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Computation as a mathematical subject

Study of automated computation by means of abstraction

What makes a computational problem
inherently difficult?

When can we have efficient algorithms?
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The power of abstraction

Insights on problems Algorithmic techniques

Abstraction

Common descriptive ground? What is their potential?
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Graphs and algorithms

and logic

• Model of abstraction: Graphs

• Decision problems: answered by YES or NO

Given a graph G , does it have property X ?
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Meta-algorithmic perspective

Algorithmic meta-theorems (AMTs):
General mathematical conditions that allow the automatic derivation of efficient algorithms.

Conditions: logical (CL) & combinatorial (CC )

“every problem that is expressible by CL,
can be solved efficiently,
on instances restricted by CC .”

“Algorithms that give algorithms”
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How to describe a property (without Logic)

When can a graph be drawn on the plane without crossings?

Kuratowski-Pontryagin theorem (1930):

G is planar ⇐⇒ G does not contain a subdivision of K5 or K3,3 as a subgraph.

Wagner’s theorem (1937):

G is planar ⇐⇒ G does not contain K5 or K3,3 as a minor.
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Erdős’ conjecture:
Surface embeddability of graphs is characterized by a few obstructions.

(minor-minimal graphs not satisfying P)

“Wagner’s” conjecture:
Every minor-closed property is characterized by a few obstructions.

(maintained on minors)

5 / 47



How to describe a property (without Logic)

When can a graph be drawn on the plane without crossings?

Kuratowski-Pontryagin theorem (1930):

G is planar ⇐⇒ G does not contain K5 or K3,3 as a topological minor.

Wagner’s theorem (1937):

G is planar ⇐⇒ G does not contain K5 or K3,3 as a minor.
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Graph Minors series

A series of 23 papers by Robertson & Seymour [GM I, 1982],...,[GM XXIII, 2010].

Seminal results of the Graph Minors series:

1) Every minor-closed property is characterized by a few obstructions.

2) Testing whether H is a minor of G can be done in polynomial time.

Main algorithmic consequence of Graph Minors:
Every minor-closed property can be decided in polynomial time.

• Deciding a minor-closed property is reduced to minor testing!

Example: Planarity. Can G be drawn on the plane without crossings?
In other words: Does G contain K5 or K3,3 as a minor?

• The proof of 1) is non-constructive (does not give the obstructions)
and is not expected to be constructive (in general).
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Parameterized viewpoint

• Graph Minors: structure → algorithms

Parameterized Computation (branch of TCS & Mathematics):
Study of auxiliary measure conditioning the computational complexity of problems.

↓
parameter (k = value of the parameter)

Efficiency demand:
Fixed-Parameter Tractable algorithms

Running time: f (k) · nc

▷ Vibrant branch of TCS & Mathematics the last ∼30 years.

Dream: Meta-algorithmic viewpoint on Parameterized Computation.
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General Goals

▷ When can we construct the obstruction set of a minor-closed property?

▷ a meta-algorithm deciding

▷ Algorithmic Graph Minors theory?
Constructibility

Main objective of the thesis:

▷ Explore the meta-algorithmic potential of structural results of Graph Minors

Our contribution:

▷ A unified meta-algorithmic framework on minor exclusion.
▷ Extension to classes excluding topological minors.
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Flat wall theorem (Local Structure theorem) [GM XIII]

Given a graph G and two integers h, k , one of the following holds:

Kh is a minor of G , G has “small” treewidth
(depending only on k and h), or

there is a set A of f (h) vertices of G ,
such that G − A contains a flat k-wall W .
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Irrelevant vertex technique [GM XIII, XXI, XXII]

Introduced in [GM XIII] to solve the Disjoint Paths problem.

• If instance is simple (has “small” treewidth), then problem is “easily” solvable.
• If instance is not simple enough (has “large” treewidth), then get simpler & equivalent instance.

(by finding and removing irrelevant vertices)

▷ More than 50 papers using this technique.

