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This talk is about public-key cryptography

Why did mathematicians end up using complex objects like elliptic
curves over finite fields? There must be easier ways to encrypt a
message... No?
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Public-Key Cryptography (PKC)

Anyone can encrypt a message with a public key but only the
receiver can decrypt it with its private key
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Comunications using PKC

1. Bob sends Alice his public key / Alice gets Bob’s public key
from a database

‘

2. Alice encrypts her message using Bob’s public key and sends it
to Bob

3. Bob then decrypts Alice’s message using his private key

PKC solves the key management problem

In the real world, PKC is used to encrypt (symmetric) keys and for
digital signature
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One-way functions

Easy to compute, but significantly harder to reverse

Easy: can be expressed with simple formula, e.g. polynomials

Hard: It would take millions of years to compute x from f(x), even
if all the computers in the world were assigned to the problem.
(B. Schneier)

As of today, reversing f should be at least 280 times harder than
computing f
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Trapdoor one-way functions

One-way functions (if they exist) look like the perfect encryption
machinery... if one does not care about decryption!

For PKC, one uses Trapdoor one-way functions: one-way functions
that become easy to reverse if one knows a secret information

Famous examples:

• Integer factorization: RSA

• Discrete logarithms in finite groups:
ElGamal, DH, DSA, ECDSA, etc.
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Finite groups

A set of elements G together with a binary operation called the
group operation or group law

1. For all a, b in G, then a · b is also in G

2. There exists an identity element e such that a · e = e · a = a

3. For all a ∈ G, there exists a−1 ∈ G such that a · a−1 = e

4. a · (b · c) = (a · b) · c

If G has a finite number of elements, then the group is finite.
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Examples of Finite Groups

The additive group of integers modulo p

Zp or Z/pZ ∼= {0, 1, 2, . . . , p− 1}
DLP: given a 6= 0, b ≡ ka (mod p), find k

Trivial: a ∈ Fp ⇒ k ≡ ba−1 (mod p)

The multiplicative group of a finite field

If p is prime, then F×p ∼= {1, 2, . . . , p− 1}
DLP: given a, b ≡ ak (mod p), find k

Much more difficult! Good candidate for crypto.
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ElGamal Cryptosystem in F×p
Let p be a large prime and a a generator for F×p

Key generation choose a random k and compute b = ak mod p

Publish (p, a, b) and keep k secret

Encryption for a secret random integer 0 ≤ r < p− 1

E(x, r) = (y1, y2)

where
y1 = ar mod p y2 = xbr mod p

Decryption
D(y1, y2) = y2(y

k
1 )−1 mod p
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Index Calculus Methods for DLP

Let p be a prime and g a generator for the cyclic group F×p . Every
h 6≡ 0 (mod p) can be written in the form h ≡ gk for some integer
0 ≤ k < p− 1. Let k = `(h) denote the discrete logarithm of h

g`(h) ≡ h (mod p)

Suppose we have h1 and h2. Then

g`(h1h2) ≡ h1h2 ≡ g`(h1)+`(h2) (mod p)

which implies

`(h1h2) ≡ `(h1) + `(h2) (mod p− 1)

The index calculus is a method for computing values of `. The idea
is to compute `(πi) for several small primes πi, then use this
information to compute `(h) for arbitrary h.
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Example (Index Calculus)

Let p = 1217 and g = 3. We want to solve 3k ≡ 37 (mod 1217).
We choose a set of small primes, called a factor base

B = {2, 3, 5, 7, 11, 13}
Find relations 3x ≡ ± product of some primes in B (mod 1217)

31 ≡ 3 325 ≡ 53 354 ≡ −5 · 11

324 ≡ −22 · 7 · 13 330 ≡ −2 · 52 387 ≡ 13

Linear algebra compute `(πi), for all πi ∈ B

1 0 0 0 0 0 0
0 0 1 0 0 0 0
1 2 0 0 1 0 1
0 0 0 3 0 0 0
1 1 0 2 0 0 0
1 0 0 1 0 1 0
0 0 0 0 0 0 1





`(−1)
`(2)
`(3)
`(5)
`(7)
`(11)
`(13)


≡



608
1
24
25
30
54
87


(mod 1216)
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Example (Index Calculus) cont’d

