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Abstraction

Insights on problems Algorithmic techniques

Common descriptive ground? What is their potential?
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Graphs and algorithms and logic

e Model of abstraction: Graphs

e Decision problems: answered by YES or NO

Given a graph G, does it have property X 7

> How to describe a property? ~— Machine description
— Loglc (abstract language to describe properties/problems)

> How to use the structure of the graph to obtain efficient algorithms 7
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General mathematical conditions that allow the automatic derivation of efficient algorithms.

orith
Conditions: logical (C.) & combinatorial (C¢) WSy

“every problem that is expressible by C,
can be solved efficiently,
on instances restricted by Cc.”

“Algorithms that give algorithms”
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How to describe a property (without Logic)

When can a graph be drawn on the plane without crossings?

Kuratowski-Pontryagin theorem (1930):

G is planar <= G does not contain K5 or K3 3 as a topological minor.

Wagner’s theorem (1937):

G is planar <= G does not contain Ks or K33 as a minor.

Erdos’ conjecture:
Surface embeddability of graphs is characterized by a few obstructions.
(minor-minimal graphs not satisfying P)
“Wagner’s” conjecture:
Every minor-closed property is characterized by a few obstructions.
(maintained on minors)
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A series of 23 papers by Robertson & Seymour [GM 1, 1982],...,[GM XXIII, 2010].
Seminal results of the Graph Minors series:

1) Every minor-closed property is characterized by a few obstructions.

2) Testing whether H is a minor of G can be done in polynomial time.

Main algorithmic consequence of Graph Minors:
Every minor-closed property can be decided in polynomial time.

e Deciding a minor-closed property is reduced to minor testing!

Example: Planarity. Can G be drawn on the plane without crossings?
In other words: Does G contain Ks or K33 as a minor?

e The proof of 1) is non-constructive (does not give the obstructions)
and is not expected to be constructive (in general).
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e Graph Minors: structure — algorithms

Parameterized Computation (branch of TCS & Mathematics):
Study of auxiliary measure conditioning the computational complexity of problems.

1

parameter (k = value of the parameter)

Efficiency demand:
Fixed-Parameter Tractable algorithms

Running time: O (n°)

> Vibrant branch of TCS & Mathematics the last ~30 years.

Dream: Meta-algorithmic viewpoint on Parameterized Computation.
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> When can we construct the-ebstruction-set-of a minor-closed property?
a meta-algorithm deciding

> Algorithmic Graph Minors theory?

Main objective of the thesis:

> Explore the meta-algorithmic potential of structural results of Graph Minors

Our contribution:

> A unified meta-algorithmic framework on minor exclusion.
> Extension to classes excluding topological minors.
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The algorithmic paradigm of Simplification

Irrelevant vertex technique describes a simplification procedure (a data reduction).

General question: “How to simplify the input?”

Example: Does G contain a cycle of length 57

13/47



Designing algorithms using Simplification

> How Simplification can aid to the design of algorithms?

e In simplified instances, problems are solved more easily.

Simplification

e We need abstraction and deep understanding of the irrelevant vertex technique.
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Our viewpoint:
Irrelevant vertex technique = instantiation of the algorithmic paradigm of Simplification.

> How general this technique can be 7 Meta-algorithmics of Graph Minors?
> What problems can we solve, when excluding a (topological) minor?

> What properties can we deal with?

We resort to Logic.

15/47



Model checking problem for a logic £

e Given a logic £ (on the vocabulary of graphs),

16 /47



Model checking problem for a logic £

e Given a logic £ (on the vocabulary of graphs),
Input: A formula ¢ € £ and a graph G.

16 /47



Model checking problem for a logic £

e Given a logic £ (on the vocabulary of graphs),
Input: A formula ¢ € £ and a graph G.
Question: G has the property described by ¢?

16 /47



Model checking problem for a logic £

e Given a logic £ (on the vocabulary of graphs),
Input: A formula ¢ € £ and a graph G.