▷ Why irrelevant vertices are irrelevant? Unique Linkage theorem
[GM XXI–XXII] [Adler, Kolliopoulos, Krause, Lokshtanov, Saurabh, Thilikos, 2017] [Kawarabayashi & Wollan, 2010] [Mazoit, 2013]
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The algorithmic paradigm of Simplification

Irrelevant vertex technique describes a simplification procedure (a data reduction).

General question: “How to simplify the input?”

Example: Does G contain a cycle of length 5?

13 / 47



Designing algorithms using Simplification

▷ How Simplification can aid to the design of algorithms?

• In simplified instances, problems are solved more easily.

Simplification

When?Where? How?

• We need abstraction and deep understanding of the irrelevant vertex technique.

14 / 47



Meta-algorithmization of the irrelevant vertex technique

Our viewpoint:
Irrelevant vertex technique = instantiation of the algorithmic paradigm of Simplification.

▷ How general this technique can be ? Meta-algorithmics of Graph Minors?

▷ What problems can we solve, when excluding a (topological) minor?

▷ What properties can we deal with?
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▷ How general this technique can be ? Meta-algorithmics of Graph Minors?

▷ What problems can we solve, when excluding a (topological) minor?
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We resort to Logic.
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Model checking problem for a logic L

• Given a logic L (on the vocabulary of graphs),

Input: A formula φ ∈ L and a graph G .
Question: G has the property described by φ?

G satisfies φ? Written as “G |= φ?”

AMTs in terms of model checking:
Given logic L and graph class C,

Model checking for L can be solved in polynomial time on graphs from C.

O|φ|,cC(n
c)

size of input graph

constants depending on C

size of input formula
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First-Order and Monadic Second-Order logic

First-Order logic (FO):

x = y | adj(x , y) | φ ∧ ψ | φ ∨ ψ | ¬φ | ∃xφ | ∀xφ

▶ Does G contain H as a subgraph? ∃x∃y∃z
(
adj(x , y) ∧ adj(y , z) ∧ adj(x , z)

)

Monadic Second-Order logic (MSO):

x = y | adj(x , y) | φ ∧ ψ | φ ∨ ψ | ¬φ | ∃xφ | ∀xφ | ∀Xφ | ∃Xφ

▶ Is G 3-colorable?

∃V1∃V2∃V3

((
∀x (x ∈ V1 ∨ x ∈ V2 ∨ x ∈ V3)

)
∧ partition(V1,V2,V3)

∧
(
∀x∀y (x , y ∈ V1) ∨ (x , y ∈ V2) ∨ (x , y ∈ V3) =⇒ ¬adj(x , y)

))
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AMTs for FO and MSO

bounded treewidth [Courcelle,1990] [Arnborg, Lagergren, Seese, 1991] [Borie, Parker, Tovey, 1992]

bounded cliquewidth [Courcelle, Makowski, Rotics, 2000] [Oum & Seymour, 2006] MSO

bounded degree [Seese, 1996] FO
locally bounded treewidth [Frick & Grohe, 2001]

excluding a minor [Flum & Grohe, 2001]

locally excluding a minor [Dawar, Grohe, Kreutzer, 2007]

bounded expansion [Dvǒrák, Krá̌l, Thomas, 2011]

nowhere dense [Grohe, Kreutzer, Siebertz, 2017]

bounded twinwidth [Bonnet, Kim, Thomassé, Watrigant, 2022]

structurally bounded degree [Gajarský, Hliněný, Lokshtanov, Obdržálek, Ramanujan, 2016]

structurally bounded expansion [Gajarský, Kreutzer, Nešeťril, Ossona de Mendez, Mi. Pilipczuk, Siebertz, Toruńczyk, 2018]

structurally nowhere dense [Dreier, Mählmann, Siebertz, 2023]

structurally bounded local cliquewidth [Bonnet, Dreier, Gajarský, Kreutzer, Mählmann, Simon, Toruńczyk, 2022]

monadically stable [Dreier, Eleftheriadis, Mählmann, McCarty, Mi. Pilipczuk, Toruńczyk, 2023]

monadically NIP/dependent ?
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Algorithmic paradigms in form of AMTs

• Dynamic Programming: Recursive breaking into smaller subproblems.

