Logics and Algorithms for Graph Minors

Giannos Stamoulis

AIGCo team

Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier

Committee:

Anuj Dawar
Marcin Pilipczuk
Pierre Fraigniaud
Frédéric Havet
Eun Jung Kim
Ignasi Sau
Dimitrios M. Thilikos
reviewer
reviewer
examiner
examiner
examiner
supervisor
co-supervisor

Amphithéâtre Jean Jacques Moreau, 12/12/2023

Computation as a mathematical subject

Computation as a mathematical subject

Study of automated computation by means of abstraction

Computation as a mathematical subject

Study of automated computation by means of abstraction

What makes a computational problem inherently difficult?

Computation as a mathematical subject

Study of automated computation by means of abstraction

What makes a computational problem inherently difficult?

Computation as a mathematical subject

Study of automated computation by means of abstraction

What makes a computational problem inherently difficult?

When can we have efficient algorithms?

Computation as a mathematical subject

Study of automated computation by means of abstraction

What makes a computational problem inherently difficult?

When can we have efficient algorithms?

The power of abstraction

Abstraction

The power of abstraction

Insights on problems

The power of abstraction

Insights on problems
Algorithmic techniques

The power of abstraction

Insights on problems
Algorithmic techniques

Common descriptive ground?

The power of abstraction

Graphs and algorithms

- Model of abstraction: Graphs

Graphs and algorithms

- Model of abstraction: Graphs

Graphs and algorithms

- Model of abstraction: Graphs
- Decision problems: answered by YES or NO

Graphs and algorithms

- Model of abstraction: Graphs
- Decision problems: answered by YES or NO

Given a graph G, does it have property X ?

Graphs and algorithms

- Model of abstraction: Graphs
- Decision problems: answered by YES or NO

Given a graph G, does it have property X ?

Graphs and algorithms

- Model of abstraction: Graphs
- Decision problems: answered by YES or NO

Given a graph G, does it have property X ?

Graphs and algorithms

- Model of abstraction: Graphs
- Decision problems: answered by YES or NO

Given a graph G, does it have property X ?
\triangleright How to describe a property?

Graphs and algorithms and logic

- Model of abstraction: Graphs
- Decision problems: answered by YES or NO

Given a graph G, does it have property X ?
\triangleright How to describe a property? \rightarrow Machine description

Graphs and algorithms and logic

- Model of abstraction: Graphs
- Decision problems: answered by YES or NO

Given a graph G, does it have property X ?
\triangleright How to describe a property? \rightarrow Machine description
\rightarrow Logic

Graphs and algorithms and logic

- Model of abstraction: Graphs
- Decision problems: answered by YES or NO

Given a graph G, does it have property X ?
\triangleright How to describe a property? \rightarrow Machine description
\rightarrow Logic (abstract language to describe properties/problems)

Graphs and algorithms and logic

- Model of abstraction: Graphs
- Decision problems: answered by YES or NO

Given a graph G, does it have property X ?
\triangleright How to describe a property? \rightarrow Machine description

$$
\rightarrow \text { Logic (abstract language to describe properties/problems) }
$$

\triangleright How to use the structure of the graph to obtain efficient algorithms ?

Meta-algorithmic perspective

Algorithmic meta-theorems (AMTs):
General mathematical conditions that allow the automatic derivation of efficient algorithms.

Meta-algorithmic perspective

Algorithmic meta-theorems (AMTs):
General mathematical conditions that allow the automatic derivation of efficient algorithms.

Conditions: logical $\left(\mathbf{C}_{L}\right) \&$ combinatorial $\left(\mathbf{C}_{C}\right)$

Meta-algorithmic perspective

Algorithmic meta-theorems (AMTs):
General mathematical conditions that allow the automatic derivation of efficient algorithms.

Conditions: logical $\left(\mathbf{C}_{L}\right) \&$ combinatorial $\left(\mathbf{C}_{C}\right)$
"every problem that is expressible by \mathbf{C}_{L}, can be solved efficiently, on instances restricted by \mathbf{C}_{C}."

Meta-algorithmic perspective

Algorithmic meta-theorems (AMTs):

General mathematical conditions that allow the automatic derivation of efficient algorithms.

Conditions: logical $\left(\mathbf{C}_{L}\right) \&$ combinatorial $\left(\mathbf{C}_{C}\right)$
"every problem that is expressible by \mathbf{C}_{L}, can be solved efficiently, on instances restricted by \mathbf{C}_{C}."
"Algorithms that give algorithms"

How to describe a property (without Logic)

When can a graph be drawn on the plane without crossings?

How to describe a property (without Logic)

When can a graph be drawn on the plane without crossings?

How to describe a property (without Logic)

When can a graph be drawn on the plane without crossings?
Kuratowski-Pontryagin theorem (1930):
G is planar $\Longleftrightarrow G$ does not contain a subdivision of K_{5} or $K_{3,3}$ as a subgraph.

How to describe a property (without Logic)

When can a graph be drawn on the plane without crossings?
Kuratowski-Pontryagin theorem (1930):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a topological minor.

How to describe a property (without Logic)

When can a graph be drawn on the plane without crossings?
Kuratowski-Pontryagin theorem (1930):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a topological minor.

How to describe a property (without Logic)

When can a graph be drawn on the plane without crossings?
Kuratowski-Pontryagin theorem (1930):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a topological minor.

How to describe a property (without Logic)

When can a graph be drawn on the plane without crossings?
Kuratowski-Pontryagin theorem (1930):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a topological minor.

How to describe a property (without Logic)

When can a graph be drawn on the plane without crossings?
Kuratowski-Pontryagin theorem (1930):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a topological minor.

How to describe a property (without Logic)

When can a graph be drawn on the plane without crossings?
Kuratowski-Pontryagin theorem (1930):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a topological minor.

How to describe a property (without Logic)

When can a graph be drawn on the plane without crossings?
Kuratowski-Pontryagin theorem (1930):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a topological minor.

How to describe a property (without Logic)

When can a graph be drawn on the plane without crossings?
Kuratowski-Pontryagin theorem (1930):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a topological minor.

Wagner's theorem (1937):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a minor.

How to describe a property (without Logic)

When can a graph be drawn on the plane without crossings?
Kuratowski-Pontryagin theorem (1930):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a topological minor.

Wagner's theorem (1937):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a minor.

How to describe a property (without Logic)

When can a graph be drawn on the plane without crossings?
Kuratowski-Pontryagin theorem (1930):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a topological minor.

Wagner's theorem (1937):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a minor.

How to describe a property (without Logic)

When can a graph be drawn on the plane without crossings?
Kuratowski-Pontryagin theorem (1930):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a topological minor.

Wagner's theorem (1937):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a minor.

How to describe a property (without Logic)

When can a graph be drawn on the plane without crossings?
Kuratowski-Pontryagin theorem (1930):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a topological minor.

Wagner's theorem (1937):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a minor.

How to describe a property (without Logic)

When can a graph be drawn on the plane without crossings?
Kuratowski-Pontryagin theorem (1930):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a topological minor.

Wagner's theorem (1937):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a minor.

How to describe a property (without Logic)

When can a graph be drawn on the plane without crossings?
Kuratowski-Pontryagin theorem (1930):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a topological minor.

Wagner's theorem (1937):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a minor.

Erdős' conjecture:
Surface embeddability of graphs is characterized by a few obstructions.

How to describe a property (without Logic)

When can a graph be drawn on the plane without crossings?
Kuratowski-Pontryagin theorem (1930):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a topological minor.

Wagner's theorem (1937):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a minor.

Erdős' conjecture:
Surface embeddability of graphs is characterized by a few obstructions.

$$
\text { (minor-minimal graphs not satisfying } \mathcal{P} \text {) }
$$

How to describe a property (without Logic)

When can a graph be drawn on the plane without crossings?
Kuratowski-Pontryagin theorem (1930):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a topological minor.

Wagner's theorem (1937):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a minor.

Erdős' conjecture:
Surface embeddability of graphs is characterized by a few obstructions.

$$
\text { (minor-minimal graphs not satisfying } \mathcal{P} \text {) }
$$

"Wagner's" conjecture:
Every minor-closed property is characterized by a few obstructions.

How to describe a property (without Logic)

When can a graph be drawn on the plane without crossings?
Kuratowski-Pontryagin theorem (1930):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a topological minor.

Wagner's theorem (1937):
G is planar $\Longleftrightarrow G$ does not contain K_{5} or $K_{3,3}$ as a minor.

Erdős' conjecture:
Surface embeddability of graphs is characterized by a few obstructions.

$$
\text { (minor-minimal graphs not satisfying } \mathcal{P} \text {) }
$$

"Wagner's" conjecture:
Every minor-closed property is characterized by a few obstructions.
(maintained on minors)

Graph Minors series

5 V Examay

，ume．
－－Me＝
－
－＝－
（mmers
\cdots

\qquad

M－4．
 －$-2=$

4 minobutrow 2 xavax V

\cdots 1

为 ＊
 \rightarrow

车 ＊vaman

－min uxam	
－mor	
	走
（2x／－1）	－
－momumamer	

－ $=$
and
 $\square=2$ 1.

－－
 \qquad asy

－上izazaz＝ 5．atunno － ＂ano
\qquad

 $=2$

（17）

$\pm=$ 5：＝in

comes
＝atatas＝5 mmooxciow

Graph Minors series

A series of 23 papers by Robertson \& Seymour [GM I, 1982],...,[GM XXIII, 2010].

Graph Minors series

A series of 23 papers by Robertson \& Seymour [GM I, 1982],...,[GM XXIII, 2010].
Seminal results of the Graph Minors series:

Graph Minors series

A series of 23 papers by Robertson \& Seymour [GM I, 1982],...,[GM XXIII, 2010].
Seminal results of the Graph Minors series:

1) Every minor-closed property is characterized by a few obstructions.

Graph Minors series

A series of 23 papers by Robertson \& Seymour [GM I, 1982],...,[GM XXIII, 2010].
Seminal results of the Graph Minors series:

1) Every minor-closed property is characterized by a few obstructions.
2) Testing whether H is a minor of G can be done in polynomial time.