Question: G-hasthe property-described-by—7

16 /47



Model checking problem for a logic £

e Given a logic £ (on the vocabulary of graphs),
Input: A formula ¢ € £ and a graph G.

Question: Ghas%heﬂarepemkdeseﬁbedﬁf—ge?

G satisfies ¢? Written as "G |= ¢7”

16 /47



Model checking problem for a logic £

e Given a logic £ (on the vocabulary of graphs),

Input: A formula ¢ € £ and a graph G.
Question: Ghasﬂaeﬂarepemkdeseﬁbed%y—@?

G satisfies ¢? Written as "G |= ¢7”

AMTs in terms of model checking:

16 /47



Model checking problem for a logic £

e Given a logic £ (on the vocabulary of graphs),
Input: A formula ¢ € £ and a graph G.

Question: Ghas%he@repeﬁwdeser—rbed»by—g&?

G satisfies ¢? Written as "G |= ¢7”

AMTs in terms of model checking:
Given logic £ and graph class C,

Model checking for L can be solved in polynomial time on graphs from C.

16 /47



Model checking problem for a logic £

e Given a logic £ (on the vocabulary of graphs),
Input: A formula ¢ € £ and a graph G.

Question: Ghas%heﬂarepemkdeseﬁbed%/—ge?

G satisfies ¢? Written as "G |= ¢7”

AMTs in terms of model checking:
Given logic £ and graph class C,

Model checking for L can be solved in polynomial time on graphs from C.

O\@\,Cc(”c)

16 /47



Model checking problem for a logic £

e Given a logic £ (on the vocabulary of graphs),
Input: A formula ¢ € £ and a graph G.
Question: Ghas%he@repeﬁwdeser—rbed»by—ga?

G satisfies ¢? Written as "G |= ¢7”

AMTs in terms of model checking:
Given logic £ and graph class C,

Model checking for L can be solved in polynomial time on graphs from C.

O\@\,Cc(nc)

size of input graph

16 /47



Model checking problem for a logic £

e Given a logic £ (on the vocabulary of graphs),
Input: A formula ¢ € £ and a graph G.
Question: Ghasﬂaeﬂarepemkdeseﬁbed%y—@?

G satisfies ¢? Written as "G |= ¢7”

AMTs in terms of model checking:
Given logic £ and graph class C,

Model checking for L can be solved in polynomial time on graphs from C.

O\@D\,Cc(nc)

size of input formula J size of input graph

16 /47



Model checking problem for a logic £

e Given a logic £ (on the vocabulary of graphs),
Input: A formula ¢ € £ and a graph G.
Question: Ghasﬂaeﬂarepemkdeseﬁbed%y—@?

G satisfies ¢? Written as "G |= ¢7”

AMTs in terms of model checking:
Given logic £ and graph class C,

Model checking for L can be solved in polynomial time on graphs from C.

O/, (%)
vlec
size of input formula J ) \ size of input graph

constants depending on C
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First-Order and Monadic Second-Order logic

First-Order logic (FO):

x=yladj(x,y) [ @AY | oV | -p|Ixp | Vxp

Does G contain H as a subgraph? 3x3y3z <adj(x,y) Aadj(y, z) /\adj(x,z))

Monadic Second-Order logic (MSO):
x=yladi(x,y) [ e AP [ oV | e | Ixp | Vxp | VXp | 3Xp

Is G 3-colorable?

