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Hadamard Matrices (J. Hadamard, 1893)

Definition: An n× n matrix, A = [aij],

aij ∈ {−1,1}, is Hadamard (order n)

⇐⇒ ATA = nI.

Properties: It can be easily shown that:

1. ∀B = [bij], n× n, with bij ∈ [−1,1],

|detB| ≤ |detA| = nn/2.

2. Rows (and columns) of A are orthogonal.

3. A−1 = 1
nA

T .



4. Hadamard matrices of order n can only ex-

ist for n = 1, 2 or 4m|m ∈ Z+.

5. ∃ Hadamard matrices of order n for:

(a) n = 1, 2;

(b) 2m, if ∃ Hadamard matrix of order m;

(c) 4m if 4m− 1 is prime.

Hadamard Conjecture: ∃ Hadamard matrix

order n = 4m, for all m ∈ Z.

Currently known for m = 1,2, · · · ,106.

Does there exists a Hadamard matrix of order

428?



Sylvester Matrices

(A family of Hadamard matrices.)

Definition:

H0 = [1]; H1 =

[

1 1
1 −1

]

and for n ≥ 1

Hn+1 = H1 ⊗Hn =

[

Hn Hn
Hn −Hn

]

.

Hence

H2 =











1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1











,



H3 =































1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1































,

etc.



Substitution Models:

Given the set

Σ = {σ0, σ1, · · · , σn}

of homologous aligned (without gaps) nucleotide

sequences, the common problem of phylogeny

is to discover the evolutionary relationship (as

a phylogenetic tree) connecting these sequences.

The method (class of methods) called Maxi-

mum Likelihood requires us to propose a model

of nucleotide substitutions across the edges of

a putative phylogenetic tree T = (V,E).

The set leaves L ⊆ V at the tips of the T

represents the n + 1 sequences, the remain-

ing vertices are putative ancestors descending

from the root R which represents the common

ancestor of all the sequences.
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σ0 σ1 · · · σn

R

T :

We need to specify the distribution π of nu-

cleotides at the root R and some model pa-

rameters at each edge e of T .

These parameters are often described by a rate

matrix Q (common to all edges) together with

an edge length (time) te for each edge e.



The simplest substitution rate model for the

four DNA (or RNA) nucleotides is that of Jukes

and Cantor (JC), where each possible substi-

tution is postulated to occur at the same com-

mon rate α.

Q =











−3α α α α
α −3α α α
α α −3α α
α α α −3α











.

Other rate matrices commonly used include

Kimura’s two substitution types model (K2ST)

and the five parameter model of Hasegawa,

Kishino and Yano (HKY85).
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Kimura’s 3-substitution type model.

The rate matrix for Kimura’s 3ST model is

Q =











−K α β γ
α −K γ β
β γ −K α
γ β α −K











,

where K = α + β + γ. The α substitutions

are transitions, the β and γ substitutions are

transversions.



The rate matrix for Kimura’s 3ST model is

Q =











−K α β γ
α −K γ β
β γ −K α
γ β α −K











,

where K = α+ β + γ.

Setting β := γ gives Kimura’s 2ST model,

setting γ := β := α gives the Jukes Cantor

model.

For the time period te across an edge e of

T , the probability of observing the nucleotide

substitution X → Y is the (X, Y) entry of the

stochastic matrix

Pe = exp(Qte),

where matrix exponentiation of a 4× 4 matrix

M is obtained by the power series

exp(M) = I4 +
∑

j≥1

M j

j!
.



The computations are made much easier as we

find the rows of the 4 × 4 Hadamard matrix

H := H2 =











1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1











are the eigenvectors of Q (and hence of P ), so

H diagonalises both. Thus

HQH = −2











0 0 0 0
0 α+ γ 0 0
0 0 β + γ 0
0 0 0 α+ β











,

so

HPeH = Exp(HQHte) =











1 0 0 0
0 pe(α) 0 0
0 0 pe(β) 0
0 0 0 pe(γ)











,

where

pe(α) = exp(−2(α+γ)te), pe(β) = exp(−2(β + γ)te),

pe(γ) = exp(−2(α+ β)te).