Graph Minors series

A series of 23 papers by Robertson \& Seymour [GM I, 1982],...,[GM XXIII, 2010].
Seminal results of the Graph Minors series:

1) Every minor-closed property is characterized by a few obstructions.
2) Testing whether H is a minor of G can be done in polynomial time.

Main algorithmic consequence of Graph Minors:
Every minor-closed property can be decided in polynomial time.

Graph Minors series

A series of 23 papers by Robertson \& Seymour [GM I, 1982],...,[GM XXIII, 2010].
Seminal results of the Graph Minors series:

1) Every minor-closed property is characterized by a few obstructions.
2) Testing whether H is a minor of G can be done in polynomial time.

Main algorithmic consequence of Graph Minors:
Every minor-closed property can be decided in polynomial time.

- Deciding a minor-closed property is reduced to minor testing!

Graph Minors series

A series of 23 papers by Robertson \& Seymour [GM I, 1982],...,[GM XXIII, 2010].
Seminal results of the Graph Minors series:

1) Every minor-closed property is characterized by a few obstructions.
2) Testing whether H is a minor of G can be done in polynomial time.

Main algorithmic consequence of Graph Minors:
Every minor-closed property can be decided in polynomial time.

- Deciding a minor-closed property is reduced to minor testing!

Example: Planarity. Can G be drawn on the plane without crossings? In other words: Does G contain K_{5} or $K_{3,3}$ as a minor?

Graph Minors series

A series of 23 papers by Robertson \& Seymour [GM I, 1982],...,[GM XXIII, 2010].
Seminal results of the Graph Minors series:

1) Every minor-closed property is characterized by a few obstructions.
2) Testing whether H is a minor of G can be done in polynomial time.

Main algorithmic consequence of Graph Minors:
Every minor-closed property can be decided in polynomial time.

- Deciding a minor-closed property is reduced to minor testing!

Example: Planarity. Can G be drawn on the plane without crossings? In other words: Does G contain K_{5} or $K_{3,3}$ as a minor?

- The proof of 1) is non-constructive (does not give the obstructions) and is not expected to be constructive (in general).

Parameterized viewpoint

- Graph Minors: structure \rightarrow algorithms

Parameterized viewpoint

- Graph Minors: structure \rightarrow algorithms

Parameterized Computation (branch of TCS \& Mathematics):
Study of auxiliary measure conditioning the computational complexity of problems.

Parameterized viewpoint

- Graph Minors: structure \rightarrow algorithms

Parameterized Computation (branch of TCS \& Mathematics):
Study of auxiliary measure conditioning the computational complexity of problems.
\downarrow
parameter ($k=$ value of the parameter)

Parameterized viewpoint

- Graph Minors: structure \rightarrow algorithms

Parameterized Computation (branch of TCS \& Mathematics):
Study of auxiliary measure conditioning the computational complexity of problems.

Efficiency demand:

Parameterized viewpoint

- Graph Minors: structure \rightarrow algorithms

Parameterized Computation (branch of TCS \& Mathematics):
Study of auxiliary measure conditioning the computational complexity of problems.

```
    \downarrow
parameter (k= value of the parameter)
```

Efficiency demand:
Fixed-Parameter Tractable algorithms
Running time: $f(k) \cdot n^{c}$

Parameterized viewpoint

- Graph Minors: structure \rightarrow algorithms

Parameterized Computation (branch of TCS \& Mathematics):
Study of auxiliary measure conditioning the computational complexity of problems.

```
    \downarrow
parameter (k= value of the parameter)
```

Efficiency demand:
Fixed-Parameter Tractable algorithms
Running time: $\mathcal{O}_{k}\left(n^{c}\right)$

Parameterized viewpoint

- Graph Minors: structure \rightarrow algorithms

Parameterized Computation (branch of TCS \& Mathematics):
Study of auxiliary measure conditioning the computational complexity of problems.

```
    \downarrow
parameter ( }k=\mathrm{ value of the parameter)
```

Efficiency demand:
Fixed-Parameter Tractable algorithms
Running time: $\mathcal{O}_{k}\left(n^{c}\right)$
\triangleright Vibrant branch of TCS \& Mathematics the last ~ 30 years.

Parameterized viewpoint

- Graph Minors: structure \rightarrow algorithms

Parameterized Computation (branch of TCS \& Mathematics):
Study of auxiliary measure conditioning the computational complexity of problems.

```
    \downarrow
parameter ( }k=\mathrm{ value of the parameter)
```

Efficiency demand:
Fixed-Parameter Tractable algorithms
Running time: $\mathcal{O}_{k}\left(n^{c}\right)$
\triangleright Vibrant branch of TCS \& Mathematics the last ~ 30 years.
Dream: Meta-algorithmic viewpoint on Parameterized Computation.

General Goals

\triangleright When can we construct the obstruction set of a minor-closed property?

General Goals

\triangleright When can we construct the obstruction set of a minor-closed property?

Constructibility

General Goals

\triangleright When can we construct the obstruction-set of a minor-closed property?
a meta-algorithm deciding
Constructibility

General Goals

\triangleright When can we construct the obstruction-set of a minor-closed property? a meta-algorithm deciding
\triangleright Algorithmic Graph Minors theory?

General Goals

\triangleright When can we construct the obstruction-set of a minor-closed property?
a meta-algorithm deciding
\triangleright Algorithmic Graph Minors theory?

Main objective of the thesis:
\triangleright Explore the meta-algorithmic potential of structural results of Graph Minors

General Goals

\triangleright When can we construct the obstruction set of a minor-closed property? a meta-algorithm deciding
\triangleright Algorithmic Graph Minors theory?

Main objective of the thesis:
\triangleright Explore the meta-algorithmic potential of structural results of Graph Minors
Our contribution:
\triangleright A unified meta-algorithmic framework on minor exclusion.
\triangleright Extension to classes excluding topological minors.

Logics and Algorithms for Graph Minors

The 3 components of AMTs

Flat wall theorem (Local Structure theorem) [GM XIII]

Given a graph G and two integers h, k, one of the following holds:

Flat wall theorem (Local Structure theorem) [GM XIII]
Given a graph G and two integers h, k, one of the following holds:

K_{h} is a minor of G,

Flat wall theorem (Local Structure theorem) [GM XIII]
Given a graph G and two integers h, k, one of the following holds:

K_{h} is a minor of G,
G has "small" treewidth (depending only on k and h), or

Flat wall theorem (Local Structure theorem) [GM XIII]

Given a graph G and two integers h, k, one of the following holds:

there is a set A of $f(h)$ vertices of G, such that $G-A$ contains a flat k-wall W.

Flat wall theorem (Local Structure theorem) [GM XIII]

Given a graph G and two integers h, k, one of the following holds:

K_{h} is a minor of G,
G has "small" treewidth (depending only on k and h), or

there is a set A of $f(h)$ vertices of G, such that $G-A$ contains a flat k-wall W.

Flat wall theorem (Local Structure theorem) [GM XIII]

Given a graph G and two integers h, k, one of the following holds:

K_{h} is a minor of G,

G has "small" treewidth (depending only on k and h), or

there is a set A of $f(h)$ vertices of G, such that $G-A$ contains a flat k-wall W.

Flat wall theorem (Local Structure theorem) [GM XIII]

Given a graph G and two integers h, k, one of the following holds:

K_{h} is a minor of G,
G has "small" treewidth (depending only on k and h), or

there is a set A of $f(h)$ vertices of G, such that $G-A$ contains a flat k-wall W.

Flat wall theorem (Local Structure theorem) [GM XIII]

Given a graph G and two integers h, k, one of the following holds:

there is a set A of $f(h)$ vertices of G, such that $G-A$ contains a flat k-wall W.

Flat wall theorem (Local Structure theorem) [GM XIII]

Given a graph G and two integers h, k, one of the following holds:

there is a set A of $f(h)$ vertices of G, such that $G-A$ contains a flat k-wall W.

Flat wall theorem (Local Structure theorem) [GM XIII]

Given a graph G and two integers h, k, one of the following holds:

K_{h} is a minor of G,

G has "small" treewidth (depending only on k and h), or

there is a set A of $f(h)$ vertices of G, such that $G-A$ contains a flat k-wall W.

Irrelevant vertex technique [GM XIII, XXI, XXII]

Introduced in [GM XIII] to solve the Disjoint Paths problem.

Irrelevant vertex technique [GM XIII, XXI, XXII]

Introduced in [GM XIII] to solve the Disjoint Paths problem.

Irrelevant vertex technique [GM XIII, XXI, XXII]

Introduced in [GM XIII] to solve the Disjoint Paths problem.

Irrelevant vertex technique [GM XIII, XXI, XXII]

Introduced in [GM XIII] to solve the Disjoint Paths problem.

- If instance is simple (has "small" treewidth), then problem is "easily" solvable.

Irrelevant vertex technique [GM XIII, XXI, XXII]

Introduced in [GM XIII] to solve the Disjoint Paths problem.

- If instance is simple (has "small" treewidth), then problem is "easily" solvable.
- If instance is not simple enough (has "large" treewidth), then get simpler \& equivalent instance.
(by finding and removing irrelevant vertices)

Irrelevant vertex technique [GM XIII, XXI, XXII]

Introduced in [GM XIII] to solve the Disjoint Paths problem.

- If instance is simple (has "small" treewidth), then problem is "easily" solvable.
- If instance is not simple enough (has "large" treewidth), then get simpler \& equivalent instance.
(by finding and removing irrelevant vertices)
\triangleright More than 50 papers using this technique.

Irrelevant vertex technique [GM XIII, XXI, XXII]

Introduced in [GM XIII] to solve the Disjoint Paths problem.

- If instance is simple (has "small" treewidth), then problem is "easily" solvable.
- If instance is not simple enough (has "large" treewidth), then get simpler \& equivalent instance.
(by finding and removing irrelevant vertices)
\triangleright More than 50 papers using this technique.

\triangleright Why irrelevant vertices are irrelevant?

Irrelevant vertex technique [GM XIII, XXI, XXII]

Introduced in [GM XIII] to solve the Disjoint Paths problem.

