
1

Confidence Statements for Phylogenetic Trees

Susan Holmes

Statistics Department, Stanford

and INRA- Biométrie, Montpellier,France

susan@stat.stanford.edu

http://www-stat.stanford.edu/~susan/

Funded in part by a grant from NSF-DMS

Collaborators: Karen Vogtmann, Persi Diaconis and Lou Billera,

Aaron Staple, Henry Towsner.



2

Outline

• The statistical paradigm.

? Estimates and confidence.

? Statistical approaches to variability.

? Robustness

? Inspirations from ranked data.

• Building a treespace with a natural distance.

• The Bootstrap.

• Special cases: multivariate statistics and Treespace
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Estimation in Treespace

Estimate τ̂ computed from the data:

Data

a b c d
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Data
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Data can be:

• Binary

Lemur_cat 00000000000001010100000
Tarsius_s 10000010000000010000000
Saimiri_s 10000010000001010000000
Macaca_sy 00000000000000010000000
Macaca_fa 10000010000000010000000

• Aligned

DNA Data for 12 species of primates
Mitochondria, 898 characters on 12
species,( Hayasaka, K., T. Gojobori, and
S. Horai. 1988).
12 60

Lemur_cat AAGCTTCATA GGAGCAACCA TTCTAATAAT CGCACATGGC CTTACATCAT CCATATTATT
Tarsius_s AAGTTTCATT GGAGCCACCA CTCTTATAAT TGCCCATGGC CTCACCTCCT CCCTATTATT
Saimiri_s AAGCTTCACC GGCGCAATGA TCCTAATAAT CGCTCACGGG TTTACTTCGT CTATGCTATT
Macaca_sy AAGCTTCTCC GGTGCAACTA TCCTTATAGT TGCCCATGGA CTCACCTCTT CCATATACTT
Macaca_fa AAGCTTCTCC GGCGCAACCA CCCTTATAAT CGCCCACGGG CTCACCTCTT CCATGTATTT
Macaca_mu AAGCTTTTCT GGCGCAACCA TCCTCATGAT TGCTCACGGA CTCACCTCTT CCATATATTT
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• Gene order

These data sets usually come with their own metrics.

file:geneorder.jpg
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The parameter is a semi-labeled binary Tree
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Statistical Paradigms

Classical Frequentist

- estimate the parameter,
(either in a parametric (ML) way,
semiparametric (Distance based methods),
or nonparametric way (Parsimony))

- find the sampling Distribution of the estimator.

Bayesian

- Specify a Prior Distribution
- Update the prior using the Data
- Compute the Posterior Distribution

Difficulties arise as the estimators lie in a non Euclidean space.
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Sampling Distribution for Trees
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How do we define distributions on Treespace

• Not the uniform distribution.

• By inspiration from ranked Data: Mallow’s model (1957)

P (τi) = Ke−λd(τi,τ0)

? Uses a central tree τ0.

? Uses a distance d in treespace.

? But very symmetrical, maybe need a mixture model.

• Other distributions (see Aldous, 2001), one might want to include

information about the estimation method used as this influences

the shape of the tree.
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Classical Statistical Summaries

• Expectation (center of the distribution).

Open question: What distribution is the consensus such a center

of?

• Median (multivariate median (Tukey, 1972).

• Variance (second moment EPnd
2(τ̂ , τ)).

• Presence/Absence of a clade.

• Summaries of Multivariate Variabilities. (PCA,MDS,..).
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Confidence Statements for trees
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Confidence Statements in Statistics

Depend on local and global properties of a neighborhood.
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Confidence Statements in Statistics

Depend on local and global properties of a neighborhood.
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What is the curvature of

the boundary?

How many neighbors does

a region have?
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Simple confidence values

• Univariate.

• Multiple Testing.

• Composite Statements.
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Simple confidence values

• Univariate.

• Multiple Testing.

• Composite Statements.

+----Macaca mul
+-100.0

+-99.5 +----Macaca fus
! !

+------100.0 +---------Macaca fas
! !
! +--------------Macaca syl

+-79.4
! ! +-------------------Hylobates
! ! !
! ! ! +----Homosapien
! +-99.0 +-50.2

+-100.0 ! +-100.0 +----Pan
! ! ! ! !
! ! +-89.0 +---------Gorilla
! ! !

+-100.0 ! +--------------Pongo
! ! !
! ! +-----------------------------Saimiri sc
! +----------------------------------Tarsius sy
+---------------------------------------Lemur catt
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Do we care about confidence statements for
phylogenetic trees?

Cetacees: recognising what is being sold as
Whale meat in Japan?

Steve Palumbi, Harvard. Scott Baker, Auckland.

Whale www.DNA.surveillance Earth Trust Press Release

file:whalesindex.html
file:dnarelease.html
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Frequentist Confidence Regions

P (τ ∈ Rα) = 1− α

We will use the nonparametric approach of Tukey who proposed

peeling convex hulls to construct successive ‘deeper’ confidence

regions. But we need a geometrical space to build these regions in.
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Aims

• Fill Tree Space and make meaningful boundaries.

• Define distances between trees.