3V43V63Vs <(Vx (xEViVxEV,Vxe V3)) A partition(V4, Vs, V3)

/\<VXW (x,y eVI)V(x,y e L)V (x,y € V3) = ﬁadj(x,y)))
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AMTs for FO and MSO

bounded treewidth [Courcelle,1990] [Arnborg, Lagergren, Seese, 1991] [Borie, Parker, Tovey, 1992]
bounded cliquewidth [Courcelle, Makowski, Rotics, 2000] [Oum & Seymour, 2006] MSO

bounded degree [Seese, 1996] FO
locally bounded treewidth [Frick & Grohe, 2001]

excluding a minor [Flum & Grohe, 2001]

locally excluding a minor [Dawar, Grohe, Kreutzer, 2007]

bounded expansion [Dvotsk, Kral, Thomas, 2011]

nowhere dense [Grohe, Kreutzer, Siebertz, 2017]

bounded twinwidth [Bonnet, Kim, Thomassé, Watrigant, 2022]

structurally bounded degree [Gajarsky, Hlingny, Lokshtanov, Obdr#dlek, Ramanujan, 2016]

structural/y bounded expansion [Gajarsky, Kreutzer, Neset¥il, Ossona de Mendez, Mi. Pilipczuk, Siebertz, Toruiczyk, 2018]
structurally nowhere dense [Dreier, Mihlmann, Siebertz, 2023]

structurally bounded local C/I-qUGWI'dth [Bonnet, Dreier, Gajarsky, Kreutzer, Mdhlmann, Simon, Toruiczyk, 2022]
monadically stable [Dreier, Eleftheriadis, Mahimann, McCarty, Mi. Pilipczuk, Toruriczyk, 2023]

monadically NIP/dependent ?
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Algorithmic paradigms in form of AMTs
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Algorithmic paradigms in form of AMTs

e Dynamic Programming: Recursive breaking into smaller subproblems.
e Compositionality: Combining solutions of subproblems.

> AMTs for MSO = Meta-algorithmization of Dynamic Programming & Compositionality
based on tree-decomposability

Commonly refered as Courcelle’s theorem.

e Locality: Focusing on “local” parts of the input is enough to solve the problem.
e Separability: Input can be split into well-separated parts.
e Representative witnesses.

> AMTs for FO = Meta-algorithmization of Locality & Separability & Representative witnesses
based on sparsity

19/47



Structure

nowhere dense |- O[Grohe, Kreutzer, & Siebertz]

bounded treewidth - ——————————————————————————————————————————————————————————————————————————— o[Courcelle]

FO MSO Logic
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nowhere dense

excluding a minor

bounded treewidth

—————————————————— O [Grohe, Kreutzer, & Siebertz]

Algorithmic corollaries of Graph Minors
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Structure

nowhere dense |- O[Grohe, Kreutzer, & Siebertz]

Algorithmic corollaries of Graph Minors

excluding a minor : o

bounded treewidth |- ******************************

FO

We lack of a logical-based theory for Simplification.

MSO
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Logics and Algorithms for Graph Minors

Algorithmic paradigm Logic

Dynamic Programming / Compositionality | MSO
Locality / ... FO
Simplification ?

Challenge: Find a logic encompassing the algorithmic paradigm of Simplification.
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Logics and Algorithms for Graph Minors

Algorithmic paradigm Logic

Dynamic Programming / Compositionality | MSO
Locality / ... FO
Simplification ?

Challenge: Find a logic encompassing the algorithmic paradigm of Simplification.

e A meta-algorithmic theory of Graph Minors? Bidimensionality theory & Meta-kernelization

> We need to create a new combinatorial ground for such a theory.

J—
/ »\%“i*hm\
/ 1\

J—

> “Efficiency dimension” of AMTs?




Results



Ng,on‘:h%
Combinatorial & Algorithmic tools

[Sau, Stamoulis, Thilikos. A more accurate view of the Flat Wall Theorem)]
Under revision. Revised version in Journal of Graph Theory (JGT)

PG o)

5
&

®)

[Golovach, Stamoulis, Thilikos. Combing a Linkage in an Annulus]
SIAM Journal on Discrete Mathematics (SIDMA), 2023

AMTs

[Golovach, Stamoulis, Thilikos. Model-Checking for First-Order Logic with Disjoint Paths Predicates in Proper
Minor-Closed Graph Classes]
SODA 2023

[Schirrmacher, Siebertz, Stamoulis, Thilikos, Vigny. Model Checking Disjoint-Paths Logic on Topological-Minor-Free
Graph Classes]