- If instance is simple (has "small" treewidth), then problem is "easily" solvable.
- If instance is not simple enough (has "large" treewidth), then get simpler \& equivalent instance.
(by finding and removing irrelevant vertices)
\triangleright More than 50 papers using this technique.

\triangleright Why irrelevant vertices are irrelevant? Unique Linkage theorem
[GM XXI-XXII] [Adler, Kolliopoulos, Krause, Lokshtanov, Saurabh, Thilikos, 2017] [Kawarabayashi \& Wollan, 2010] [Mazoit, 2013]

Irrelevant vertex technique [GM XIII, XXI, XXII]

Introduced in [GM XIII] to solve the Disjoint Paths problem.

- If instance is simple (has "small" treewidth), then problem is "easily" solvable.
- If instance is not simple enough (has "large" treewidth), then get simpler \& equivalent instance.
(by finding and removing irrelevant vertices)
\triangleright More than 50 papers using this technique.

\triangleright Why irrelevant vertices are irrelevant? Unique Linkage theorem
[GM XXI-XXII] [Adler, Kolliopoulos, Krause, Lokshtanov, Saurabh, Thilikos, 2017] [Kawarabayashi \& Wollan, 2010] [Mazoit, 2013] Flat Wall theorem oráa Irrelevant vertex technique

The algorithmic paradigm of Simplification

Irrelevant vertex technique describes a simplification procedure (a data reduction).
General question: "How to simplify the input?"

Example: Does G contain a cycle of length 5 ?

Designing algorithms using Simplification

\triangleright How Simplification can aid to the design of algorithms?

- In simplified instances, problems are solved more easily.

- We need abstraction and deep understanding of the irrelevant vertex technique.

Meta-algorithmization of the irrelevant vertex technique
Our viewpoint:
Irrelevant vertex technique $=$ instantiation of the algorithmic paradigm of Simplification.

Meta-algorithmization of the irrelevant vertex technique

Our viewpoint:
Irrelevant vertex technique $=$ instantiation of the algorithmic paradigm of Simplification.
\triangleright How general this technique can be ? Meta-algorithmics of Graph Minors?

Meta-algorithmization of the irrelevant vertex technique

Our viewpoint:
Irrelevant vertex technique $=$ instantiation of the algorithmic paradigm of Simplification.
\triangleright How general this technique can be ? Meta-algorithmics of Graph Minors?
\triangleright What problems can we solve, when excluding a (topological) minor?

Meta-algorithmization of the irrelevant vertex technique

Our viewpoint:
Irrelevant vertex technique $=$ instantiation of the algorithmic paradigm of Simplification.
\triangleright How general this technique can be ? Meta-algorithmics of Graph Minors?
\triangleright What problems can we solve, when excluding a (topological) minor?
\triangleright What properties can we deal with?

Meta-algorithmization of the irrelevant vertex technique

Our viewpoint:
Irrelevant vertex technique $=$ instantiation of the algorithmic paradigm of Simplification.
\triangleright How general this technique can be ? Meta-algorithmics of Graph Minors?
\triangleright What problems can we solve, when excluding a (topological) minor?
\triangleright What properties can we deal with?
We resort to Logic.

Model checking problem for a logic \mathcal{L}

- Given a logic \mathcal{L} (on the vocabulary of graphs),

Model checking problem for a logic \mathcal{L}

- Given a $\operatorname{logic} \mathcal{L}$ (on the vocabulary of graphs), Input: A formula $\varphi \in \mathcal{L}$ and a graph G.

Model checking problem for a logic \mathcal{L}

- Given a logic \mathcal{L} (on the vocabulary of graphs), Input: A formula $\varphi \in \mathcal{L}$ and a graph G. Question: G has the property described by φ ?

Model checking problem for a logic \mathcal{L}

- Given a logic \mathcal{L} (on the vocabulary of graphs), Input: A formula $\varphi \in \mathcal{L}$ and a graph G.
Question: G has the property described by φ ?

Model checking problem for a logic \mathcal{L}

- Given a logic \mathcal{L} (on the vocabulary of graphs), Input: A formula $\varphi \in \mathcal{L}$ and a graph G.
Question: G has the property described by φ ?
G satisfies φ ? Written as " $G \models \varphi$?"

Model checking problem for a logic \mathcal{L}

- Given a logic \mathcal{L} (on the vocabulary of graphs), Input: A formula $\varphi \in \mathcal{L}$ and a graph G.
Question: G has the property described by φ ?
G satisfies φ ? Written as " $G \models \varphi$?"
AMTs in terms of model checking:

Model checking problem for a logic \mathcal{L}

- Given a logic \mathcal{L} (on the vocabulary of graphs), Input: A formula $\varphi \in \mathcal{L}$ and a graph G.
Question: G has the property described by φ ?
G satisfies φ ? Written as " $G \models \varphi$?"
AMTs in terms of model checking:
Given logic \mathcal{L} and graph class \mathcal{C},
Model checking for \mathcal{L} can be solved in polynomial time on graphs from \mathcal{C}.

Model checking problem for a logic \mathcal{L}

- Given a logic \mathcal{L} (on the vocabulary of graphs), Input: A formula $\varphi \in \mathcal{L}$ and a graph G.
Question: G has the property described by φ ?
G satisfies φ ? Written as " $G \models \varphi$?"
AMTs in terms of model checking:
Given logic \mathcal{L} and graph class \mathcal{C},
Model checking for \mathcal{L} can be solved in polynomial time on graphs from \mathcal{C}.

$$
\mathcal{O}_{|\varphi|, c_{c}}\left(n^{c}\right)
$$

Model checking problem for a logic \mathcal{L}

- Given a logic \mathcal{L} (on the vocabulary of graphs), Input: A formula $\varphi \in \mathcal{L}$ and a graph G.
Question: G has the property described by φ ?
G satisfies φ ? Written as " $G \models \varphi$?"
AMTs in terms of model checking:
Given logic \mathcal{L} and graph class \mathcal{C},
Model checking for \mathcal{L} can be solved in polynomial time on graphs from \mathcal{C}.
$\mathcal{O}_{|\varphi|, c_{c}}\left(n^{c}\right)$
size of input graph

Model checking problem for a logic \mathcal{L}

- Given a logic \mathcal{L} (on the vocabulary of graphs), Input: A formula $\varphi \in \mathcal{L}$ and a graph G.
Question: G has the property described by φ ?
G satisfies φ ? Written as " $G \models \varphi$?"
AMTs in terms of model checking:
Given logic \mathcal{L} and graph class \mathcal{C},
Model checking for \mathcal{L} can be solved in polynomial time on graphs from \mathcal{C}.

Model checking problem for a logic \mathcal{L}

- Given a logic \mathcal{L} (on the vocabulary of graphs), Input: A formula $\varphi \in \mathcal{L}$ and a graph G.
Question: G has the property described by φ ?
G satisfies φ ? Written as " $G \models \varphi$?"
AMTs in terms of model checking:
Given logic \mathcal{L} and graph class \mathcal{C},
Model checking for \mathcal{L} can be solved in polynomial time on graphs from \mathcal{C}.

constants depending on \mathcal{C}

First-Order and Monadic Second-Order logic

```
First-Order logic (FO):
```

First-Order and Monadic Second-Order logic

First-Order logic (FO):

$$
x=y|\operatorname{adj}(x, y)| \varphi \wedge \psi|\varphi \vee \psi| \neg \varphi|\exists x \varphi| \forall x \varphi
$$

First-Order and Monadic Second-Order logic

First-Order logic (FO):

$x=y|\operatorname{adj}(x, y)| \varphi \wedge \psi|\varphi \vee \psi| \neg \varphi|\exists x \varphi| \forall x \varphi$

- Does G contain H as a subgraph? $\exists x \exists y \exists z(\operatorname{adj}(x, y) \wedge \operatorname{adj}(y, z) \wedge \operatorname{adj}(x, z))$

First-Order and Monadic Second-Order logic

First-Order logic (FO):

$x=y|\operatorname{adj}(x, y)| \varphi \wedge \psi|\varphi \vee \psi| \neg \varphi|\exists x \varphi| \forall x \varphi$

- Does G contain H as a subgraph? $\exists x \exists y \exists z(\operatorname{adj}(x, y) \wedge \operatorname{adj}(y, z) \wedge \operatorname{adj}(x, z))$

Monadic Second-Order logic (MSO):
$x=y|\operatorname{adj}(x, y)| \varphi \wedge \psi|\varphi \vee \psi| \neg \varphi|\exists x \varphi| \forall x \varphi|\forall X \varphi| \exists X \varphi$

First-Order and Monadic Second-Order logic

First-Order logic (FO):

$x=y|\operatorname{adj}(x, y)| \varphi \wedge \psi|\varphi \vee \psi| \neg \varphi|\exists x \varphi| \forall x \varphi$

- Does G contain H as a subgraph? $\exists x \exists y \exists z(\operatorname{adj}(x, y) \wedge \operatorname{adj}(y, z) \wedge \operatorname{adj}(x, z))$

Monadic Second-Order logic (MSO):

$x=y|\operatorname{adj}(x, y)| \varphi \wedge \psi|\varphi \vee \psi| \neg \varphi|\exists x \varphi| \forall x \varphi|\forall X \varphi| \exists X \varphi$

- Is G 3-colorable?

$$
\begin{aligned}
\exists V_{1} \exists V_{2} \exists V_{3}(& \left(\forall x\left(x \in V_{1} \vee x \in V_{2} \vee x \in V_{3}\right)\right) \wedge \operatorname{partition}\left(V_{1}, V_{2}, V_{3}\right) \\
& \left.\wedge\left(\forall x \forall y\left(x, y \in V_{1}\right) \vee\left(x, y \in V_{2}\right) \vee\left(x, y \in V_{3}\right) \Longrightarrow \neg \operatorname{adj}(x, y)\right)\right)
\end{aligned}
$$

AMTs for FO and MSO

bounded treewidth [Courcelle, 1990] [Arnborg, Lagergren, Seese, 1991] [Borie, Parker, Tovey, 1992] bounded cliquewidth [Courcelle, Makowski, Rotics, 2000] [Oum \& Seymour, 2006]
bounded degree [Seese, 1996]
locally bounded treewidth [Frick \& Grohe, 2001]
excluding a minor [Flum \& Grohe, 2001]
locally excluding a minor [Dawar, Grohe, Kreutzer, 2007]
bounded expansion [Dvořák, Krăl, Thomas, 2011]
nowhere dense [Grohe, Kreutzer, Siebertz, 2017]
bounded twinwidth [Bonnet, Kim, Thomassé, Watrigant, 2022]
structurally bounded degree [Gajarský, Hliněný, Lokshtanov, Obdržálek, Ramanujan, 2016]
structurally bounded expansion [Gajarský, Kreutzer, Nešetrill, Ossona de Mendez, Mi. Pilipczuk, Siebertz, Torúnczyk, 2018]
structurally nowhere dense [Dreier, Mählmann, Siebertz, 2023]
structurally bounded local cliquewidth [Bonnet, Dreier, Gajarský, Kreutzer, Mählmann, Simon, Toruńczyk, 2022] monadically stable [Dreier, Eleftheriadis, Mählmann, McCarty, Mi. Pilipczuk, Toruíczyk, 2023] monadically NIP/dependent?