We now know the discrete logs of all elements of the factor base.
Recall that we want to solve 3k ≡ 37 (mod 1217)

Finish the work
Compute 3j · 37 (mod p) for random values of j until we get an
integer that can be factored into a product of primes in B

316 · 37 ≡ 23 · 7 · 11 (mod 1217)

Therefore

`(37) ≡ 3`(2) + `(7) + `(11)− 16 ≡ 588 (mod 1216)

3588 ≡ 37 (mod 1217)
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The Index Calculus is subexponential

Ln(α, c) = O
(
e(c+o(1))(ln n)α(ln ln n)1−α

)
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So, how large should p be?
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Computing with big integers

Integer multiplication
Karatsuba, Toom-Cook, Schönhage-Strassen (FFT)

Modular multiplication a, b, p −→ ab mod p
Montgomery, Barrett

Fast exponentiation a, r, p −→ ar mod p
square-multiply, high-radix/window methods, double-base

Inversion a, p −→ a−1 mod p
extended gcd, Fermat

GMP, NTL, Pari/GP, Sage, Magma, LinBox, etc.
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So why do we need something else?

So far, we need very large keys because discrete logarithms in F×p
can be computed in subexponential time.

Is it possible to use smaller keys without compromising security?

Smaller keys =⇒ faster arithmetic, less memory, less bandwidth

Are there any finite groups for which index calculus methods do not
work?
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Here Comes Elliptic Curves

An elliptic curve is

• a geometrical object: a nonsingular curve given by an equation

y2 = f(x), with deg f = 3, 4

• an algebraic object: the set has a natural geometric law, which
also respects field of definition (i.e. works over finite fields)

16/28



Adding points on an elliptic curve

P

Q

RR

2R
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Point negation and the point at infinity

−R

R

Q

−Q

−2R

2R

P∞

18/28



Algebraic description of the addition operation

Let P1 = (x1, y1) and P2 = (x2, y2) be two points on the curve, i.e.
which satisfy the equation

E : y2 = x3 + ax + b

Then
P + Q = (x3, y3)

where
x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1

and

λ =


y2 − y1

x2 − x1

if P1 6= ±P2

3x2
1 + a

2y1

if P1 = P2
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Elliptic Curves are Abelian Groups

Let K be a field. The set

E(K) = {(x, y) ∈ K2 ; y2 = x3 + ax + b} ∪ {P∞}
together with the addition operation form an abelian group

What can we choose for K?
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Why elliptic curves over finite fields?

What about Q?
Bad idea: points are either of infinite order or have order less than
12 over the rationals

Good candidates: elliptic curves over Fq. Special cases of interest
are when q is a prime or q = 2m
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Solving ECDLP

Let E be an elliptic curve over K. Let N be the order of E
ECDLP: given P, Q ∈ E, solve kP = Q. (We assume that P
generates E)

Shanks’ baby-step giant-step algorithm

• Fix m ≥
√

N

• Store a list of iP for 0 ≤ i < m (BS)

• Compute Q− jmP for j = 0, 1, . . . ,m− 1 until one finds an
element from the precomputed list (GS)

• iP = Q− jmP , then Q = kP with k ≡ i + jm (mod N)

Shanks’ BSGS complexity: Õ(
√

N)
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Hasse Theorem

Let E be an elliptic curve over Fq. Then the order of E(Fq) satisfies

|q + 1−#E(Fq)| ≤ 2
√

q
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So, how large should q be?
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Are all curves good for crypto?

The group order must contain a large prime factor

#E(Fq) = h · p, with p > 2160

Shoof’s algorithm can be used to count the number of points on
elliptic curves over Fq in polynomial time
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ECC In the real world

• Elliptic curve cryptography is now used in many standards
(IEEE, NIST, etc.)

• Elliptic curve cryptography is used by the NSA

• The ANSSI (French NSA Information Assurance Dept.) also
recommends elliptic curve cryptography (ECDSA)

• Used in Blackberry, Windows Media Player, standards for
biometric data on passport, etc.
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Merci !

http://www.lirmm.fr/∼imbert

Laurent.Imbert@lirmm.fr

http://www.lirmm.fr/~imbert
Laurent.Imbert@lirmm.fr
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