For a vector v = [vi] and a matrix M = [mi,j]

we will define the functions Exp and its in-

verse Ln to mean applying the usual exponen-

tial (exp) and natural logarithm (ln) functions

respectively to each component of the vector

or matrix. Thus

Exp(v) = [exp(vi)], Ln(v) = [ln(vi)],

and

Exp(M) = [exp(mi,j)], Ln(M) = [ln(mi,j)].

Thus on diagonalising Pe = exp(Qte) becomes

Pe = H−1(Exp(HQteH))H−1 (1)

which can be directly inverted The arguments

of the log function must be positive) to give:

Qte = H−1(Ln(HPeH))H−1 (2)

Equations ?? and ?? are examples of Hadamard

conjugation.



The independent parameters can be taken as

the three edge lengths (distances)

qe(α) = αte, qe(β) = βte and qe(γ) = γte,

which are the expected numbers of each type

of substitution across e, or as

pe(α), pe(β) and pe(γ),

the probability of observing each type of sub-

stitution between the endpoints of edge e.

We do not need to refer to rates and time

independently.



Hadamard Conjugation on an X−tree:

For an X−tree T (a tree with leaf set X =

{0,1, · · · , n}) we can include Qte and Pe for each

edge e of T , in suitably defined matrices Q(T )
and P (T ) of 2n rows and columns.

The entries of P (T ) refer to the probabilities

of each the 4n possible site difference patterns

that can occur among the sequences which
evolved on T . These probabilities are inde-

pendent of the location of the root R and the
nucleotide distribution there.

Q(T ) is a sparse matrix (most entries 0). The

leading entry is −K, where

K =
∑

e∈E

qe(α) + qe(β) + qe(γ).

The 3 edge-lengths for each edge e of T occur

in corresponding positions of the leading row

(qe(α)), column (qe(β)) and diagonal (qe(γ)).
All other entries are 0.

The positive entries of Q(T ) define the edges

of T .



The matrix Q(T ) is called an edge length spec-

trum for T .

The matrix P (T ) is called the expected se-

quence spectrum of Q(T ).

These spectra are related by the Hadamard

conjugations

P (T ) = H−1(Exp(HQ(T )H))H−1 (3)

and

Q(T ) = H−1(Ln(HP (T )H))H−1, (4)

where H = Hn is the n−th Sylvester matrix,

and H−1 = 2−nH.

Note that all these matrices have 4n entries.

Using Fast Hadamard Multiplication the com-

putations (3) and (4) can be achieved using

O(4n) space and O(n4n) time. However these

computational resources grow exponentially, and

equations (3) and (4) are not practical for large

values of n. (n > 30.)



APPLICATIONS

• Sequence Analysis - Phylogenetic Invari-

ants

• Proof of invertibility

• Maximum Parsimony

• Corrected Parsimony

• Maximum Likelihood

• Sample sequence generation
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t = 1

t = 2

t = 3

In this tree we will assume the molecular clock

applies with the K2ST model with a fixed ti/tv

ratio. We willset α = 0.05, and β = γ = 0.01.

Then the edge-length spectrum is

Q =































−0.63 0.05 0.10 0 0.20 0 0.05 0.05
0.01 0.01 0 0 0 0 0 0
0.02 0 0.02 0 0 0 0 0

0 0 0 0 0 0 0 0
0.04 0 0 0 0.04 0 0 0

0 0 0 0 0 0 0 0
0.01 0 0 0 0 0 0.01 0
0.01 0 0 0 0 0 0 0.01































.



Q =































−0.63 0.05 0.10 0 0.20 0 0.05 0.05
0.01 0.01 0 0 0 0 0 0
0.02 0 0.02 0 0 0 0 0

0 0 0 0 0 0 0 0
0.04 0 0 0 0.04 0 0 0

0 0 0 0 0 0 0 0
0.01 0 0 0 0 0 0.01 0
0.01 0 0 0 0 0 0 0.01































.