• Compositionality: Combining solutions of subproblems.

▷ AMTs for MSO = Meta-algorithmization of Dynamic Programming & Compositionality
based on tree-decomposability

Commonly refered as Courcelle’s theorem.

• Locality: Focusing on “local” parts of the input is enough to solve the problem.

• Separability: Input can be split into well-separated parts.

• Representative witnesses.

▷ AMTs for FO = Meta-algorithmization of Locality & Separability & Representative witnesses
based on sparsity
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Logic

Structure

nowhere dense

excluding a minor

bounded treewidth

FO MSO

[Grohe, Kreutzer, & Siebertz]

Algorithmic corollaries of Graph Minors

[Courcelle]

We lack of a logical-based theory for Simplification.
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Logics and Algorithms for Graph Minors

Algorithmic paradigm Logic
Dynamic Programming / Compositionality MSO

Locality / ... FO
Simplification ?

Challenge: Find a logic encompassing the algorithmic paradigm of Simplification.

• A meta-algorithmic theory of Graph Minors? Bidimensionality theory & Meta-kernelization
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Combinatorial & Algorithmic tools

[Sau, Stamoulis, Thilikos. A more accurate view of the Flat Wall Theorem]

Under revision. Revised version in Journal of Graph Theory (JGT)

[Golovach, Stamoulis, Thilikos. Combing a Linkage in an Annulus]

SIAM Journal on Discrete Mathematics (SIDMA), 2023

AMTs

[Golovach, Stamoulis, Thilikos. Model-Checking for First-Order Logic with Disjoint Paths Predicates in Proper

Minor-Closed Graph Classes]
SODA 2023

[Schirrmacher, Siebertz, Stamoulis, Thilikos, Vigny. Model Checking Disjoint-Paths Logic on Topological-Minor-Free

Graph Classes]

Unpublished
[Fomin, Golovach, Sau, Stamoulis, Thilikos. Compound Logics for Modification Problems]

ICALP 2023

Efficiency dimension

[Sau, Stamoulis, Thilikos. k-apices of minor-closed graph classes. I. Bounding the obstructions]

Journal of Combinatorial Theory, Series B (JCTB), 2023

[Sau, Stamoulis, Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms]

ICALP 2020 / ACM Transactions on Algorithms (TALG), 2022

[Morelle, Sau, Stamoulis, Thilikos. Faster parameterized algorithms for modification problems to minor-closed classes]

ICALP 2023

[Golovach, Stamoulis, Thilikos. Hitting Topological Minor Models in Planar Graphs is Fixed Parameter Tractable]

SODA 2020 / ACM Transactions on Algorithms (TALG), 2023 22 / 47



Combinatorial & algorithmic support of our AMTs



Enhanced algorithmic versions of the Flat Wall theorem

We build on the viewpoint of [Kawarabayashi, Thomas, Wollan, 2018].
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▶ a set A ⊆ V (G ) of size poly(t) and a flat wall W of G − A of height r ,
“whose perimeter crops a graph of treewidth Ot(r)”.

Running time: 2Ot(r
2) · n

• We introduce new combinatorial & algorithmic tools for flat walls, needed in our AMTs
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Combing Linkages

How to deal with linkages?

▷ Avoiding a vertex is not enough! We need to comb!

Linkage Combing Lemma

There is a function f : N → N such that if

- G is a partially disk-embedded graph,

- (C,P) is a disk-embedded railed annulus of size f (k), and

- L is an annulus-avoiding linkage of size ⩽ k,

then there is an equivalent linkage L′ that traverses the
middle cycle of C through P.

Strengthening of the Unique Linkage theorem.