Algorithmic paradigms in form of AMTs

Algorithmic paradigms in form of AMTs

- Dynamic Programming: Recursive breaking into smaller subproblems.

Algorithmic paradigms in form of AMTs

- Dynamic Programming: Recursive breaking into smaller subproblems.
- Compositionality: Combining solutions of subproblems.

Algorithmic paradigms in form of AMTs

- Dynamic Programming: Recursive breaking into smaller subproblems.
- Compositionality: Combining solutions of subproblems.
\triangleright AMTs for MSO $=$ Meta-algorithmization of Dynamic Programming \& Compositionality based on tree-decomposability

Algorithmic paradigms in form of AMTs

- Dynamic Programming: Recursive breaking into smaller subproblems.
- Compositionality: Combining solutions of subproblems.
\triangleright AMTs for MSO $=$ Meta-algorithmization of Dynamic Programming \& Compositionality based on tree-decomposability

Commonly refered as Courcelle's theorem.

Algorithmic paradigms in form of AMTs

- Dynamic Programming: Recursive breaking into smaller subproblems.
- Compositionality: Combining solutions of subproblems.
\triangleright AMTs for MSO $=$ Meta-algorithmization of Dynamic Programming \& Compositionality based on tree-decomposability

Commonly refered as Courcelle's theorem.

- Locality: Focusing on "local" parts of the input is enough to solve the problem.

Algorithmic paradigms in form of AMTs

- Dynamic Programming: Recursive breaking into smaller subproblems.
- Compositionality: Combining solutions of subproblems.
\triangleright AMTs for MSO $=$ Meta-algorithmization of Dynamic Programming \& Compositionality based on tree-decomposability

Commonly refered as Courcelle's theorem.

- Locality: Focusing on "local" parts of the input is enough to solve the problem.
- Separability: Input can be split into well-separated parts.

Algorithmic paradigms in form of AMTs

- Dynamic Programming: Recursive breaking into smaller subproblems.
- Compositionality: Combining solutions of subproblems.
\triangleright AMTs for MSO $=$ Meta-algorithmization of Dynamic Programming \& Compositionality based on tree-decomposability

Commonly refered as Courcelle's theorem.

- Locality: Focusing on "local" parts of the input is enough to solve the problem.
- Separability: Input can be split into well-separated parts.
- Representative witnesses.

Algorithmic paradigms in form of AMTs

- Dynamic Programming: Recursive breaking into smaller subproblems.
- Compositionality: Combining solutions of subproblems.
\triangleright AMTs for MSO $=$ Meta-algorithmization of Dynamic Programming \& Compositionality based on tree-decomposability

Commonly refered as Courcelle's theorem.

- Locality: Focusing on "local" parts of the input is enough to solve the problem.
- Separability: Input can be split into well-separated parts.
- Representative witnesses.
\triangleright AMTs for $\mathbf{F O}=$ Meta-algorithmization of Locality \& Separability \& Representative witnesses based on sparsity

We lack of a logical-based theory for Simplification.

Logics and Algorithms for Graph Minors

Algorithmic paradigm	Logic
Dynamic Programming / Compositionality	MSO
Locality / ...	FO
Simplification	$?$

Challenge: Find a logic encompassing the algorithmic paradigm of Simplification.

Logics and Algorithms for Graph Minors

Algorithmic paradigm	Logic
Dynamic Programming / Compositionality	MSO
Locality / ...	FO
Simplification	$?$

Challenge: Find a logic encompassing the algorithmic paradigm of Simplification.

- A meta-algorithmic theory of Graph Minors?

Logics and Algorithms for Graph Minors

Algorithmic paradigm	Logic
Dynamic Programming / Compositionality	MSO
Locality / ...	FO
Simplification	$?$

Challenge: Find a logic encompassing the algorithmic paradigm of Simplification.

- A meta-algorithmic theory of Graph Minors? Bidimensionality theory \& Meta-kernelization

Logics and Algorithms for Graph Minors

Algorithmic paradigm	Logic
Dynamic Programming / Compositionality	MSO
Locality / ..	FO
Simplification	$?$

Challenge: Find a logic encompassing the algorithmic paradigm of Simplification.

- A meta-algorithmic theory of Graph Minors? Bidimensionality theory \& Meta-kernelization
\triangleright We need to create a new combinatorial ground for such a theory.

Logics and Algorithms for Graph Minors

Algorithmic paradigm	Logic
Dynamic Programming / Compositionality	MSO
Locality / ...	FO
Simplification	$?$

Challenge: Find a logic encompassing the algorithmic paradigm of Simplification.

- A meta-algorithmic theory of Graph Minors? Bidimensionality theory \& Meta-kernelization
\triangleright We need to create a new combinatorial ground for such a theory.
\triangleright "Efficiency dimension" of AMTs?

Results

Combinatorial \& Algorithmic tools

[Sau, Stamoulis, Thilikos. A more accurate view of the Flat Wall Theorem]
Under revision. Revised version in Journal of Graph Theory (JGT)
[Golovach, Stamoulis, Thilikos. Combing a Linkage in an Annulus]
SIAM Journal on Discrete Mathematics (SIDMA), 2023

AMTs

[Golovach, Stamoulis, Thilikos. Model-Checking for First-Order Logic with Disjoint Paths Predicates in Proper Minor-Closed Graph Classes]
SODA 2023
[Schirrmacher, Siebertz, Stamoulis, Thilikos, Vigny. Model Checking Disjoint-Paths Logic on Topological-Minor-Free Graph Classes]
Unpublished
[Fomin, Golovach, Sau, Stamoulis, Thilikos. Compound Logics for Modification Problems]
ICALP 2023

Efficiency dimension

[Sau, Stamoulis, Thilikos. k-apices of minor-closed graph classes. I. Bounding the obstructions] Journal of Combinatorial Theory, Series B (JCTB), 2023
[Sau, Stamoulis, Thilikos. k-apices of minor-closed graph classes. II. Parameterized algorithms]
ICALP 2020 / ACM Transactions on Algorithms (TALG), 2022
[Morelle, Sau, Stamoulis, Thilikos. Faster parameterized algorithms for modification problems to minor-closed classes]
ICALP 2023
[Golovach, Stamoulis, Thilikos. Hitting Topological Minor Models in Planar Graphs is Fixed Parameter Tractable] SODA 2020 / ACM Transactions on Algorithms (TALG), 2023

Combinatorial \& algorithmic support of our AMTs

Enhanced algorithmic versions of the Flat Wall theorem

We build on the viewpoint of [Kawarabayashi, Thomas, Wollan, 2018].

Enhanced algorithmic versions of the Flat Wall theorem

We build on the viewpoint of [Kawarabayashi, Thomas, Wollan, 2018].
(Algorithmic enhancement of) Flat Wall theorem
Input: graph G, integers r, t, Output:

- either a report that K_{t} is a minor of G or G has treewidth $\mathcal{O}_{t}(r)$, or
- a set $A \subseteq V(G)$ of size poly (t) and a flat wall W of $G-A$ of height r, "whose perimeter crops a graph of treewidth $\mathcal{O}_{t}(r)$ ".
Running time: $2^{\mathcal{O}_{t}\left(r^{2}\right)} \cdot n$

Enhanced algorithmic versions of the Flat Wall theorem

We build on the viewpoint of [Kawarabayashi, Thomas, Wollan, 2018].

Enhanced algorithmic versions of the Flat Wall theorem

We build on the viewpoint of [Kawarabayashi, Thomas, Wollan, 2018].

Enhanced algorithmic versions of the Flat Wall theorem

We build on the viewpoint of [Kawarabayashi, Thomas, Wollan, 2018].
(Algorithmic enhancement of) Flat Wall theorem
Input: graph G, integers r, t, Output:

- either a report that K_{t} is a minor of G or G has treewidth $\mathcal{O}_{t}(r)$, or
- a set $A \subseteq V(G)$ of size poly (t) and a flat wall W of $G-A$ of height r, "whose perimeter crops a graph of treewidth $\mathcal{O}_{t}(r)$ ".
Running time: $2^{\mathcal{O}_{t}\left(r^{2}\right)} \cdot n$

Enhanced algorithmic versions of the Flat Wall theorem

We build on the viewpoint of [Kawarabayashi, Thomas, Wollan, 2018].
(Algorithmic enhancement of) Flat Wall theorem
Input: graph G, integers r, t, Output:

- either a report that K_{t} is a minor of G or G has treewidth $\mathcal{O}_{t}(r)$, or
- a set $A \subseteq V(G)$ of size poly (t) and a flat wall W of $G-A$ of height r, "whose perimeter crops a graph of treewidth $\mathcal{O}_{t}(r)$ ".
Running time: $2^{\mathcal{O}_{t}\left(r^{2}\right)} \cdot n$
- We introduce new combinatorial \& algorithmic tools for flat walls, needed in our AMTs

Combing Linkages

How to deal with linkages?

Combing Linkages

How to deal with linkages?
\triangleright Avoiding a vertex is not enough! We need to comb!