Unpublished

[Fomin, Golovach, Sau, Stamoulis, Thilikos. Compound Logics for Modification Problems]

ICALP 2023

Efficiency dimension

[Sau, Stamoulis, Thilikos. k-apices of minor-closed graph classes. I. Bounding the obstructions]
Journal of Combinatorial Theory, Series B (JCTB), 2023

[Sau, Stamoulis, Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms]
ICALP 2020 / ACM Transactions on Algorithms (TALG), 2022

[Morelle, Sau, Stamoulis, Thilikos. Faster parameterized algorithms for modification problems to minor-closed classes]
ICALP 2023

[Golovach, Stamoulis, Thilikos. Hitting Topological Minor Models in Planar Graphs is Fixed Parameter Tractable]

SODA 2020 / ACM Transactions on Algorithms (TALG), 2023 2247



Combinatorial & algorithmic support of our AMTs



Enhanced algorithmic versions of the Flat Wall theorem

We build on the viewpoint of [Kawarabayashi, Thomas, Wollan, 2018].
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Enhanced algorithmic versions of the Flat Wall theorem

We build on the viewpoint of [Kawarabayashi, Thomas, Wollan, 2018].

bounded treewidth

3
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Enhanced algorithmic versions of the Flat Wall theorem
We build on the viewpoint of [Kawarabayashi, Thomas, Wollan, 2018].

(Algorithmic enhancement of) Flat Wall theorem

Input: graph G, integers r, t,
Output:
» either a report that K is a minor of G or G has treewidth O:(r), or

» aset AC V(G) of size poly(t) and a flat wall W of G — A of height r,
“whose perimeter crops a graph of treewidth O(r)".
Running time: 20:(r") . p

e We introduce new combinatorial & algorithmic tools for flat walls, needed in our AMTs
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Combing Linkages

How to deal with linkages?
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Combing Linkages

How to deal with linkages?
> Avoiding a vertex is not enough! We need to comb!

Linkage Combing Lemma

There is a function f: N — N such that if

- G is a partially disk-embedded graph,

- (C,P) is a disk-embedded railed annulus of size f(k), and

- L is an annulus-avoiding linkage of size < k,

then there is an equivalent linkage L’ that traverses the
middle cycle of C through P.
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Combing Linkages

How to deal with linkages?

> Avoiding a vertex is not enough! We need to comb!

Linkage Combing Lemma

There is a function f: N — N such that if

- G is a partially disk-embedded graph,

- (C,P) is a disk-embedded railed annulus of size f(k), and

- L is an annulus-avoiding linkage of size < k,

then there is an equivalent linkage L’ that traverses the
middle cycle of C through P.

Strengthening of the Unique Linkage theorem.
Importance: Finitely “represent” paths
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Recap of the combinatorial and algorithmic support

e Enhanced algorithmic versions of the Flat Wall theorem.
[Sau, Stamoulis, & Thilikos, A more accurate view of the Flat Wall Theorem)]

Under revision. Revised version in Journal of Graph Theory (JGT)

e Combing linkages in annuli.
[Golovach, Stamoulis, & Thilikos, Combing a Linkage in an Annulus]
SIAM Journal on Discrete Mathematics (SIDMA), 2023
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Our Algorithmic Meta-Theorems



Structure

nowhere dense | 0 [Grohe, Kreutzer, & Siebertz]

bounded treewidth a[Courcelle]

Fo r? MSO Logic
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Structure

nowhere dense

excluding a minor

bounded treewidth

,,,,,,,,,,,,,,,,,, 0 [Grohe, Kreutzer, & Siebertz]

Algorithmic corollaries of Graph Minors

1 [Courcelle]

FO £? MSO Logic

e For MSO, bounded treewidth/cliquewidth is the “combinatorial limit”.