Importance: Finitely “represent” paths
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Recap of the combinatorial and algorithmic support

• Enhanced algorithmic versions of the Flat Wall theorem.
[Sau, Stamoulis, & Thilikos, A more accurate view of the Flat Wall Theorem]

Under revision. Revised version in Journal of Graph Theory (JGT)

• Combing linkages in annuli.
[Golovach, Stamoulis, & Thilikos, Combing a Linkage in an Annulus]

SIAM Journal on Discrete Mathematics (SIDMA), 2023

AMTs

Alg
orithms

C
om

binatorics

Lo
gi
c

25 / 47



Our Algorithmic Meta-Theorems



Logic

Structure

nowhere dense

excluding a minor

bounded treewidth

FO L? MSO

[Grohe, Kreutzer, & Siebertz]

Algorithmic corollaries of Graph Minors

[Courcelle]

• For MSO, bounded treewidth/cliquewidth is the “combinatorial limit”.

• Logical-combinatorial compromise for Graph Minors?
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Disjoint-paths logic (FO+dp)

x = y | adj(x , y) | dpk [(x1, y1), . . . , (xk , yk)] | φ ∧ ψ | φ ∨ ψ | ¬φ | ∃xφ | ∀xφ
[Schirrmacher, Siebertz, & Vigny, 2021]

dpk [(x1, y1), . . . , (xk , yk)] is shortcut for:

“there exist pairwise vertex-disjoint paths connecting xi , yi for all i ∈ {1, . . . , k}”

Can express: • topological minors
• Every minor-closed property (via obstructions)

Separator logic (FO+conn) [Schirrmacher, Siebertz, & Vigny, 2021] [Bojańczyk, 2021]

x = y | adj(x , y) | connk(x , y , z1, . . . , zk) | φ ∧ ψ | φ ∨ ψ | ¬φ | ∃xφ | ∀xφ

connk(x , y , z1, . . . , zk) = dpk+1[(x , y), (z1, z1), . . . , (zk , zk)]

FO ⊆ FO+conn ⊆ FO+dp ⊆ MSO

x1

x2

x3

y1

y2

y3
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nowhere dense

excluding a top. minor

excluding a minor

bounded treewidth

FO

FO+conn FO+dp

MSO

[Grohe, Kreutzer, & Siebertz]

[Mi. Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny]

[Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny]

[Golovach, Stamoulis, & Thilikos]

[Courcelle]

Model checking for FO+dp can be done in quadratic time on graphs excluding a minor.

[Golovach, Stamoulis, & Thilikos, 2023]
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[Golovach, Stamoulis, & Thilikos]

[Courcelle]

Model checking for FO+dp can be done in cubic time on graphs excluding a topological minor.

[Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny, 2023+]
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Scattered disjoint-paths logic (FO+sdp)

[Golovach, Stamoulis, & Thilikos, 2023]

Scattered disjoint paths predicates:

s-sdpk(x1, y1, . . . , xk , yk)

There are pairwise vertex-disjoint paths
between xi and yi , for every i ∈ {1, . . . , k}
s.t. no two vertices of two distinct paths are within distance ⩽ s.

x1

x2

x3

y1

y2

y3

> s

> s

dpk(x1, y1, . . . , xk , yk) = 0-sdpk(x1, y1, . . . , xk , yk)
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nowhere dense

excluding a top. minor

excluding a minor

bounded Euler genus

FO FO+conn FO+dp FO+sdp MSO

[Grohe, Kreutzer, & Siebertz]

[Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny]

[Golovach, Stamoulis, & Thilikos]

[Golovach, Stamoulis, & Thilikos]

Model checking for FO+sdp can be done in quadratic time on graphs of bounded Euler genus.

[Golovach, Stamoulis, & Thilikos, 2023]
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Other families of problems where
irrelevant vertex technique applies?



Graph modification problems

Graph Modification Problems:

Apply a modification M to a graph such that the resulting graph has property P.

• Typically, modification is the deletion of a set of vertices (modulator)

• Modification is conditioned by some measure on the modulator: size, structural parameter,...