Combing Linkages

How to deal with linkages?
\triangleright Avoiding a vertex is not enough! We need to comb!

Combing Linkages

How to deal with linkages?
\triangleright Avoiding a vertex is not enough! We need to comb!

Linkage Combing Lemma

There is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that if

- G is a partially disk-embedded graph,
- $(\mathcal{C}, \mathcal{P})$ is a disk-embedded railed annulus of size $f(k)$, and
- L is an annulus-avoiding linkage of size $\leqslant k$, then there is an equivalent linkage L^{\prime} that traverses the middle cycle of \mathcal{C} through \mathcal{P}.

Combing Linkages

How to deal with linkages?
\triangleright Avoiding a vertex is not enough! We need to comb!

Linkage Combing Lemma

There is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that if

- G is a partially disk-embedded graph,
- $(\mathcal{C}, \mathcal{P})$ is a disk-embedded railed annulus of size $f(k)$, and - L is an annulus-avoiding linkage of size $\leqslant k$, then there is an equivalent linkage L^{\prime} that traverses the middle cycle of \mathcal{C} through \mathcal{P}.

Combing Linkages

How to deal with linkages?
\triangleright Avoiding a vertex is not enough! We need to comb!

Linkage Combing Lemma

There is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that if

- G is a partially disk-embedded graph,
- $(\mathcal{C}, \mathcal{P})$ is a disk-embedded railed annulus of size $f(k)$, and
- L is an annulus-avoiding linkage of size $\leqslant k$, then there is an equivalent linkage L^{\prime} that traverses the middle cycle of \mathcal{C} through \mathcal{P}.

Strengthening of the Unique Linkage theorem.

Combing Linkages

How to deal with linkages?
\triangleright Avoiding a vertex is not enough! We need to comb!

Linkage Combing Lemma

There is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that if

- G is a partially disk-embedded graph,
- $(\mathcal{C}, \mathcal{P})$ is a disk-embedded railed annulus of size $f(k)$, and
- L is an annulus-avoiding linkage of size $\leqslant k$, then there is an equivalent linkage L^{\prime} that traverses the middle cycle of \mathcal{C} through \mathcal{P}.

Strengthening of the Unique Linkage theorem.
Importance: Finitely "represent" paths

Recap of the combinatorial and algorithmic support

- Enhanced algorithmic versions of the Flat Wall theorem. [Sau, Stamoulis, \& Thilikos, A more accurate view of the Flat Wall Theorem] Under revision. Revised version in Journal of Graph Theory (JGT)
- Combing linkages in annuli.
[Golovach, Stamoulis, \& Thilikos, Combing a Linkage in an Annulus] SIAM Journal on Discrete Mathematics (SIDMA), 2023

Our Algorithmic Meta-Theorems

- For MSO, bounded treewidth/cliquewidth is the "combinatorial limit".

- For MSO, bounded treewidth/cliquewidth is the "combinatorial limit".
- Logical-combinatorial compromise for Graph Minors?

Disjoint-paths logic (FO+dp)

$$
\begin{aligned}
& x=y|\operatorname{adj}(x, y)| \operatorname{dp}_{k}\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right]|\varphi \wedge \psi| \varphi \vee \psi|\neg \varphi| \exists x \varphi \mid \forall x \varphi \\
& \text { [Schirrmacher, Siebertz, \& Vigny, 2021] }
\end{aligned}
$$

Disjoint-paths logic (FO+dp)

```
\(x=y|\operatorname{adj}(x, y)| \operatorname{dp}_{k}\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right]|\varphi \wedge \psi| \varphi \vee \psi|\neg \varphi| \exists x \varphi \mid \forall x \varphi\)
[Schirrmacher, Siebertz, \& Vigny, 2021]
```

$\operatorname{dp}_{k}\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right]$ is shortcut for:
"there exist pairwise vertex-disjoint paths connecting x_{i}, y_{i} for all $i \in\{1, \ldots, k\}$ "

Disjoint-paths logic (FO+dp)

```
\(x=y|\operatorname{adj}(x, y)| \operatorname{dp}_{k}\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right]|\varphi \wedge \psi| \varphi \vee \psi|\neg \varphi| \exists x \varphi \mid \forall x \varphi\)
[Schirrmacher, Siebertz, \& Vigny, 2021]
```

$\operatorname{dp}_{k}\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right]$ is shortcut for:
"there exist pairwise vertex-disjoint paths connecting x_{i}, y_{i} for all $i \in\{1, \ldots, k\}$ "

Can express: • topological minors

Disjoint-paths logic (FO+dp)

$x=y|\operatorname{adj}(x, y)| \operatorname{dp}_{k}\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right]|\varphi \wedge \psi| \varphi \vee \psi|\neg \varphi| \exists x \varphi \mid \forall x \varphi$
[Schirrmacher, Siebertz, \& Vigny, 2021]
$\mathrm{dp}_{k}\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right]$ is shortcut for:
"there exist pairwise vertex-disjoint paths connecting x_{i}, y_{i} for all $i \in\{1, \ldots, k\}$ "

Can express: - topological minors

- Every minor-closed property (via obstructions)

Disjoint-paths logic (FO+dp)

```
\(x=y|\operatorname{adj}(x, y)| \operatorname{dp}_{k}\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right]|\varphi \wedge \psi| \varphi \vee \psi|\neg \varphi| \exists x \varphi \mid \forall x \varphi\)
[Schirrmacher, Siebertz, \& Vigny, 2021]
```

$\operatorname{dp}_{k}\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right]$ is shortcut for:
"there exist pairwise vertex-disjoint paths connecting x_{i}, y_{i} for all $i \in\{1, \ldots, k\}$ "

Can express: - topological minors

- Every minor-closed property (via obstructions)

Separator logic (FO+conn) [Schirrmacher, Siebertz, \& Vigny, 2021] [Bojańczyk, 2021]

Disjoint-paths logic (FO+dp)

$x=y|\operatorname{adj}(x, y)| \operatorname{dp}_{k}\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right]|\varphi \wedge \psi| \varphi \vee \psi|\neg \varphi| \exists x \varphi \mid \forall x \varphi$
[Schirrmacher, Siebertz, \& Vigny, 2021]
$\mathrm{dp}_{k}\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right]$ is shortcut for:
"there exist pairwise vertex-disjoint paths connecting x_{i}, y_{i} for all $i \in\{1, \ldots, k\}$ "

Can express: - topological minors

- Every minor-closed property (via obstructions)

Separator logic (FO+conn) [Schirrmacher, Siebertz, \& Vigny, 2021] [Bojańczyk, 2021] $x=y|\operatorname{adj}(x, y)| \operatorname{conn}_{k}\left(x, y, z_{1}, \ldots, z_{k}\right)|\varphi \wedge \psi| \varphi \vee \psi|\neg \varphi| \exists x \varphi \mid \forall x \varphi$ $\operatorname{conn}_{k}\left(x, y, z_{1}, \ldots, z_{k}\right)=\operatorname{dp}_{k+1}\left[(x, y),\left(z_{1}, z_{1}\right), \ldots,\left(z_{k}, z_{k}\right)\right]$

Disjoint-paths logic (FO+dp)

$x=y|\operatorname{adj}(x, y)| \operatorname{dp}_{k}\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right]|\varphi \wedge \psi| \varphi \vee \psi|\neg \varphi| \exists x \varphi \mid \forall x \varphi$
[Schirrmacher, Siebertz, \& Vigny, 2021]
$\operatorname{dp}_{k}\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right]$ is shortcut for:
"there exist pairwise vertex-disjoint paths connecting x_{i}, y_{i} for all $i \in\{1, \ldots, k\}$ "
Can express: - topological minors

- Every minor-closed property (via obstructions)

Separator logic (FO+conn) [Schirrmacher, Siebertz, \& Vigny, 2021] [Bojańczyk, 2021] $x=y|\operatorname{adj}(x, y)| \operatorname{conn}_{k}\left(x, y, z_{1}, \ldots, z_{k}\right)|\varphi \wedge \psi| \varphi \vee \psi|\neg \varphi| \exists x \varphi \mid \forall x \varphi$ $\operatorname{conn}_{k}\left(x, y, z_{1}, \ldots, z_{k}\right)=\operatorname{dp}_{k+1}\left[(x, y),\left(z_{1}, z_{1}\right), \ldots,\left(z_{k}, z_{k}\right)\right]$

$\mathrm{FO} \subseteq \mathrm{FO}+\mathrm{conn} \subseteq \mathrm{FO}+\mathrm{dp} \subseteq \mathrm{MSO}$

Model checking for $\mathrm{FO}+\mathrm{dp}$ can be done in quadratic time on graphs excluding a minor. [Golovach, Stamoulis, \& Thilikos, 2023]

Model checking for $\mathrm{FO}+\mathrm{dp}$ can be done in cubic time on graphs excluding a topological minor.
[Schirrmacher, Siebertz, Stamoulis, Thilikos, \& Vigny, 2023+]

Scattered disjoint-paths logic (FO+sdp)

[Golovach, Stamoulis, \& Thilikos, 2023]

Scattered disjoint paths predicates:
$s-\operatorname{sdp}_{k}\left(x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right)$
There are pairwise vertex-disjoint paths between x_{i} and y_{i}, for every $i \in\{1, \ldots, k\}$
s.t. no two vertices of two distinct paths are within distance $\leqslant s$.

Scattered disjoint-paths logic (FO+sdp)

[Golovach, Stamoulis, \& Thilikos, 2023]

Scattered disjoint paths predicates:
$s-\operatorname{sdp}_{k}\left(x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right)$
There are pairwise vertex-disjoint paths
between x_{i} and y_{i}, for every $i \in\{1, \ldots, k\}$
s.t. no two vertices of two distinct paths are within distance $\leqslant s$.

Scattered disjoint-paths logic (FO+sdp)

[Golovach, Stamoulis, \& Thilikos, 2023]

Scattered disjoint paths predicates:
$s-\operatorname{sdp}_{k}\left(x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right)$
There are pairwise vertex-disjoint paths between x_{i} and y_{i}, for every $i \in\{1, \ldots, k\}$
s.t. no two vertices of two distinct paths are within distance $\leqslant s$.

