemble de tous les langages reconnaissables
 - ightharpoonup (Intuitivement, \mathcal{P} est l'ensemble des langages reconnaissables *qui satisfont la propriété*)

Exemple

- « Le langage ne contient que des palindromes » :
 - $\mathcal{P} = \{L \in \{0,1\}^* : \forall w \in L, w = \overline{w}\} \text{ où } \overline{w} \text{ est le miroir de } w$
 - \triangleright \mathcal{P} est non triviale car $L = \{w : w = \overleftarrow{w}\} \in \mathcal{P}$ mais $\{0,1\}^* \notin \mathcal{P}$

Théorème de Rice

Pour toute propriété non triviale \mathcal{P} des langages reconnaissables, $\{\langle A \rangle : L(A) \in \mathcal{P}\}$ est indécidable

Conséquences

- \triangleright Aucun algorithme ne peut décider si L(A) ne contient que des palindromes
- ► Tous les langages de la page précédente sont indécidables!

Preuve du théorème de Rice On suppose qu'il existe R ty $R(\langle A \rangle) = \begin{cases} 1 & \text{si } L(A) \in P \\ 0 & \text{sinon} \end{cases}$ Cas 1 . On suppose \$ FP, at on choice: A+ EP · Pan A et ω , on définit $A_{\omega}(y)$: $\begin{cases} 1.8 \text{ inde } A(\omega) \\ 2.8 \text{ inde } A^{\dagger}(y) \end{cases}$ Alors $L(A_{\omega}) = \begin{cases} L(A^{\dagger}) \in P \text{ sinon} \end{cases}$ - On construit H: see l'entrée (A, w), \ H(\lambda, w) = R(\lambda, w) = \ \(\lambda \text{ inon} \)

1. Construit \lambda \text{ w} \\
2. Appelle R see (4 w) \\
2. Appelle R see (4 w)

Contradiction can H me put pas existen.

Preuve du théorème de Rice

-
$$H(\langle A, \omega \rangle) = 1$$
. Colcule $\langle A\omega \rangle$

2. Sinle R((Aux) 3 Renvoie le contraire de P

 $H((A_{i\omega})) = 1 - R((A_{i\omega})) = \begin{cases} 0 & \text{sin } L(A_{i\omega}) \in P \\ 1 & \text{sin } \text{sin } \end{cases} = \begin{cases} 0 & \text{sin } A(\omega) \text{ } \end{cases}$ Contradiction.

Bilan

Théorèmes de l'arrêt et de Rice

- ► Aucun algorithme ne peut décider si une machine de Turing s'arrête sur une entrée w
- ► Aucune propriété sur le langage reconnu par une machine de Turing n'est décidable
 - Implique : aucune propriété sur la fonction calculée n'est décidable

Attention!

- On sait décider des propriétés sur la machine de Turing elle-même!
 - « la machine possède 12 états »
 - « sur l'entrée w, la machine effectue 100 étapes de calcul »

Généralisation

- ► Théorèmes valables pour toute formalisation des algorithmes
- Version langage de programmation :
 - on ne sait *rien* décider sur ce que fait un programme donné
 - on sait décider des caractéristiques du programme lui-même

Table des matières

1. Machine universelle

2. Le problème de l'arrêt

3. Langages non reconnaissables

4. Un peu de recu

Petit rappel

Cours précédent

Puisque l'ensemble des algorithmes est dénombrable,

- ▶ il existe des langages non reconnaissables
- les il existe des langages non décidables
- ▶ il existe des fonctions non calculables

Partie précédente de ce cours

- Le problème de l'arrêt *H* est non calculable / le langage *K* est indécidable
- ightharpoonup Toutes les propriétés non triviales de L(A) sont indécidables

Et les langages non reconnaissables alors ? Où sont-ils ?