↪→ modulator/target scheme.
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Irrelevant vertices for modulators

Graph Modification Problems: One of main research areas of Parameterized Computation.

Irrelevant vertex technique: major role in algorithms for Graph Modification Problems

Examples:
[Adler, Grohe, Kreutzer, 2008]

[Marx & Schlotter, 2012]

[Golovach, van’t Hof, Paulusma, 2013]

[Kawarabayashi & Reed, 2007]

[Kawarabayashi, 2009]

[Jansen, Lokshtanov, Saurabh, 2014]

[Kociumaka & Pilipczuk, 2019]

[Fomin, Lokshtanov, Panolan, Saurabh, Zehavi, 2020]

Challenge: Lift the application of the technique on the target to deal with the modulator.

But what if the modulator has unbounded size?
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But what if the modulator has unbounded size?

Modulator: set X such that p(torso(G ,X )) ⩽ k .
Target: graph class G.

X

C1 C2

C3

X

torso(G,X)

p=treedepth: G-elimination distance
[Bulian & Dawar, 2017]

[Morelle, Sau, Stamoulis, Thilikos, 2023]

[Lindermayr, Siebertz, Vigny, 2020]

p=treewidth: G-treewidth
[Eiben, Ganian, Hamm, Kwon, 2021]

[Jansen, de Kroon, W lodarczyk, 2021]

[Agrawal, Kanesh, Lokshtanov, Panolan, Ramanujan, Saurabh, Zehavi, 2022]

[Jansen, de Kroon, W lodarczyk, 2023]

p=bridge-depth: G-bridge-depth
[Bougeret, Jansen, Sau, 2020]

One meta-theorem that
deals with all these cases?

p=pathwidth, cutwidth, vertex cover, feedback vertex set, branchwidth, carving-width,...
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Compound logics

A study on unbounded size but “structured” modulators.

Motivation: algorithm-driven

• For logics L1,L2, we define

L1 ▷ L2
Modulator

(on annotated graphs (G ,X ))

Target

(on graphs)

Formulas of the form: There is a set X such that

• torso(G ,X ) has bounded treewidth and satisfies a formula β ∈ L1

• G − X satisfies a formula γ ∈ L2

X

C1 C2

C3

X

torso(G,X)

Θ̃dp corresponds to MSO ▷ (MSO ▷ ...(MSO ▷ FO + dp))

34 / 47



Compound logics

A study on unbounded size but “structured” modulators.

Motivation: algorithm-driven

• For logics L1,L2, we define

L1 ▷ L2
Modulator

(on annotated graphs (G ,X ))

Target

(on graphs)

Formulas of the form: There is a set X such that

• torso(G ,X ) has bounded treewidth and satisfies a formula β ∈ L1

• G − X satisfies a formula γ ∈ L2

X

C1 C2

C3

X

torso(G,X)

Θ̃dp corresponds to MSO ▷ (MSO ▷ ...(MSO ▷ FO + dp))

34 / 47



Compound logics

A study on unbounded size but “structured” modulators.

Motivation: algorithm-driven

• For logics L1,L2, we define

L1 ▷ L2
Modulator

(on annotated graphs (G ,X ))

Target

(on graphs)

Modulator

(on annotated graphs (G ,X ))

Formulas of the form: There is a set X such that

• torso(G ,X ) has bounded treewidth and satisfies a formula β ∈ L1

• G − X satisfies a formula γ ∈ L2

X

C1 C2

C3

X

torso(G,X)

Θ̃dp corresponds to MSO ▷ (MSO ▷ ...(MSO ▷ FO + dp))

34 / 47



Compound logics

A study on unbounded size but “structured” modulators.

