Arithmétique et Cryptographie Asymétrique

Laurent Imbert

CNRS, LIRMM, Université Montpellier 2

Journée d’inauguration groupe Sécurité

23 mars 2010



This talk is about public-key cryptography

Why did mathematicians end up using complex objects like elliptic
curves over finite fields? There must be easier ways to encrypt a
message... No?

Journeys of a Mathematician

f_l Springer
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Public-Key Cryptography (PKC)

Anyone can encrypt a message with a public key but only the
receiver can decrypt it with its private key
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Comunications using PKC

1. Bob sends Alice his public key / Alice gets Bob's public key
from a database

2. Alice encrypts her message using Bob's public key and sends it
to Bob

3. Bob then decrypts Alice’s message using his private key

PKC solves the key management problem

In the real world, PKC is used to encrypt (symmetric) keys and for
digital signature
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One-way functions

Easy to compute, but significantly harder to reverse
Easy: can be expressed with simple formula, e.g. polynomials

Hard: It would take millions of years to compute x from f(x), even
if all the computers in the world were assigned to the problem.
(B. Schneier)

As of today, reversing f should be at least 239 times harder than
computing f
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Trapdoor one-way functions

One-way functions (if they exist) look like the perfect encryption
machinery... if one does not care about decryption!

For PKC, one uses Trapdoor one-way functions: one-way functions
that become easy to reverse if one knows a secret information

Famous examples:

e Integer factorization: RSA

e Discrete logarithms in finite groups:
ElGamal, DH, DSA, ECDSA, etc.
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Finite groups
A set of elements GG together with a binary operation called the
group operation or group law

1. For all a,bin G, then a-bis also in G
2. There exists an identity element e such thata-e=¢e¢-a=a
3. For all a € G, there exists a=! € G such that a-a ! =e¢

4. a-(b-c)=(a-b)-c
If G has a finite number of elements, then the group is finite.
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Examples of Finite Groups

The additive group of integers modulo p
Zyor Z/pZ ={0,1,2,...,p — 1}

DLP: given a # 0, b = ka (mod p), find k
Trivial: a € F, = k =ba~! (mod p)

The multiplicative group of a finite field
If p is prime, then F* = {1,2,...,p—1}
DLP: given a, b = a* (mod p), find k

Much more difficult! Good candidate for crypto.
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ElGamal Cryptosystem in I}
Let p be a large prime and a a generator for I/

Key generation choose a random k and compute b = a* mod p

Publish (p, a,b) and keep k secret

Encryption for a secret random integer 0 <r <p—1

E(x,r) = (y1,92)
where
1 =a"modp  y,=xb" modp

Decryption
D(y1,92) = y2(y)") ™" mod p
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Index Calculus Methods for DLP

Let p be a prime and g a generator for the cyclic group F,’. Every
h # 0 (mod p) can be written in the form h = g* for some integer
0<k<p—1. Let k = ¢(h) denote the discrete logarithm of h

g™ =h  (mod p)

Suppose we have h; and hy. Then

glhaha) = by = gtD+ER) (10 p)
which implies

l(hihy) = l(h1) + {(hy) (mod p—1)

The index calculus is a method for computing values of /. The idea
is to compute {(7;) for several small primes 7;, then use this
information to compute ¢(h) for arbitrary h.
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Example (Index Calculus)

Let p = 1217 and g = 3. We want to solve 3 = 37 (mod 1217).
We choose a set of small primes, called a factor base

B=1{2,3,57,11,13}
Find relations 3% = £ product of some primes in B (mod 1217)

3l=3 3% =53 34 =_5.11
324 = _92.7.13 330 =_9.52 387 =13
Linear algebra compute ¢(7;), for all m; € B

1 0000 0 0\ /-1 608
0010000 0(2) 1
1200101 ((3) 24
0003000 (5) | =1| 25 (mod 1216)
1102000 o7) 30
10010 1 0]]e11 54
000000 1/ \413) 87
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Example (Index Calculus) cont'd

We now know the discrete logs of all elements of the factor base.
Recall that we want to solve 3* = 37 (mod 1217)

Finish the work

Compute 37 - 37 (mod p) for random values of j until we get an
integer that can be factored into a product of primes in B

30.37=2%.7-11 (mod 1217)

Therefore
0(37) = 30(2) + £(7) + £(11) — 16 = 588  (mod 1216)

398 =37  (mod 1217)
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The Index Calculus is subexponential

Ln(aa C) =0 (6(0—1—0(1))(11171,)‘1(1111nn)1fo¢)
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So, how large should p be?
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Computing with big integers

Integer multiplication
Karatsuba, Toom-Cook, Schonhage-Strassen (FFT)

Modular multiplication a, b, p — ab mod p
Montgomery, Barrett

Fast exponentiation a,r,p — a” mod p
square-multiply, high-radix/window methods, double-base

1

Inversion a,p — a~" mod p

extended gcd, Fermat

GMP, NTL, Pari/GP, Sage, Magma, LinBox, etc.
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So why do we need something else?
So far, we need very large keys because discrete logarithms in [F)
can be computed in subexponential time.