Using ?? we find

P =
1

16
H(Exp(HQH))H

= 10−3































658 40 68 11 133 43 15 37
7 7 1 1 2 2 1 1

15 1 15 1 3 2 3 2
3 0 0 1 0 0 0 0

32 3 3 4 32 3 3 2
1 0 1 0 1 0 1 0
8 2 1 0 2 8 0 1
7 1 1 1 1 1 1 7































.



Inversion - Tree prediction

With aligned homologous sequences, we might

take the observed frequencies of relative pat-

terns P̂ as an approximation to the expected

sequence probabilities. Can we interpret

Q̂ = H−1(Ln(HP̂H))H−1,

as an approximation to the edge length spec-

trum for some tree T?



Example

Using five hemoglobin ψ−pseudogenes of 9879

nucleotides, (Human, Chimpanzee, Gorilla, Orang-

utan and Rhesus Monkey) we find Q̂ closely fits

a tree.

42,10,9 46,12,14

3,0,0

57,8,3

53,10,16

101,27,22

384,97,78

Human Chimp Gorilla Orangutan
Rhesus
Monkey

These data fit closely to the molecular clock,

and the model for a fixed transition/transversion

ratio.



Phylogenetic Invariants

When the site pattern frequencies P̂ are ob-

served, then applying equation (4) produces

Q̂, an approximation (hopefully) for Q(T ), for

some tree T .

It is possible for some entries in HP̂H to be

non-positive, in which case the log function

cannot be applied. In this case we must con-

clude that this observed data cannot fit any

tree. This indicates that the data does not

support any tree. (Usually only occurs with

very short sequences.)

Q(T ) is sparse, the corresponding entries in Q̂

are expected to be close to 0. The only entries

significantly greater than 0 should be 2n − 3

corresponding entries on the leading row, col-

umn and diagonal, which should be estimates

of edge lengths, all other entries (apart from

the leading entry) have expected value 0.



The entries not on the leading row, column or

diagonal of Q̂ have expected value 0, indepen-

dent of the choice of the tree T . These are

model invariants. If some of these are signif-

icantly different from 0 then we should reject

a tree model for the data.

The (2n−2n+2) corresponding entries on the

leading row, column and diagonal are indica-

tors for the tree T . These are tree invariants.

For JC and K2ST there are further linear re-

latiuonships satisfied by the entries of Q̂ which

are also model invariants.



The tree TCT for which the sum of squares of

the invariants is minimal, is the closest tree.

The tree TCP for which the sum of the in-

variants (of “informative sites”) on the lead-

ing row, column and diagonal is minimal, is the

corrected parsimony tree.

Corrected parsimony is always consistent.

Neither of these tree estimators is practical for

large values of n.



Invertibility

From equations (3) and (4) we see that

P ′(T ′) = P ′′(T ′′) ⇒ T ′ = T ′′ and Q′ = Q′′.

But –

Ellen Baake, (Math., BioSci., 154 (1998), 1-

21) showed that it is possible for

P ′(T ′) = P ′′(T ′′) with T ′ 6= T ′′

when two (not pre-specified) site rate classes

are available for each tree.



2-state Sequence Analysis

The Neyman model is introduced as a simpler

model of 2-state nucleotides (perhaps R and Y

(purines and pyrimidines)) with a probability pe

of substitution on each edge e of T .

We obtain the relationships for the Neyman

model by taking just the first columns of P (T )

and Q(T ), producing vectors p(T ) and q(T ) of

2n components.

Equations (3) and (4) then become

p(T ) = H−1Exp(Hq(T )) (5)

and

q(T ) = H−1(Ln(Hp)), (6)

where H = Hn is the n−th Sylvester matrix,

and has 2n rows and columns.



For the Neyman model we can index each site

pattern by a subset of X∗ = {1,2, · · · , n}. Thus

for a ⊆ X∗, pa is the probability that at a site

a = {i|χi 6= χ0}, that is the set of taxa whose

character at that site differs from the character

at σ0.