Motivation: algorithm-driven

• For logics L1,L2, we define

L1 ▷ L2
Modulator

(on annotated graphs (G ,X ))

Target

(on graphs)

Modulator

(on annotated graphs (G ,X ))

Target

(on graphs)

Formulas of the form: There is a set X such that

• torso(G ,X ) has bounded treewidth and satisfies a formula β ∈ L1

• G − X satisfies a formula γ ∈ L2

X

C1 C2

C3

X

torso(G,X)

Θ̃dp corresponds to MSO ▷ (MSO ▷ ...(MSO ▷ FO + dp))

34 / 47



Compound logics

A study on unbounded size but “structured” modulators.

Motivation: algorithm-driven

• For logics L1,L2, we define

L1 ▷ L2
Modulator

(on annotated graphs (G ,X ))

Target

(on graphs)

Modulator

(on annotated graphs (G ,X ))

Target

(on graphs)

Formulas of the form: There is a set X such that

• torso(G ,X ) has bounded treewidth and satisfies a formula β ∈ L1

• G − X satisfies a formula γ ∈ L2

X

C1 C2

C3

X

torso(G,X)

Θ̃dp corresponds to MSO ▷ (MSO ▷ ...(MSO ▷ FO + dp))

34 / 47



Compound logics

A study on unbounded size but “structured” modulators.

Motivation: algorithm-driven

• For logics L1,L2, we define

L1 ▷ L2
Modulator

(on annotated graphs (G ,X ))

Target

(on graphs)

Modulator

(on annotated graphs (G ,X ))

Target

(on graphs)

Formulas of the form: There is a set X such that

• torso(G ,X ) has bounded treewidth and satisfies a formula β ∈ L1

• G − X satisfies a formula γ ∈ L2

X

C1 C2

C3

X

torso(G,X)

Θ̃dp corresponds to MSO ▷ (MSO ▷ ...(MSO ▷ FO + dp))

34 / 47



Compound logics

A study on unbounded size but “structured” modulators.

Motivation: algorithm-driven

• For logics L1,L2, we define

L1 ▷ L2
Modulator

(on annotated graphs (G ,X ))

Target

(on graphs)

Modulator

(on annotated graphs (G ,X ))

Target

(on graphs)

Formulas of the form: There is a set X such that

• torso(G ,X ) has bounded treewidth and satisfies a formula β ∈ L1

• G − X satisfies a formula γ ∈ L2

X

C1 C2

C3

X

torso(G,X)

Θ̃dp corresponds to MSO ▷ (MSO ▷ ...(MSO ▷ FO + dp))

34 / 47



Compound logics

A study on unbounded size but “structured” modulators.

Motivation: algorithm-driven

• For logics L1,L2, we define

L1 ▷ L2
Modulator

(on annotated graphs (G ,X ))

Target

(on graphs)

Modulator

(on annotated graphs (G ,X ))

Target

(on graphs)

Formulas of the form: There is a set X such that

• torso(G ,X ) has bounded treewidth and satisfies a formula β ∈ L1

• G − X satisfies a formula γ ∈ L2

X

C1 C2

C3

X

torso(G,X)

Θ̃dp corresponds to MSO ▷ (MSO ▷ ...(MSO ▷ FO + dp))
34 / 47



nowhere dense

excluding a top. minor

excluding a minor

bounded treewidth

FO FO+conn FO+dp

Θ̃dp

MSO

[Grohe, Kreutzer, & Siebertz]

[Mi. Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny]

[Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny]

[Golovach, Stamoulis, & Thilikos]

[Fomin, Golovach, Sau, Stamoulis, & Thilikos]

[Fomin, Golovach, Sau, Stamoulis, & Thilikos]

[Courcelle]

Model checking for Θ̃dp can be done in quadratic time on graphs excluding a minor.

[Fomin, Golovach, Sau, Stamoulis, & Thilikos, 2023]
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nowhere dense

excluding a top. minor

excluding a minor

bounded Euler genus

bounded Euler genus

& bounded treewidth

FO FO+conn FO+dp FO+sdp

Θ̃sdp

MSO

[Grohe, Kreutzer, & Siebertz]

[Mi. Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny]
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[Fomin, Golovach, Sau, Stamoulis, & Thilikos]

[Golovach, Stamoulis, & Thilikos]

Model checking for Θ̃sdp can be done in quadratic time on graphs of bounded Euler genus.
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Our AMTs

• Fragments of MSO that are algorithmically well-behaved beyond bounded treewidth.