$\operatorname{dp}_{k}\left(x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right)=0-\operatorname{sdp}_{k}\left(x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right)$

Model checking for FO+sdp can be done in quadratic time on graphs of bounded Euler genus. [Golovach, Stamoulis, \& Thilikos, 2023]

Other families of problems where irrelevant vertex technique applies?

Graph modification problems

Graph Modification Problems:
Apply a modification \mathcal{M} to a graph such that the resulting graph has property \mathcal{P}.

Graph modification problems

Graph Modification Problems:
Apply a modification \mathcal{M} to a graph such that the resulting graph has property \mathcal{P}.

- Typically, modification is the deletion of a set of vertices (modulator)

Graph modification problems

Graph Modification Problems:

Apply a modification \mathcal{M} to a graph such that the resulting graph has property \mathcal{P}.

- Typically, modification is the deletion of a set of vertices (modulator)
- Modification is conditioned by some measure on the modulator:

Graph modification problems

Graph Modification Problems:

Apply a modification \mathcal{M} to a graph such that the resulting graph has property \mathcal{P}.

- Typically, modification is the deletion of a set of vertices (modulator)
- Modification is conditioned by some measure on the modulator: size, structural parameter,...

Graph modification problems

Graph Modification Problems:
Apply a modification \mathcal{M} to a graph such that the resulting graph has property \mathcal{P}.

- Typically, modification is the deletion of a set of vertices (modulator)
- Modification is conditioned by some measure on the modulator: size, structural parameter,...
\hookrightarrow modulator/target scheme.

Irrelevant vertices for modulators

Graph Modification Problems: One of main research areas of Parameterized Computation.

Irrelevant vertices for modulators

Graph Modification Problems: One of main research areas of Parameterized Computation.
Irrelevant vertex technique: major role in algorithms for Graph Modification Problems

Irrelevant vertices for modulators

Graph Modification Problems: One of main research areas of Parameterized Computation.
Irrelevant vertex technique: major role in algorithms for Graph Modification Problems

Examples:

[Adler, Grohe, Kreutzer, 2008]
[Marx \& Schlotter, 2012]
[Golovach, van't Hof, Paulusma, 2013]
[Kawarabayashi \& Reed, 2007]
[Kawarabayashi, 2009]
[Jansen, Lokshtanov, Saurabh, 2014]
[Kociumaka \& Pilipczuk, 2019]
[Fomin, Lokshtanov, Panolan, Saurabh, Zehavi, 2020]

Irrelevant vertices for modulators

Graph Modification Problems: One of main research areas of Parameterized Computation.
Irrelevant vertex technique: major role in algorithms for Graph Modification Problems

Examples:

[Adler, Grohe, Kreutzer, 2008]
[Marx \& Schlotter, 2012]
[Golovach, van't Hof, Paulusma, 2013]
[Kawarabayashi \& Reed, 2007]
[Kawarabayashi, 2009]
[Jansen, Lokshtanov, Saurabh, 2014]
[Kociumaka \& Pilipczuk, 2019]
[Fomin, Lokshtanov, Panolan, Saurabh, Zehavi, 2020]
Challenge: Lift the application of the technique on the target to deal with the modulator.

Irrelevant vertices for modulators

Graph Modification Problems: One of main research areas of Parameterized Computation.
Irrelevant vertex technique: major role in algorithms for Graph Modification Problems
Examples:
[Adler, Grohe, Kreutzer, 2008]
[Marx \& Schlotter, 2012]
[Golovach, van't Hof, Paulusma, 2013]
[Kawarabayashi \& Reed, 2007]
[Kawarabayashi, 2009]
[Jansen, Lokshtanov, Saurabh, 2014]
[Kociumaka \& Pilipczuk, 2019]
[Fomin, Lokshtanov, Panolan, Saurabh, Zehavi, 2020]
Challenge: Lift the application of the technique on the target to deal with the modulator.
But what if the modulator has unbounded size?

But what if the modulator has unbounded size?

Modulator: set X such that $\mathbf{p}(\operatorname{torso}(G, X)) \leqslant k$. Target: graph class \mathcal{G}.

But what if the modulator has unbounded size?

Modulator: set X such that \mathbf{p} (torso $(G, X)) \leqslant k$. Target: graph class \mathcal{G}.
$\mathbf{p}=$ treedepth: \mathcal{G}-elimination distance
[Bulian \& Dawar, 2017]

[Morelle, Sau, Stamoulis, Thilikos, 2023]
[Lindermayr, Siebertz, Vigny, 2020]
$\mathbf{p}=$ treewidth: \mathcal{G}-treewidth
[Eiben, Ganian, Hamm, Kwon, 2021]
[Jansen, de Kroon, Włodarczyk, 2021]
[Agrawal, Kanesh, Lokshtanov, Panolan, Ramanujan, Saurabh, Zehavi, 2022]
[Jansen, de Kroon, Włodarczyk, 2023]
$\mathbf{p}=$ bridge-depth: \mathcal{G}-bridge-depth
[Bougeret, Jansen, Sau, 2020]

But what if the modulator has unbounded size?

Modulator: set X such that \mathbf{p} (torso $(G, X)) \leqslant k$. Target: graph class \mathcal{G}.
$\mathbf{p}=$ treedepth: \mathcal{G}-elimination distance
[Bulian \& Dawar, 2017]

[Morelle, Sau, Stamoulis, Thilikos, 2023]
[Lindermayr, Siebertz, Vigny, 2020]
$\mathbf{p}=$ treewidth: \mathcal{G}-treewidth
[Eiben, Ganian, Hamm, Kwon, 2021]
[Jansen, de Kroon, Włodarczyk, 2021]

> One meta-theorem that deals with all these cases?
[Agrawal, Kanesh, Lokshtanov, Panolan, Ramanujan, Saurabh, Zehavi, 2022]
[Jansen, de Kroon, Włodarczyk, 2023]
$\mathbf{p}=$ bridge-depth: \mathcal{G}-bridge-depth
[Bougeret, Jansen, Sau, 2020]

But what if the modulator has unbounded size?

Modulator: set X such that $\mathbf{p}(\operatorname{torso}(G, X)) \leqslant k$. Target: graph class \mathcal{G}.
$\mathbf{p}=$ treedepth: \mathcal{G}-elimination distance
[Bulian \& Dawar, 2017]

[Morelle, Sau, Stamoulis, Thilikos, 2023]
[Lindermayr, Siebertz, Vigny, 2020]
$\mathbf{p}=$ treewidth: \mathcal{G}-treewidth
[Eiben, Ganian, Hamm, Kwon, 2021]
[Jansen, de Kroon, Włodarczyk, 2021]

One meta-theorem that deals with all these cases?

[Agrawal, Kanesh, Lokshtanov, Panolan, Ramanujan, Saurabh, Zehavi, 2022]
[Jansen, de Kroon, Włodarczyk, 2023]
$\mathbf{p}=$ bridge-depth: \mathcal{G}-bridge-depth
[Bougeret, Jansen, Sau, 2020]
$\mathbf{p}=$ pathwidth, cutwidth, vertex cover, feedback vertex set, branchwidth, carving-width,...

Compound logics

A study on unbounded size but "structured" modulators.
Motivation: algorithm-driven

Compound logics

A study on unbounded size but "structured" modulators.
Motivation: algorithm-driven

- For logics $\mathcal{L}_{1}, \mathcal{L}_{2}$, we define

$$
\mathcal{L}_{1} \triangleright \mathcal{L}_{2}
$$

Compound logics

A study on unbounded size but "structured" modulators.
Motivation: algorithm-driven

- For logics $\mathcal{L}_{1}, \mathcal{L}_{2}$, we define

$$
\longrightarrow \mathcal{L}_{1} \triangleright \mathcal{L}_{2}
$$

Modulator
(on annotated graphs (G, X))

Compound logics

A study on unbounded size but "structured" modulators.
Motivation: algorithm-driven

- For logics $\mathcal{L}_{1}, \mathcal{L}_{2}$, we define

Modulator
(on annotated graphs (G, X))

Target
(on graphs)

Compound logics

A study on unbounded size but "structured" modulators.
Motivation: algorithm-driven

- For logics $\mathcal{L}_{1}, \mathcal{L}_{2}$, we define

Modulator (on annotated graphs (G, X))

Target
(on graphs)

Formulas of the form: There is a set X such that

Compound logics

A study on unbounded size but "structured" modulators.
Motivation: algorithm-driven

- For logics $\mathcal{L}_{1}, \mathcal{L}_{2}$, we define

$$
\sim \mathcal{L}_{1} \triangleright \mathcal{L}_{2}
$$

> Modulator (on annotated graphs (G, X))

$$
\begin{gathered}
\text { Target } \\
\text { (on graphs) }
\end{gathered}
$$

Formulas of the form: There is a set X such that

- $\operatorname{torso}(G, X)$ has bounded treewidth and satisfies a formula $\beta \in \mathcal{L}_{1}$

Compound logics

A study on unbounded size but "structured" modulators.
Motivation: algorithm-driven

- For logics $\mathcal{L}_{1}, \mathcal{L}_{2}$, we define

$$
\longrightarrow \mathcal{L}_{1} \triangleright \mathcal{L}_{2}
$$

> Modulator (on annotated graphs (G, X))

$$
\begin{gathered}
\text { Target } \\
\text { (on graphs) }
\end{gathered}
$$

Formulas of the form: There is a set X such that

- torso (G, X) has bounded treewidth and satisfies a formula $\beta \in \mathcal{L}_{1}$
- $G-X$ satisfies a formula $\gamma \in \mathcal{L}_{2}$

Compound logics

A study on unbounded size but "structured" modulators.
Motivation: algorithm-driven

- For logics $\mathcal{L}_{1}, \mathcal{L}_{2}$, we define

$$
\longrightarrow \mathcal{L}_{1} \triangleright \mathcal{L}_{2}
$$

> Modulator (on annotated graphs (G, X))

Formulas of the form: There is a set X such that

- torso (G, X) has bounded treewidth and satisfies a formula $\beta \in \mathcal{L}_{1}$
- $G-X$ satisfies a formula $\gamma \in \mathcal{L}_{2}$

$\tilde{\Theta}^{\mathrm{dp}}$ corresponds to $\mathrm{MSO} \triangleright(\mathrm{MSO} \triangleright \ldots(\mathrm{MSO} \triangleright \mathrm{FO}+\mathrm{dp}))$

Model checking for $\tilde{\Theta}^{\mathrm{dp}}$ can be done in quadratic time on graphs excluding a minor.
[Fomin, Golovach, Sau, Stamoulis, \& Thilikos, 2023]

Model checking for $\tilde{\Theta}^{\text {sdp }}$ can be done in quadratic time on graphs of bounded Euler genus.
[Fomin, Golovach, Sau, Stamoulis, \& Thilikos, 2023]

Our AMTs

- Fragments of MSO that are algorithmically well-behaved beyond bounded treewidth.