Un premier résultat positif

Proposition

Le langage $K = \{ \langle A, w \rangle : A \text{ termine sur l'entrée } w \}$ est reconnaissable

Preuve

Complémentaire et co-reconnaissable

Définition

- Complémentaire d'un langage $L \subset \{0,1\}^* : \overline{L} = \{w : w \notin L\}$
- Un langage est co-reconnaissable si son complémentaire est reconnaissable
 - Reconnaissable : il existe un algorithme tel que $A(w) = 1 \iff w \in L$
 - Co-reconnaissable : il existe un algorithme tel que $A(w) = 1 \iff w \notin L$

Exemple

- ► Problème de l'arrêt :
 - $K = \{\langle A, w \rangle : A \text{ termine sur l'entrée } w\}$
 - $\overline{K} = \{\langle A, w \rangle : A \text{ boucle sur l'entrée } w\}$
 - \blacktriangleright *K* est reconnaissable, donc \overline{K} est co-reconnaissable

Version « problème de décision »

► Complémentaire de $f: \{0,1\}^* \to \{0,1\}:$ $\overline{f}: \{0,1\}^* \to \{0,1\}$

$$w \mapsto \begin{cases} 1 & \text{si } f(w) = 0 \\ 0 & \text{si } f(w) = 1 \end{cases}$$

Un deuxième résultat positif

Théorème

Un langage est décidable si et seulement s'il est reconnaissable et co-reconnaissable

Preuve

Isée On viende At et A en parallèle et on répond sis que l'e répond 1.

-> Forcévet l'en des dux va répondre 1

-> Simber en parallèle: exéculer ne élapse de At, pris ne élapse se A, pris ...

Une conséquence négative

Corollaire

Le langage $\overline{K} = \{ \langle A, w \rangle : A \text{ boucle sur l'entrée } w \}$ n'est pas reconnaissable

Preuve

- ▶ Supposons \overline{K} est reconnaissable : alors K est co-reconnaissable
- ► Comme *K* est reconnaissable, il est donc décidable
- ► Contradiction : \overline{K} ne peut pas être reconnaissable

Généralisation

ightharpoonup Si L est reconnaissable mais pas décidable, \overline{L} n'est pas reconnaissable

OK mais ni reconnaissable ni co-reconnaissable?

Qu'est-ce qu'on a pour l'instant?

- ▶ Problème de l'arrêt (langage *K*, fonction *H*) : reconnaissable / non décidable
- ightharpoonup Complémentaire \overline{K} , \overline{H} : co-reconnaissable / non décidable
- ► Il existe des langages ni reconnaissables, ni co-reconnaissables
 - Ensemble des algorithmes dénombrable
 - Ensemble des langages indénombrable

Peut-on construire un langage ni reconnaissable, ni co-reconnaissable ?

Théorème

Le langage $\{\langle A, w, 1 \rangle : A(w) \downarrow\} \cup \{\langle A, w, 0 \rangle : A(w) \uparrow\}$ n'est ni reconnaissable ni co-reconnaissable

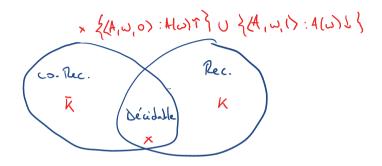
Preuve du théorème

1. Non reconnaisable: supp qu'il unite
$$R$$
 to $R(A, \omega, E) = 1 = \begin{cases} A(\omega)b & \text{et } E = 1 \\ A(\omega)\hat{r} & \text{ot } E = 0 \end{cases}$
Soit $\overline{H}(A,\omega)$ qui simble $R(A,\omega,o)$.

2. Non co-reconnaissable: iden a simbart R((A, w, 1))

Bilan

Un dessin



Un théorème de Rice?