e Logical-combinatorial compromise for Graph Minors?
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Disjoint-paths logic (FO+dp)

x =y |adj(x,y) [ dpi[(x1, 1), - (X ¥l [ @AY [ Vb | = | Ixp | Ve
[Schirrmacher, Siebertz, & Vigny, 2021]
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bounded treewidth
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nowhere dense [ 0 [Grohe, Kreutzer, & Siebertz]
[Mi. Pilipczuk, Schirrmacher, Siebertz, Toruiczyk, & Vigny]
excluding a top. minor n]
[Golovach, Stamoulis, & Thilikos]
excluding a minor B
bounded treewidth 0 [Courcelle]
FO FO+-conn FO+dp MSO

Model checking for FO+dp can be done in quadratic time on graphs excluding a minor.
[Golovach, Stamoulis, & Thilikos, 2023]
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nowhere dense |- 0 [Grohe, Kreutzer, & Siebertz]

[Mi. Pilipczuk, Schirrmacher, Siebertz, Toruriczyk, & Vigny]
excluding a top. minor -
[Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny]

[Golovach, Stamoulis, & Thilikos]
excluding a minor

bounded treewidth — fr b b 0 [Courcelle]

FO FO-+conn FO+dp MSO

Model checking for FO+dp can be done in cubic time on graphs excluding a topological minor.
[Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny, 2023+]
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Scattered disjoint-paths logic (FO+sdp)

[Golovach, Stamoulis, & Thilikos, 2023]

Scattered disjoint paths predicates:

s-sdpy (X1, Y1, - -+ 5 Xis Vi)

There are pairwise vertex-disjoint paths
between x; and y;, for every i € {1,... k}
s.t. no two vertices of two distinct paths are within distance < s.

X3 y3
X2 1
X1 Y2
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Scattered disjoint-paths logic (FO+sdp)

[Golovach, Stamoulis, & Thilikos, 2023]

Scattered disjoint paths predicates: >s B

s-sdpy (X1, Y1, - -+ 5 Xis Vi)

There are pairwise vertex-disjoint paths
between x; and y;, for every i € {1,... k} X2 7
s.t. no two vertices of two distinct paths are within distance < s.

X1 Y2
de(Xla}’L cee an7.yk) = O_Sdpk(xh.yla s an7.yk)
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nowhere dense

excluding a top. minor

excluding a minor

bounded Euler genus

————————————— I;|[Grohe, Kreutzer, & Siebertz]

[Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny]

[Golovach, Stamoulis, & Thilikos]

[l [Golovach, Stamoulis, & Thilikos]

FO FO+conn  FO+dp FO+sdp MSO

Model checking for FO+sdp can be done in quadratic time on graphs of bounded Euler genus.
[Golovach, Stamoulis, & Thilikos, 2023]

30/47



Other families of problems where
irrelevant vertex technique applies?



Graph modification problems

Graph Modification Problems:
Apply a modification M to a graph such that the resulting graph has property P.
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Graph modification problems

Graph Modification Problems:
Apply a modification M to a graph such that the resulting graph has property P.

e Typically, modification is the deletion of a set of vertices (modulator)

e Modification is conditioned by some measure on the modulator: size, structural parameter, ...

— modulator/target scheme.
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Irrelevant vertices for modulators

Graph Modification Problems: One of main research areas of Parameterized Computation.
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Irrelevant vertices for modulators

Graph Modification Problems: One of main research areas of Parameterized Computation.
Irrelevant vertex technique: major role in algorithms for Graph Modification Problems

Examples:

[Adler, Grohe, Kreutzer, 2008]

[Marx & Schlotter, 2012]

[Golovach, van't Hof, Paulusma, 2013]
[Kawarabayashi & Reed, 2007]

[Kawarabayashi, 2009]

[Jansen, Lokshtanov, Saurabh, 2014]

[Kociumaka & Pilipczuk, 2019]

[Fomin, Lokshtanov, Panolan, Saurabh, Zehavi, 2020]
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Graph Modification Problems: One of main research areas of Parameterized Computation.
Irrelevant vertex technique: major role in algorithms for Graph Modification Problems