Our AMTs

- Fragments of MSO that are algorithmically well-behaved beyond bounded treewidth.
\triangleright (Scattered) Disjoint-paths logic encodes paths.

Our AMTs

- Fragments of MSO that are algorithmically well-behaved beyond bounded treewidth.
\triangleright (Scattered) Disjoint-paths logic encodes paths.
\triangleright Compound logics encode modulators.

Our AMTs

- Fragments of MSO that are algorithmically well-behaved beyond bounded treewidth.
\triangleright (Scattered) Disjoint-paths logic encodes paths.
\triangleright Compound logics encode modulators.
Meta-algorithmize irrelevant vertex technique.

Our AMTs

- Fragments of MSO that are algorithmically well-behaved beyond bounded treewidth.
\triangleright (Scattered) Disjoint-paths logic encodes paths.
\triangleright Compound logics encode modulators.
\checkmark Meta-algorithmize irrelevant vertex technique.
[Golovach, Stamoulis, \& Thilikos, Model-Checking for First-Order Logic with Disjoint Paths Predicates in
Proper Minor-Closed Graph Classes]
SODA 2023
[Schirrmacher, Siebertz, Stamoulis, Thilikos, \& Vigny, Model Checking Disjoint-Paths Logic on Topological-Minor-Free Graph Classes]
Unpublished
[Fomin, Golovach, Sau, Stamoulis, \& Thilikos, Compound Logics for Modification Problems]
ICALP 2023

"Efficiency axis"

Back to Graph Minors

Goal: Identify large families of problems where running times can be improved.

Back to Graph Minors

Goal: Identify large families of problems where running times can be improved.

Modulator/target scheme:
Modulator: set of $\leqslant k$ vertices
Target: property \mathcal{P}

Back to Graph Minors

Goal: Identify large families of problems where running times can be improved.

Modulator/target scheme:
Modulator: set of $\leqslant k$ vertices
Target: property \mathcal{P}

What if \mathcal{P} is characterized by exclusion of some graphs as (topological) minors?
\mathcal{F}-Minor-DELETION and \mathcal{F}-Topological-Minor-DELETION

For finite set of graphs \mathcal{F} :

\mathcal{F}-Minor-deletion and \mathcal{F}-Topological-Minor-deletion

For finite set of graphs \mathcal{F} :
\mathcal{F}-Minor-deletion:
Delete $\leqslant k$ vertices such that the obtained graph does not contain any $F \in \mathcal{F}$ as a minor.
\mathcal{F}-Minor-deletion and \mathcal{F}-Topological-Minor-deletion

For finite set of graphs \mathcal{F} :
\mathcal{F}-Minor-Deletion:
Delete $\leqslant k$ vertices such that the obtained graph does not contain any $F \in \mathcal{F}$ as a minor.
\mathcal{F}-Topological-Minor-Deletion:
Delete $\leqslant k$ vertices such that the obtained graph does not contain any $F \in \mathcal{F}$ as topological minor.

\mathcal{F}-Minor-DELETION

[Robertson \& Seymour, GM I-GM XXII]: \mathcal{F}-MINOR-DELETION is solvable (non-constructively).

\mathcal{F}-Minor-DELETION

[Robertson \& Seymour, GM I-GM XXII]: \mathcal{F}-MINOR-DELETION is solvable (non-constructively). [Adler, Grohe, \& Kreutzer, 2012]: Constructive but implicit bound on running time.

\mathcal{F}-Minor-DELETION

[Robertson \& Seymour, GM I-GM XXII]: \mathcal{F}-MINOR-DELETION is solvable (non-constructively). [Adler, Grohe, \& Kreutzer, 2012]: Constructive but implicit bound on running time.

Our results:

Bounding the obstructions

Obstructions of yes-instances of \mathcal{F}-Minor-deletion have size $\leqslant f(k, \mathcal{F})$

\mathcal{F}-Minor-DELETION

[Robertson \& Seymour, GM I-GM XXII]: \mathcal{F}-MINOR-DELETION is solvable (non-constructively). [Adler, Grohe, \& Kreutzer, 2012]: Constructive but implicit bound on running time.

Our results:

Bounding the obstructions

Obstructions of yes-instances of \mathcal{F}-Minor-DELETION have size $\leqslant f(k, \mathcal{F})=2^{2^{2^{2^{\text {poly }} \mathcal{F}(k)}}}$

\mathcal{F}-Minor-DELETION

[Robertson \& Seymour, GM I-GM XXII]: \mathcal{F}-MINOR-DELETION is solvable (non-constructively). [Adler, Grohe, \& Kreutzer, 2012]: Constructive but implicit bound on running time.

Our results:

Bounding the obstructions

Obstructions of yes-instances of \mathcal{F}-MinOR-DELETION have size $\leqslant f(k, \mathcal{F})=2^{2^{2^{2^{\text {poly }}} \boldsymbol{\mathcal { F }}(k)}}$
\Longrightarrow First explicit upper-bound on the running time of algorithm for \mathcal{F}-MinOR-DELETION.

\mathcal{F}-Minor-DELETION

[Robertson \& Seymour, GM I-GM XXII]: \mathcal{F}-MINOR-DELETION is solvable (non-constructively). [Adler, Grohe, \& Kreutzer, 2012]: Constructive but implicit bound on running time.

Our results:

Bounding the obstructions

Obstructions of yes-instances of \mathcal{F}-Minor-deletion have size $\leqslant f(k, \mathcal{F})=2^{2^{2^{2^{\text {poly }} \mathcal{F}(k)}}}$
\Longrightarrow First explicit upper-bound on the running time of algorithm for \mathcal{F}-Minor-deletion.

Improved algorithm for \mathcal{F}-Minor-deletion
\mathcal{F}-Minor-DELETION is solvable in time $2^{\text {poly }_{\mathcal{F}}(k)} \cdot n^{2}$.

\mathcal{F}-Topological-Minor-DELETION

Not encompassed by classical Graph Minors.

\mathcal{F}-Topological-Minor-DELETION

Not encompassed by classical Graph Minors.
[Fomin, Lokshtanov, Panolan, Saurabh, and Zehavi, 2020]: Solvable in time $\mathcal{O}_{\mathcal{F}, k}\left(n^{4}\right)$.

\mathcal{F}-Topological-Minor-DELETION

Not encompassed by classical Graph Minors.
[Fomin, Lokshtanov, Panolan, Saurabh, and Zehavi, 2020]: Solvable in time $\mathcal{O}_{\mathcal{F}, k}\left(n^{4}\right)$.

Improved algorithm for \mathcal{F}-Topological-Minor-deletion
\mathcal{F}-Topological-Minor-Deletion is solvable in time $2^{\mathcal{O}_{\mathcal{F}, g}\left(k^{2}\right)} \cdot n^{2}$ on graphs of Euler genus $\leqslant g$.

"Efficiency axis"

[Sau, Stamoulis, \& Thilikos, k-apices of minor-closed graph classes. I. Bounding the obstructions] Journal of Combinatorial Theory, Series B (JCTB), 2023
[Sau, Stamoulis, Thilikos, k-apices of minor-closed graph classes. II. Parameterized algorithms] ICALP 2020

ACM Transactions on Algorithms (TALG), 2022
[Morelle, Sau, Stamoulis, Thilikos, Faster parameterized algorithms for modification problems to minor-closed classes] ICALP 2023
[Golovach, Stamoulis, Thilikos, Hitting Topological Minor Models in Planar Graphs is Fixed Parameter Tractable] SODA 2020

ACM Transactions on Algorithms (TALG), 2023

Recap of results of the thesis

Recap of results of the thesis

Recap of results of the thesis

- Combinatorial \& algorithmic support for AMTs.
- AMTs abstractizing irrelevant vertex technique.

Recap of results of the thesis

- Combinatorial \& algorithmic support for AMTs.
- AMTs abstractizing irrelevant vertex technique.
- Advance in the efficiency dimension of AMTs.

Recap of results of the thesis

- Combinatorial \& algorithmic support for AMTs.
- AMTs abstractizing irrelevant vertex technique.
- Advance in the efficiency dimension of AMTs.

What was needed:

Recap of results of the thesis

- Combinatorial \& algorithmic support for AMTs.
- AMTs abstractizing irrelevant vertex technique.
- Advance in the efficiency dimension of AMTs.

What was needed:
\triangleright New combinatorial tools

Recap of results of the thesis

- Combinatorial \& algorithmic support for AMTs.
- AMTs abstractizing irrelevant vertex technique.
- Advance in the efficiency dimension of AMTs.

What was needed:
\triangleright New combinatorial tools
\triangleright Understanding common logical description of problems (algorithmic paradigm of Simplification)

Recap of results of the thesis

- Combinatorial \& algorithmic support for AMTs.
- AMTs abstractizing irrelevant vertex technique.
- Advance in the efficiency dimension of AMTs.

What was needed:
\triangleright New combinatorial tools
\triangleright Understanding common logical description of problems (algorithmic paradigm of Simplification)
\triangleright New ideas to obtain efficient algorithms.

Outline of some ingredients of our proofs

How to meta-algorithmize Simplification?

How to meta-algorithmize Simplification?

What is Courcelle's theorem?

How to meta-algorithmize Simplification?

What is Courcelle's theorem?