Is it possible to use smaller keys without compromising security?

Smaller keys = faster arithmetic, less memory, less bandwidth

Are there any finite groups for which index calculus methods do not
work?
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Here Comes Elliptic Curves

An elliptic curve is

e a geometrical object: a nonsingular curve given by an equation

y* = f(x), with deg f = 3,4

ol ol > < <

e an algebraic object: the set has a natural geometric law, which
also respects field of definition (i.e. works over finite fields)
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Adding points on an elliptic curve
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Point negation and the point at infinity
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Algebraic description of the addition operation

Let P, = (x1,y1) and P> = (2, y2) be two points on the curve, i.e.
which satisfy the equation

E:y*=2>+ax+0b

Then
P + Q - (35373/3)
where
r3 = N\ — 11 — T, ys = Mx1 — x3) — 1
and
RTI e p £ 4P2
To — X1
A\ —
323 4+ a

if P, =P
2, It 17 2
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Elliptic Curves are Abelian Groups

Let K be a field. The set
EK) ={(z,y) e K*; y* =2 + ax + b} U{P,}

together with the addition operation form an abelian group

What can we choose for K?

) ittt

9%
//‘ 0
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Why elliptic curves over finite fields?

What about Q7
Bad idea: points are either of infinite order or have order less than
12 over the rationals

Good candidates: elliptic curves over IF,. Special cases of interest

are when ¢ is a prime or ¢ = 2™
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Solving ECDLP

Let E be an elliptic curve over K. Let N be the order of
ECDLP: given P,Q € E, solve kP = ). (We assume that P
generates E)

Shanks' baby-step giant-step algorithm

Fix m > VN
Store a list of P for 0 < i < m (BS)

Compute () — jmP for j =0,1,...,m — 1 until one finds an
element from the precomputed list (GS)

e iP=Q— jmP, then Q = kP with k =i+ jm (mod N)

Shanks' BSGS complexity: O(v/N)
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Hasse Theorem

Let E be an elliptic curve over F,. Then the order of E(IF,) satisfies

|Q+ - #E(Fq)| < 2\/6
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So, how large should ¢ be?
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Are all curves good for crypto?

The group order must contain a large prime factor

#E[F,) =h-p, withp> 2!

elliptic curves over [F, in polynomial time
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Untiled (Sage)
+ [Z]hutp:/ localhost:8000 /home fadmin/3/ ¢ (Q Google
My Home Page  MathWorld _UofC Library

Sl =
OIE Notebook admin | Toggle |Home |Published |Log |Settings |Report a Problem |Help |Sign out
Varsion 4.1.1
Untitled Save & quit | Discard & quit

q = next_prime(2°200 - 123456789)
q

1606938044258990275541962092341162602522202993782792711844641

E = EllipticCurve(GF(q), [-3,1])

E 4
Elliptic Curve defined by y"2 = +
150593504425899027554195209234116250252220299375279271134463a*x + 1 over
Finite Field of size
1606938044258990275541962092341162602522202993782792711844641

N = E.cardinality()
N

1606938044258990275541962092341448254860490917086040214384555

factor (N)
5 % 17 * 191 * 46679 * 278630501 * 922698163999 *
8247778400845995585234876107653

F = EllipticCurve(GF(q), [-3, 10])
M = F.cardinality()
M

1606938044258990275541962092341007332241618148475471195174959

factor (M)
89°2 * 202870602734375744923868462610908639343721518555166165279

= list(factor(M))[1]1[0]
£loor (1og(p,2))+1 .
188

E

| o
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ECC In the real world

e Elliptic curve cryptography is now used in many standards
(IEEE, NIST, etc.)

e Elliptic curve cryptography is used by the NSA

e The ANSSI (French NSA Information Assurance Dept.) also
recommends elliptic curve cryptography (ECDSA)

e Used in Blackberry, Windows Media Player, standards for
biometric data on passport, etc.
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