Examples:

[Adler, Grohe, Kreutzer, 2008]

[Marx & Schlotter, 2012]

[Golovach, van't Hof, Paulusma, 2013]
[Kawarabayashi & Reed, 2007]

[Kawarabayashi, 2009]

[Jansen, Lokshtanov, Saurabh, 2014]

[Kociumaka & Pilipczuk, 2019]
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One meta-theorem that
deals with all these cases?

p=bridge-depth: G-bridge-depth
[Bougeret, Jansen, Sau, 2020]

p=pathwidth, cutwidth, vertex cover, feedback vertex set, branchwidth, carving-width,...
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Formulas of the form: There is a set X such that
.é17 TI
e torso(G, X) has bounded treewidth and satisfies a formula 8 € £;
e G — X satisfies a formula v € £, torsa(G, X)

&% corresponds to MSO > (MSO > ...(MSO & FO + dp))

34/47



nowhere dense [ [Grohe, Kreutzer, & Siebertz]

[Mi. Pilipczuk, Schirrmacher, Siebertz, Toruczyk, & Vigny]
excluding a top. minor
[Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny]

[Golovach, Stamoulis, & Thilikos]
excluding a minor

bounded treewidth  |EE 0 [Courcelle]

FO FO-+conn FO-+dp MSO

35/47



nowhere dense  f----rooeeee 0 [Grohe, Kreutzer, & Siebertz]

[Mi. Pilipczuk, Schirrmacher, Siebertz, Toruczyk, & Vigny]
excluding a top. minor o B

| [Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny]

i 1 [Golovach, Stamoulis, & Thilikos]
excluding a minor : S -

Fomin, Golovach, Sau, Stamoulis, & Thilikos]

bounded treewidth [Courcelle]

FO FO+conn FO+dp & MSO

Model checking for 6% can be done in quadratic time on graphs excluding a minor.
[Fomin, Golovach, Sau, Stamoulis, & Thilikos, 2023]

35/47



nowhere dense [ [Grohe, Kreutzer, & Siebertz]

[Mi. Pilipczuk, Schirrmacher, Siebertz, Toruczyk, & Vigny]
excluding a top. minor -
Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vign
gny.

[Golovach, Stamoulis, & Thilikos]
excluding a minor
[Golovach, Stamoulis, & Thilikos]
bounded Euler genus

FO FO+conn  FO+dp  FO+sdp MSO

35/47



nowhere dense  f----rooeeee 0 [Grohe, Kreutzer, & Siebertz]

excluding a top. minor

[Mi. Pilipczu.k, Schirrmacher, Siebertz, Toruczyk, & Vigny]
o

| [Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny]

[Golovach, Stamoulis, & Thilikos]

excluding a minor

[Golovach, Stamoulis, & Thilikos]
bounded Euler genus |
i [Fomin, Golovach, Sau, Stamoulis, & Thilikos]

bounded Euler genus
& bounded treewidth

FO FO+conn  FO+dp  FO+sdp &% MSO

Model checking for &> can be done in quadratic time on graphs of bounded Euler genus.
[Fomin, Golovach, Sau, Stamoulis, & Thilikos, 2023]

35/47



Our AMTs

e Fragments of MSO that are algorithmically well-behaved beyond bounded treewidth.

36/47



Our AMTs

e Fragments of MSO that are algorithmically well-behaved beyond bounded treewidth.

> (Scattered) Disjoint-paths logic encodes paths.

36/47



Our AMTs

e Fragments of MSO that are algorithmically well-behaved beyond bounded treewidth.

> (Scattered) Disjoint-paths logic encodes paths.

> Compound logics encode modulators.

36/47



Our AMTs

e Fragments of MSO that are algorithmically well-behaved beyond bounded treewidth.

> (Scattered) Disjoint-paths logic encodes paths.

> Compound logics encode modulators.

/ Meta-algorithmize irrelevant vertex technique.