• Define neighborhoods, meaningful measures.

• Principal directions of variations in tree space, summarizing :

structure + noise.

• Confidence statements, convex hulls.
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Rotation Moves
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Rotation Moves
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Rotation Moves
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The boundaries between regions represent an area of uncertainty

about the exact branching order. In biological terminology this is

called an ‘unresolved’ tree.
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Boundary for trees with 3 leaves
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The quadrant for one tree
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The quadrant for one tree
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The quadrant for one tree
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The quadrant for one tree
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The quadrant for one tree
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Tree space as a product space

The pendant edges are shared by all trees on the same n leaves, so

in fact we decompose treespace into a product space Rn × T n.
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The cube complex

A binary n-tree has the maximal possible number of interior edges

(n− 2). It determines the largest possible dimensional quadrant

which is n− 2-dimensional.

The quadrant corresponding to each tree which is not binary appears

as a boundary face of at least three binary trees; in particular the

origin of each quadrant corresponds to the (unique) tree with no

interior edges.
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The cube complex

A binary n-tree has the maximal possible number of interior edges

(n− 2). It determines the largest possible dimensional quadrant

which is n− 2-dimensional.

The quadrant corresponding to each tree which is not binary appears

as a boundary face of at least three binary trees; in particular the

origin of each quadrant corresponds to the (unique) tree with no

interior edges. Tn is built by taking one n− 2-dimensional quadrant

for each of the (2n−3)!! = (2n−3)∗ (2n−5)∗ · · · ∗5∗3∗1 possible

binary trees, and gluing them together along their common faces.

For n = 3 there are three binary trees, each with 1 interior edge.

Each tree thus determines a 1-dimensional “quadrant,” i.e. a ray

from the origin. The three rays are identified at their origins.



28

Boundary
Three quadrants sharing a ray for n=4
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Boundary
Three quadrants sharing a ray for n=4

1 42 3
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Note that the bottom boundary rays form a copy of T 3 embedded in

T 4.
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Boundary
Three quadrants sharing a ray for n=4

1 42 3

0

1 42 3

0

1 42 3

0

1 43 2

0

2 43 1

0

Note that the bottom boundary rays form a copy of T 3 embedded in

T 4. In general, T n contains many embedded copies of Tk for k < n.
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Link of the origin
All 15 quadrants for n = 4 share the same origin. If we take the

diagonal line segment x + y = 1 in each quadrant, we obtain a

graph with an edge for each quadrant and a trivalent vertex for each

boundary ray; this graph is called the link of the origin.

1 42 3

0

1 42 3

0

(1,0)

(0,1) 

x+y=1
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−→ consequence for time to convergence of MCMC chains of

random walks based on NNI moves.
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CAT(0) space, (Gromov)
c

a

c

b ba
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CAT(0) space, (Gromov)
c

a

c

b ba

Triangles are thin.
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Consequences

• Averaging works better than it should, (an argument against total

evidence computation without decomposing??).

• We can build Bayesian priors based on distances.

• We can make a useful bootstrap statement.

• We can make convex hulls. −→ Confidence regions.

• We know how many neighbors any tree has.

• We can make a useful bootstrap statement.
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How many neighbors for a given tree?(W.H.Li,1993)

We know the number of neighbors of each tree.
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How many neighbors for a given tree?(W.H.Li,1993)

We know the number of neighbors of each tree.
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How many neighbors for a given tree?(W.H.Li,1993)

We know the number of neighbors of each tree.

For a tree with only two inner edges, there is the only one way of

having two edges small: to be close to the origin-star tree:

15 neighbors. This same notion of neighborhood containing 15

different branching orders applies to all trees on as many leaves as

necessary but who have two contiguous “small edges” and all the

other inner edges significantly bigger than 0.
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This picture of treespace frees us from having to use simulations to

find out how many different trees are in a neighborhood of a given

radius r around a given tree. All we have to do is check the sets of

continguous edges in the tree smaller than r, say there is only one

set of size k, then the neighborhood will contain

(2k − 3)!! = (2k − 3)× (2k − 5)× · · · 3‘different’ trees.

If there are m sets of sizes (n1, n2, . . . , nm)
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1 2 3 4 5 6 7 8 9 10 11
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1 2 3 4 5 6 7 8 9 10 11
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1 2 3 4 5 6 7 8 9 10 11
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1 2 3 4 5 6 7 8 9 10 11

15 105 3
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In this case the number of trees within r will be 15 ∗ 105 ∗ 3 = 4725,

in general:

(2n1 − 3)!!× (2n2 − 3)!!× (2n3 − 3)!! · · · × (2nm − 3)!!

A tree near the star tree at the origin will have an exponential

number of neighbors.

This explosion of the volume of a neighborhood at the origin

provides for interesting math problems.



42

These differing number of neighbors for different trees show that the

bootstrap values cannot be compared from one tree to another.

This was implicitly understood by Hendy and Penny in their NN

Bootstrap procedure.

Are there other ways of using the bootstrap than just counting clade

appearances?
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Beware the different number of neighbors matters if you think you

are using a Monte Carlo method to estimate the distance to the

boundary using the bootstrap.
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Inferential Bootstrap

X original data −→ T̂ estimate.