Subroutine: Recursively compute the MSO-type of the instance.
(all satisfiable MSO-formulas of certain \# of quantifiers)

How to meta-algorithmize Simplification?

What is Courcelle's theorem?

Subroutine: Recursively compute the MSO-type of the instance.

- Compositionality of MSO on small size interface. [Feferman-Vaught theorem]

How to meta-algorithmize Simplification?

What is Courcelle's theorem?

Subroutine: Recursively compute the MSO-type of the instance.

- Compositionality of MSO on small size interface. [Feferman-Vaught theorem]
\triangleright Simplification: Reduction to type-representative of small size.

How to meta-algorithmize Simplification?

What is Courcelle's theorem?

Subroutine: Recursively compute the MSO-type of the instance.

- Compositionality of MSO on small size interface. [Feferman-Vaught theorem]
\triangleright Simplification: Reduction to type-representative of small size.

How to meta-algorithmize Simplification?

What is Courcelle's theorem?

Subroutine: Recursively compute the MSO-type of the instance.

- Compositionality of MSO on small size interface. [Feferman-Vaught theorem]
\triangleright Simplification: Reduction to type-representative of small size.

How to meta-algorithmize Simplification?

What is Courcelle's theorem?

Subroutine: Recursively compute the MSO-type of the instance.

- Compositionality of MSO on small size interface. [Feferman-Vaught theorem]
\triangleright Simplification: Reduction to type-representative of small size.

For our AMTs: "Local-to-Global" approach

How to meta-algorithmize Simplification?

What is Courcelle's theorem?

Subroutine: Recursively compute the MSO-type of the instance.

- Compositionality of MSO on small size interface. [Feferman-Vaught theorem]
\triangleright Simplification: Reduction to type-representative of small size.

For our AMTs: "Local-to-Global" approach
Idea: Simplify flat parts of the input.

How to meta-algorithmize Simplification?

What is Courcelle's theorem?

Subroutine: Recursively compute the MSO-type of the instance.

- Compositionality of MSO on small size interface. [Feferman-Vaught theorem]
\triangleright Simplification: Reduction to type-representative of small size.

For our AMTs: "Local-to-Global" approach
Idea: Simplify flat parts of the input.

- Compositionality on unbounded size interface (in flat part).

How to meta-algorithmize Simplification?

What is Courcelle's theorem?

Subroutine: Recursively compute the MSO-type of the instance.

- Compositionality of MSO on small size interface. [Feferman-Vaught theorem]
\triangleright Simplification: Reduction to type-representative of small size.

For our AMTs: "Local-to-Global" approach
Idea: Simplify flat parts of the input.

- Compositionality on unbounded size interface (in flat part).
\hookrightarrow Combing Lemma.

How to meta-algorithmize Simplification?

What is Courcelle's theorem?

Subroutine: Recursively compute the MSO-type of the instance.

- Compositionality of MSO on small size interface. [Feferman-Vaught theorem]
\triangleright Simplification: Reduction to type-representative of small size.

For our AMTs: "Local-to-Global" approach Idea: Simplify flat parts of the input.

- Compositionality on unbounded size interface (in flat part).
\hookrightarrow Combing Lemma.
Local simplifications are global simplifications.

How to meta-algorithmize Simplification?

What is Courcelle's theorem?

Subroutine: Recursively compute the MSO-type of the instance.

- Compositionality of MSO on small size interface. [Feferman-Vaught theorem]
\triangleright Simplification: Reduction to type-representative of small size.

For our AMTs: "Local-to-Global" approach Idea: Simplify flat parts of the input.

- Compositionality on unbounded size interface (in flat part). \hookrightarrow Combing Lemma.

Local simplifications are global simplifications.

\triangleright Simplify locally using Courcelle's theorem.

How to meta-algorithmize Simplification?

What is Courcelle's theorem?

Subroutine: Recursively compute the MSO-type of the instance.

- Compositionality of MSO on small size interface. [Feferman-Vaught theorem]
\triangleright Simplification: Reduction to type-representative of small size.

For our AMTs: "Local-to-Global" approach Idea: Simplify flat parts of the input.

- Compositionality on unbounded size interface (in flat part). \hookrightarrow Combing Lemma.

Local simplifications are global simplifications.

\triangleright Simplify locally using Courcelle's theorem.

How to meta-algorithmize Simplification?

What is Courcelle's theorem?

Subroutine: Recursively compute the MSO-type of the instance.

- Compositionality of MSO on small size interface. [Feferman-Vaught theorem]
\triangleright Simplification: Reduction to type-representative of small size.

For our AMTs: "Local-to-Global" approach Idea: Simplify flat parts of the input.

- Compositionality on unbounded size interface (in flat part).
\hookrightarrow Combing Lemma.

Local simplifications are global simplifications.

\triangleright Simplify locally using Courcelle's theorem.

How to meta-algorithmize Simplification?

What is Courcelle's theorem?

Subroutine: Recursively compute the MSO-type of the instance.

- Compositionality of MSO on small size interface. [Feferman-Vaught theorem]
\triangleright Simplification: Reduction to type-representative of small size.

For our AMTs: "Local-to-Global" approach
Idea: Simplify flat parts of the input.

- Compositionality on unbounded size interface (in flat part).
\hookrightarrow Combing Lemma.
Local simplifications are global simplifications.
\triangleright Simplify locally using Courcelle's theorem.

How to meta-algorithmize Simplification?

What is Courcelle's theorem?

Subroutine: Recursively compute the MSO-type of the instance.

- Compositionality of MSO on small size interface. [Feferman-Vaught theorem]
\triangleright Simplification: Reduction to type-representative of small size.

For our AMTs: "Local-to-Global" approach
Idea: Simplify flat parts of the input.

- Compositionality on unbounded size interface (in flat part). \hookrightarrow Combing Lemma.
Local simplifications are global simplifications.
\triangleright Simplify locally using Courcelle's theorem.

Conclusions \& Perspectives

Conclusion

- Combinatorial \& algorithmic support for AMTs.
- AMTs abstractizing irrelevant vertex technique (algorithmic paradigm of Simplification).
- Advance in the efficiency dimension of AMTs.

What to do next?

What to do next?

\triangleright Can our AMTs be generalized to more general classes?

What to do next?

\triangleright Can our AMTs be generalized to more general classes?
\triangleright What is the "logical" limit on minor-closed classes?

What to do next?

\triangleright Can our AMTs be generalized to more general classes?
\triangleright What is the "logical" limit on minor-closed classes?

\triangleright Two challenges in the "efficiency dimension":

What to do next?

\triangleright Can our AMTs be generalized to more general classes?
\triangleright What is the "logical" limit on minor-closed classes?

\triangleright Two challenges in the "efficiency dimension":

- Break the barrier of $\mathcal{O}\left(n^{2}\right)$-time for irrelevant vertex technique?

What to do next?

\triangleright Can our AMTs be generalized to more general classes?
\triangleright What is the "logical" limit on minor-closed classes?

\triangleright Two challenges in the "efficiency dimension":

- Break the barrier of $\mathcal{O}\left(n^{2}\right)$-time for irrelevant vertex technique?

$$
\mathcal{O}\left(n^{2-\varepsilon}\right) ? \quad \mathcal{O}\left(n^{1+\varepsilon}\right) ? \quad \mathcal{O}\left(n^{1+o(1)}\right) ? \quad \mathcal{O}(n \cdot \operatorname{poly} \log (n)) ? \quad \mathcal{O}(n) ?
$$

What to do next?

\triangleright Can our AMTs be generalized to more general classes?
\triangleright What is the "logical" limit on minor-closed classes?

\triangleright Two challenges in the "efficiency dimension":

- Break the barrier of $\mathcal{O}\left(n^{2}\right)$-time for irrelevant vertex technique?
- Elementary model checking? Running-time with elementary dependency on $|\varphi|$.

What to do next?

\triangleright Can our AMTs be generalized to more general classes?
\triangleright What is the "logical" limit on minor-closed classes?

\triangleright Two challenges in the "efficiency dimension":

- Break the barrier of $\mathcal{O}\left(n^{2}\right)$-time for irrelevant vertex technique?
- Elementary model checking? Running-time with elementary dependency on $|\varphi|$.

$$
\left.\left.2^{2^{\cdot 2^{||\varphi|}}}\right\} \text { depends on }|\varphi| \quad \rightarrow 2^{2^{\cdot 2^{|\varphi|}}}\right\} \text { does not depend on }|\varphi|
$$

What to do next?

\triangleright Can our AMTs be generalized to more general classes? WiP
\triangleright What is the "logical" limit on minor-closed classes? WiP

\triangleright Two challenges in the "efficiency dimension":

- Break the barrier of $\mathcal{O}\left(n^{2}\right)$-time for irrelevant vertex technique? WiP
- Elementary model checking? Running-time with elementary dependency on $|\varphi|$. WiP

What we do next?

\triangleright Can our AMTs be generalized to more general classes?
\triangleright What is the "logical" limit on minor-closed classes?

\triangleright Two challenges in the "efficiency dimension":

- Break the barrier of $\mathcal{O}\left(n^{2}\right)$-time for irrelevant vertex technique?
- Elementary model checking? Running-time with elementary dependency on $|\varphi|$.

AMTs in Distributed Computing? Dynamic algorithms? Query enumeration?

Other research projects during Ph.D. studies (not included in the thesis)

```
[Fomin, Golovach, Korhonen, Simonov, Stamoulis. Fixed-Parameter Tractability of Maximum Colored Path and Beyond]
SODA 2023
[Fomin, Golovach, Korhonen, Lokshtanov, Stamoulis. Shortest Cycles With Monotone Submodular Costs]
SODA }202
ACM Transactions on Algorithms (TALG), 2023
[Fomin, Golovach, Korhonen, Stamoulis. Computing paths of large rank in planar frameworks deterministically]
ISAAC 2023
[Diner, Giannopoulou, Stamoulis, Thilikos. Block Elimination Distance]
WG }202
Graphs and Combinatorics (GCOM), 2022
[Kontogeorgiou, Leivaditis, Psaromiligkos, Stamoulis, Zoros. Branchwidth is (1,g)-self-dual]
    Under revision
```