36/47



Our AMTs

e Fragments of MSO that are algorithmically well-behaved beyond bounded treewidth.

> (Scattered) Disjoint-paths logic encodes paths.
> Compound logics encode modulators.

/ Meta-algorithmize irrelevant vertex technique.

[Golovach, Stamoulis, & Thilikos, Model-Checking for First-Order Logic with Disjoint Paths Predicates in
Proper Minor-Closed Graph Classes|
SODA 2023

[Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny, Model Checking Disjoint-Paths Logic on
Topological-Minor-Free Graph Classes]
Unpublished

[Fomin, Golovach, Sau, Stamoulis, & Thilikos, Compound Logics for Modification Problems]
ICALP 2023
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Goal: Identify large families of problems where running times can be improved.

Modulator/target scheme:

Modulator: set of < k vertices
Target: property P

What if P is characterized by exclusion of some graphs as (topological) minors?
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[Robertson & Seymour, GM | — GM XXII]: F-MINOR-DELETION is solvable (non-constructively).

[Adler, Grohe, & Kreutzer, 2012]: Constructive but implicit bound on running time.

Our results:

Bounding the obstructions
2zpoly}-(k)

Obstructions of yes-instances of F-MINOR-DELETION have size < f(k, F) =2

— First explicit upper-bound on the running time of algorithm for F-MINOR-DELETION.

Improved algorithm for F-MINOR-DELETION
F-MINOR-DELETION is solvable in time 2Pl=(K) . 2.
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F-ToPOLOGICAL-MINOR-DELETION

Not encompassed by classical Graph Minors.

[Fomin, Lokshtanov, Panolan, Saurabh, and Zehavi, 2020]: Solvable in time (9]:_’;((!74).

Improved algorithm for F-TOPOLOGICAL-MINOR-DELETION
. . . 2
F-TOPOLOGICAL-MINOR-DELETION is solvablein time 297.¢(<) . n2 on graphs of Euler genus <g.
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“Efficiency axis”

[Sau, Stamoulis, & Thilikos, k-apices of minor-closed graph classes. I. Bounding the obstructions]

Journal of Combinatorial Theory, Series B (JCTB), 2023

[Sau, Stamoulis, Thilikos, k-apices of minor-closed graph classes. II. Parameterized algorithms]
ICALP 2020
ACM Transactions on Algorithms (TALG), 2022

[Morelle, Sau, Stamoulis, Thilikos, Faster parameterized algorithms for modification problems to minor-closed classes]

ICALP 2023
[Golovach, Stamoulis, Thilikos, Hitting Topological Minor Models in Planar Graphs is Fixed Parameter Tractable]

SODA 2020
ACM Transactions on Algorithms (TALG), 2023
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> New combinatorial tools

> Understanding common logical description of problems (algorithmic paradigm of Simplification)
> New ideas to obtain efficient algorithms.
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Conclusions & Perspectives



Conclusion

nowhere dense Grohe, Kreutzer, Siebertz]

Wit
[Mi. Pilipczuk, Schirrmacher, Siebertz, Toruriczyk, Vigny]

excluding a top. minor

[Schirrmacher, Siebertz, Stamoulis, Thilikos, Vigny]

 [Golovach, Stamoulis, Thilikos]
excluding a minor

Qnawod
p’\

g

[Fomin, Golovach, Sau, Stamoulis, Thilikos]

bounded treewidth [Courcelle]

FO FO+conn  FO+dp & MSO

e Combinatorial & algorithmic support for AMTs.
e AMTs abstractizing irrelevant vertex technique (algorithmic paradigm of Simplification).
e Advance in the efficiency dimension of AMTs.
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> Two challenges in the “efficiency dimension”:
e Break the barrier of O(n?)-time for irrelevant vertex technique?

e Elementary model checking? Running-time with elementary dependency on |¢|.

AMTs in Distributed Computing? Dynamic algorithms? Query enumeration?
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Thank you!
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