Call X ∗ bootstrap samples consistent with the model used for

estimating the tree:

• Non parametric multinomial resampling for a parsimony tree.

• Seqgen parametric type resampling with the same parameters for

a ML.

• Bayesian GAMMA prior on rates and generation (Yang 2000) for

random sequences according to T̂
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Can we use the distance for the bootstrap:

Classical Bootstrap Theory (open problem: to provide such a proof

here)

Distribution(d(T̂ , T ))
=
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Can we use the distance for the bootstrap:

Classical Bootstrap Theory (open problem: to provide such a proof

here)

Distribution(d(T̂ , T ))
=

Distribution (d(T̂ ∗
, T̂ ))
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Can we use the distance for the bootstrap:

Classical Bootstrap Theory (open problem: to provide such a proof

here)

Distribution(d(T̂ , T ))
=

Distribution (d(T̂ ∗
, T̂ ))

A better pivot than d(T̂
∗
, T̂ )?

(classically this would be of the form:

d(T̂
∗
, T̂ )

sqrt(var(d(T̂
∗
, T̂ )))

What is a variance estimate for trees?
∑n

i=1 d(T̂
∗
, T̂ )2 ?

−→ all open problems
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Bootstrap Distribution of Distances to τ̂
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Convex Hulls as Nonparametric
Confidence Regions
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Convex Hulls as Nonparametric
Confidence Regions
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Convex Hulls as Nonparametric
Confidence Regions
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Convex Hulls as Nonparametric
Confidence Regions
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Convex Hulls as Nonparametric
Confidence Regions



48

Convex Hulls as Nonparametric
Confidence Regions

(Tukey’s peeling, can also provide a multivariate median if we go all

the way down to the inner peel)

There are multivariate versions of this: David Scott’s non parametric

density estimation shells.
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Multivariate Visualizations

Using the distances between trees as input to multidimensional

scaling, find a useful ‘view’ of the trees variability.

Problems: The ‘meaning’ of the coordinates.

Example: John Endler’s bower birds:
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Xgvis Visualisation

There are many different sources of trees:

• DNA tree.

• Plumage Trees.

• Bower making trees.

(Interactive plots normally generated by xgvis, here are a few

snapshots)
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Maximum Likelihood Bootstrap
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Robustness Bootstrap -stability

• Do small perturbations of my data make for changes in the tree?

• How close are the data to being treelike?

• Projection problem (residuals)

• Open problem: we need a notion of differential in treespace to

study the influence functions.
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How can mathematical statistics help?

Perspectives

• Decompositions that can be generalisable.

• Geometric Picture of Tree Space

? A space for comparisons.

? Ways of projecting.

? Follow trees as they change, (paths of trees)

? Aggregating trees, expectations for various measures.

? Neighborhoods (convex hulls of trees)....

• How much does non-independence matter?

• Justification of commonsense, ground for generalizations.
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Answers for David Bryant?

-A tree is rounding the data, if everything else is noise, it purifies the

picture, but if there in fact a mixture of 2 trees in the data?

- Data −→ Tree + Residuals.

Sometimes the residual is all we care about, so losing it is a loss.

- If we have two estimated trees and their sampling distributions τ̂1

with n leaves τ̂2 with m leaves, with an intersection of overlapping

leaves that is r.

We can include more leaves than actually present by embedding T n

and T m in T k, k > n, m, all the trees that represents τ̂1 form a

sub-complex of T n and we can do the same for τ̂2, the extra

information that we can include is the sampling distributions for both

trees. We can try and find an intersection in the support of the two

distributions, this is more flexible than just looking for a consensus.

-Spaces of nonpositive curvature are generalisations of hyperbolic

spaces (ie trees).
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Proof by direct decomposition

Call Bn−1 the subgroup of S2n−2 that fixes the pairs

{1, 2}{3, 4} . . . {2n− 3, 2n− 2}

then

Mn−1 = S2n/Bn−1

and

|Mn−1| =
(2n− 2)!

2n−1(n− 1)!
= (2n−3)!! = (2n−3)×(2n−5)×· · ·×3×1

This formula for the number of trees was first proved using

generating functions by Schroder (1873)[?].

(S2n−2,Bn−1) form a Gelfand pair Diaconis and Shahshahani (1987).

L(Mn−1) = V1 ⊕ V2 ⊕ . . .⊕ Vλ
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A multiplicity free representation.

L(Mn−1) = ⊕ S2λ

λ ` n
where the direct sum is over all partitions λ of m,

2λ = (2λ1, 2λ2, . . . , 2λk) and S2λ is associated irreducible

representation of the symmetric group S2m.

Just to take the first few: for λ = n− 1 Sλ are the constants, and

this gives the sample size. for λ = (n− 2, 1), Sλ are the number of

times each pair appears. for λ = (n− 3, 2), Sλ are the number of

times partition of 4 appears in the tree. for λ = (n− 3, 1, 1), Sλ are

the number of times 2 pairs appear simultaneously. This

decomposition is similar to what was done by Diaconis for

permutation data.[?]
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