- ► Il existe une théorème similaire pour les langages non reconnaissables
 - ► Théorème de Rice-McNaughton-Myhill-Shapiro
 - ► Trop technique pour ce cours

Table des matières

1. Machine universelle

2. Le problème de l'arrê

3. Langages non reconnaissables

4. Un peu de recul

Reconnaissable = récursivement énumérable

Définition

- ▶ Récursivement énumérable: il existe un algorithme qui énumère tous les mots de L
 - l'énumération dure un temps infini mais il ne s'écoule qu'un temps fini entre deux mots
 - ► chaque mot peut être affiché plusieurs fois, et aucun ordre d'énumération n'est fixé
- ► Formalisation avec une machine de Turing avec un *ruban d'affichage*

Théorème

Un langage est récursivement énumérable si et seulement s'il est reconnaissable

Idée de la preuve

- Dirivial: on immère bous les mots jusqu'à boube su alei qu'mont.
- On émère bous les comples (x,t) ∈ E*xN das mondre quq.

Mialgo per la chaque compte on simile (R(x) pendant t'etapes. Si R(x)=1 de reconstitue de la compte del la compte de la compte de la compte del la compte de la compte de la compte de la compte del la compte de la

Incalculabilité des fonctions

Cas des problèmes de décision

- ▶ $f: \Sigma^* \rightarrow \{0,1\}$ est
 - calculable s'il existe un algorithme A tel que A(w) = f(w) pour tout w
 - reconnaissable s'il existe un algorithme A tel que $A(w) = 1 \iff f(w) = 1$

Et pour les problèmes généraux ?

- ▶ $f: \Sigma^* \to \Sigma^*$ est
 - calculable s'il existe un algorithme A tel que A(w) = f(w) pour tout w
 - pas de notion équivalente à reconnaissable

Trouver des fonctions incalculables

- lackbox Dénombrable / indénombrable : il existe des fonctions $f:\Sigma^* o\Sigma^*$ non calculables
- Construction : similaire au cas des problèmes de décision
- Exemple : $f(\langle A \rangle) = taille$ du plus petit algorithme qui reconnaît $L(\langle A \rangle)$

Réductions

À quoi ressemblent les preuves de non-décidabilité/reconnaissabilité?

- Preuves par diagonalisation :
 - On suppose que *L* est décidé par un algorithme *A*
 - ightharpoonup On construit A' à partir de A qui est contradictoire
- Réduction à un problème indécidable / irreconnaissable :
 - ► Si *L* est décidable, alors *K* également
 - Comme *K* ne l'est pas, *L* ne peut pas l'être

Définition

- ▶ Une *réduction* (calculable, fonctionnelle) d'un langage L_1 à un langage L_2 est une fonction calculable $f: \Sigma^* \to \Sigma^*$ telle que $w \in L_1 \iff f(w) \in L_2$
- ▶ On dit que L_1 est *réductible à L*₂, noté $L_1 \leq_m L_2$

Propriétés

Soit L_1 , L_2 tel que $L_1 \leq_m L_2$

- ightharpoonup Si L_1 est indécidable, L_2 est indécidable
- ▶ Si L_1 est (co-)irreconnaissable, L_2 est (co-)irreconnaissable

Conclusion

Constructions explicites

- Langages non décidables / fonctions non calculables
- Langages non reconnaissables
- Langages ni reconnaissables ni co-reconnaissables

Théorèmes de l'arrêt et de Rice

- Aucun algorithme ne peut *expliquer* ce que fait un programme
- Attention!
 - Pas d'algorithme = pas de méthode générale qui marche à tous les coups
 - Mais un humain peut être capable de répondre pour certains programmes
 - D'ailleurs, un algorithme aussi!

Vérification

Incalculabilité hors des algorithmes / machines de Turing?

- Mêmes résultats quel que soit le modèle (automates cellulaires, λ -calcul, ...)
 - Même en croisant : une machine de Turing ne peut décider l'arrêt d'une machine RAM
- Et au delà : prochain cours !

Bonus 1: preuve directe d'un langage non-reconnaissable

Théorème

Le langage $D = \{\langle A \rangle : A \text{ n'accepte pas le mot } \langle A \rangle \}$ n'est pas reconnaissable

Preuve

Non traité en cours

Bonus 2: fonctions totales

Théorème

Le langage $T = \{\langle A \rangle : A \text{ s'arrête sur toute entrée} \}$ n'est ni reconnaissable, ni co-reconnaissable

Preuve

Non traité en cours