Each edge e of T can be indexed as ea where

a ⊆ X∗ is the set of leaves which are separated

from 0 by e. We then set qa to be the edge

length of ea. equations (5) and (6) can then

be expressed as

pa = 2−n
∑

b⊆X∗

(−1)|a∩b| exp(
∑

c⊆X∗

(−1)|b∩c|qc)

(7)

which is easily inverted to give

qc = 2−n
∑

b⊆X∗

(−1)|b∩c| ln(
∑

a⊆X∗

(−1)|a∩b|pa) (8)

The Neyman model enables us to consider prop-

erties of phylogenetic methods such as Maxi-

mum Parsimony and Maximum Likelihood.



Maximum Parsimony

J Felsenstein (1978) gave his famous “Felsen-

stein zone” where under a 2-state symmetric

model, on a tree with short and long edges,

there could be consistency problems, with prob-

abilities p1 and p2 of substitutions on the edges

as indicated..
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p1 p1

p2p2
p2

Using equation (5) we find inconsistency oc-

curs

⇐⇒ p21 > p2(1 − p2).

Felsenstein hinted that inconsistency might be

a problem because the molecular clock was se-

riously violated.



Using equations (5) and (6) we were able to

prove MP was always consistent on a molecular

clock tree on 4 taxa.

But . . .
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1 2 3 4 5

MP is inconsistent when the internal edges are

small. (An analytic expression for the bound-

ary of this zone of inconsistency can be readily

derived.)

However other methods also perform poorly

in this region, UPGMA is marginally the best

method, and ML and MP are poorest. Meth-

ods assuming molecular clock generally per-

form better on this tree.



Maximum Likelihood

Given a set X of aligned homologous sequences,

we observe the frequency fa of each site pat-

tern a ⊆ X∗. The likelihood L of obtaining

F = {fa|a ⊆ X∗} from the tree T with edge

weight spectrum Q(T ) is

L =
∏

a⊂X∗

pfaa

where for each a ⊆ X∗,

pa = 2−n
∑

b⊆X∗

(−1)|a∩b| exp(
∑

c⊆X∗

(−1)|b∩c|qc).

We then seek the spectrum Q(T ) which max-

imises L (usually we equivalently maximise lnL)

under the constraint qc ≥ 0 for each edge ec of

T .

lnL =
∑

a⊆X∗

fa ln(pa).

For each edge ec of T ,

∂(lnL)

∂qc
=

∑

a⊆X∗

fa

pa

∂pa

∂qc
.



From equation (7) we can show

∂pa

∂qc
= pa4c − pa,

(where for a, c ⊆ X∗, a4c = a ∪ c− a ∩ c is the

symmetric difference of a and c). Hence we

can show

∂(lnL)

∂qc
= 0 ⇒

∑

a⊆X∗

fa
pa4c

pa
= 1.

Solving
∑

a⊆X∗ fa
pa4c
pa

= 1 simultaneously for

each edge ec on a tree T gives the turning

points. This will give all maximum points that

are not on the boundary.



Steel (1994) showed that the likelihood func-

tion can have multiple maxima for sequence

data evolving on a tree T of four leaves (not

molecular clock). This puts into question the

hill-climbing strategy for parameter optimisa-

tion. Rogers and Swofford (2000) conducted

a simulation exercise which suggested multiple

optima were uncommon. Chor et al (2000)

were able to construct pathological examples

with disjoint ridges of maximum likelihood points.

Yang (2000) gave the analytic solution to the

maximum likelihood on an unrooted tree of

three leaves, for 2−state characters evolving

under the Neyman model. This point is unique.



Chor et al (2001) used Hadamard conjuga-

tion to find analytic expressions for the maxi-

mum likelihood point for a rooted tree on three

leaves, for 2−state characters evolving under

the molecular clock. In Chor et al (2003)

they extend result this to rooted trees on four

leaves. We expect (2003) to extend this to

4−state characters evolving under the Jukes

and Cantor model under a molecular clock, on

a rooted tree of three leaves.

Hendy and Holland (2003) have developed a

branch and bound algorithm to find the max-

imum likelihood tree for 2-state character se-

quences evolving under the Neyman model with

the molecular clock for all rooted trees with

n ≥ 5 leaves.