▷ (Scattered) Disjoint-paths logic encodes paths.

▷ Compound logics encode modulators.

Meta-algorithmize irrelevant vertex technique.

[Golovach, Stamoulis, & Thilikos, Model-Checking for First-Order Logic with Disjoint Paths Predicates in

Proper Minor-Closed Graph Classes]

SODA 2023

[Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny, Model Checking Disjoint-Paths Logic on

Topological-Minor-Free Graph Classes]

Unpublished

[Fomin, Golovach, Sau, Stamoulis, & Thilikos, Compound Logics for Modification Problems]

ICALP 2023
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“Efficiency axis”



Back to Graph Minors

Goal: Identify large families of problems where running times can be improved.

Modulator/target scheme:

Modulator: set of ⩽ k vertices

Target: property P

What if P is characterized by exclusion of some graphs as (topological) minors?
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F-Minor-deletion and F-Topological-Minor-deletion

For finite set of graphs F :

F-Minor-deletion:
Delete ⩽ k vertices such that the obtained graph does not contain any F ∈ F as a minor.

F-Topological-Minor-deletion:
Delete ⩽ k vertices such that the obtained graph does not contain any F ∈ F as topological minor.
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F-Minor-deletion

[Robertson & Seymour, GM I – GM XXII]: F-Minor-deletion is solvable (non-constructively).

[Adler, Grohe, & Kreutzer, 2012]: Constructive but implicit bound on running time.

Our results:

Bounding the obstructions

Obstructions of yes-instances of F-Minor-deletion have size ⩽ f (k,F) = 2222polyF (k)

=⇒ First explicit upper-bound on the running time of algorithm for F-Minor-deletion.

Improved algorithm for F-Minor-deletion

F-Minor-deletion is solvable in time 2polyF (k) · n2.
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F-Topological-Minor-deletion

Not encompassed by classical Graph Minors.

[Fomin, Lokshtanov, Panolan, Saurabh, and Zehavi, 2020]: Solvable in time OF,k(n
4).

Improved algorithm for F-Topological-Minor-deletion

F-Topological-Minor-Deletion is solvable in time 2OF,g (k2) ·n2 on graphs of Euler genus ⩽g .
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“Efficiency axis”

[Sau, Stamoulis, & Thilikos, k-apices of minor-closed graph classes. I. Bounding the obstructions]

Journal of Combinatorial Theory, Series B (JCTB), 2023

[Sau, Stamoulis, Thilikos, k-apices of minor-closed graph classes. II. Parameterized algorithms]

ICALP 2020

ACM Transactions on Algorithms (TALG), 2022

[Morelle, Sau, Stamoulis, Thilikos, Faster parameterized algorithms for modification problems to minor-closed classes]
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Outline of some ingredients of our proofs



How to meta-algorithmize Simplification?

What is Courcelle’s theorem?
Subroutine: Recursively compute the MSO-type of the instance.

• Compositionality of MSO on small size interface. [Feferman-Vaught theorem]

▷ Simplification: Reduction to type-representative of small size.

interface

Recursion Compositionality Simplification Dyn. Prog.& & =

For our AMTs: “Local-to-Global” approach

Idea: Simplify flat parts of the input.

• Compositionality on unbounded size interface (in flat part).
↪→ Combing Lemma.

Local simplifications are global simplifications.

▷ Simplify locally using Courcelle’s theorem.
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What to do next?
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▷ Can our AMTs be generalized to more general classes?
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▷ Two challenges in the “efficiency dimension”:

• Break the barrier of O(n2)-time for irrelevant vertex technique?

• Elementary model checking? Running-time with elementary dependency on |φ|.

AMTs in Distributed Computing? Dynamic algorithms? Query enumeration?
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