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Abstract. Images convey multiple meanings that depend on the context
in which the viewer perceptually organizes the scene. By assuming a stan-
dardized natural-scene-perception-taxonomy comprised of a hierarchy of
nested spatial-taxons [17] [6] [5], image segmentation is operationalized
into a series of two-class inferences. Each inference determines the opti-
mal spatial-taxon region, partitioning a scene into a foreground, subject
and salient objects and/or sub-objects. I demonstrate the results of a
fuzzy-logic-natural-vision-processing engine that implements this novel
approach. The engine uses fuzzy-logic inference to simulate low-level vi-
sual processes and a few rules of figure-ground perceptual organization.
Allowed spatial-taxons must conform to a set of "meaningfulness” cues,
as specified by a generic scene-type. The engine was tested on 70 real
images composed of three ”generic scene-types”, each of which required
a different combination of the perceptual organization rules built into
our model. Five human subjects rated image-segmentation quality on a
scale from 1 to 5 (5 being the best). The majority of generic-scene-type
image segmentations received a score of 4 or 5 (very good, perfect). ROC
plots show that this engine performs better than normalized-cut [9] on
generic-scene type images.

Keywords: visual taxometrics, natural vision processing, image seg-
mentation, spatial taxon cut, fuzzy filter, spatial taxons, scene archi-
tecture, scene perception, fuzzy perceptual inference, fuzzy logic, image
processing, graph partitioning.

1 Introduction

Segmenting images into meaningful regions is pre-requisite to solving most com-
puter vision interpretation problems. Yet region relevancy depends less on the
numeric information stored at each pixel, then on the computer vision task
and corresponding scene architecture required to perceptually organize the con-
stituent visual components necessary for the task. This presents a problem for
automated image segmentation, because it adds uncertainty to the process of
selecting which pixels to include or not include within a segment.
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An analogous problem exists for text document interpretation. Segmentation®
of the document into its relevant components, such as characters, words, sen-
tences or paragraphs, is pre-requisite to interpretation. However unlike images,
text-documents have a standardized architecture with components designated
by punctuation. Traditional punctuation and modern innovations such as hyper-
text? mark-up language (html), minimize uncertainty in the process of selecting
which characters to include or not include within a segment.

Standardized architecture for written documents provide an example of a
complex system that has proven to be stable across history, culture and technical
innovation. As pointed out by Nobel Laureate Herbert Simon [11], ”hierarchy is
one of the central structural schemes that the architect of complexity uses”. He
further observes that ”hierarchic systems have some common properties that are
independent of their specific content” and he roughly defines a complex system
as a system in which ”the whole is more than the sum of the parts... in the
pragmatic sense that given the properties of the parts and the laws of their
interaction, it is not a trivial matter to infer the properties of the whole.”

Text-document architecture succeeds because its structure is independent of
content semantics. Letters, words, sentences and paragraphs follow the same
structure regardless of whether they belong to a document discussing fashion,
religion or nature.

The standardized natural-scene-perception-architecture described in this pa-
per mimics text-document architecture in several ways: it’s structured as a nested
taxonomy, scene segment structure is independent of scene content semantics,
standardized structure is used to minimize uncertainty as to which pixels belong
within a segment; and architecture enables interpretation by delivering visually
relevant components.

1.1 Visual Taxometrics and Spatial Taxons

Visual-taxometrics seeks to distinguish categorical visual percepts -such as fig-
ure/ground perception, from continuous visual percepts - such as distance or size.
Spatial-taxons, categorical variables of whole things’ such as foreground, object
groups or objects (Barghout 2009), are ’building blocks’ of scenes. In essence
they serve as a proxy for the figural status of the region. When human subjects
are asked to mark the center of the subject of the image, they tend choose the
center of a spatial taxon with little variance and rarely choose locations defined
solely by continuous visual percepts [17] [6]. Furthermore, evidence suggests that
the frequency at which people choose spatial-taxons at a particular abstraction
level, follow rank-frequency distribution similar to Zipf’s law — independent of
image content [6]. This is consistent with the law of least effort found in other
cognitive systems and with Simon’s observations of complex systems.

! Usually the literature uses the term ’parsing’ instead of ’segmentation’ to refer
to breaking language into constituent parts. I chose this phrase to illustrate the
information-normic (similarity) between image and language parsing.

2 My collaboration with Roger Gregory, who pioneered hypertext with its inventor
Ted Nelson, informed my understanding of this point.
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Fig.1. (A) Natural-scene-perception-taxonomy comprised of a hierarchy of nested
spatial-taxons. By assuming the taxonomy prior to segmentation, segmentation be-
comes a series of two-class fuzzy inferences. The full scene, top row, is at the highest
level of abstraction. Each subsequent row is at lower level of abstraction within the
taxonomy. (B) An image of a butterfly on a daisy. (C) A 3-dimensional version of im-
age B where the third dimension (height) designates the abstraction level of the spatial
taxon as shown in C.

The spatial-taxon view of scene perception assumes that humans parse scenes
not between regions of similar features that vary continuously, but instead via
discrete spatial 'jumps’ biased toward taxometric scene configurations. Theo-
ries of visual attention make a similar distinction. The ”spotlight theory” [12]
assumes that attention regions vary continuously. Theories of ”object based”
attention assume that attended spatial regions vary in discrete location jumps
as it accommodates attended objects.

If humans are parsing scenes by inferring categories, then quantifying pixel-
region as to their aggregate ”trueness” relative to the category prototype is pre-
requisite to human inspired computerized image segmentation. Humans assign
meaning to visual percepts that they use to infer categories. Fuzzy-logic, which
provides tools for handling partial or relative truth of meaning [15], enables
inference based on visual percepts [4]. I've coined the phrase "natural-vision-
processing” to refer to the parsing of images into psychological variables whose
relative truth (fuzzy membership) corresponds to human phenomenological in-
terpretation. Gestalt psychological variables such as similarity, good continua-
tion, symmetry and proximity as first introduced by Wertheimer [13] provide
the basis for fitting membership functions. A more detailed discussion on fitting
Gestalt variables with fuzzy membership functions can be found in Barghout
(2003) [4]. This paper focuses on fuzzy methods for optimizing spatial-taxon
inference after a hypothetical set has been posited from Gestalt variables.
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Fig.2. Image segmentation algorithms, such as jseg and normalized-cut, produce
what I call ”jig-saw puzzle segments” of the original image (top left). In other words,
though they do a good job of delineating regions of similar percepts, they are not
meaningful to people. (A) Output of jseg algorithm [16]. From UCSB and downloaded
2010 ,version 6b. (B) Output of normalized-cut algorithm [18]. 2010 version. (C') The
natural image processing engine output for not-spatial taxon inference and (D) spatial
taxon inference.

1.2 Prior Work on Image segmentation

Most image segmentation algorithms stem from the school of thought that atten-
tion varies continuously over retinotopic location. Thus it makes sense to view
images as a graph, image segmentation as a graph partitioning problem and
precise high-dimension descriptive data at each graph node as pre-requisite to
solving computer vision problems. For these approaches the criterion for graph
partition is vital. They tend choose criterion of maximal contrast, where contrast
is defined between summary statistics aggregated over candidate regions [9], [16].
Shi and Malik [9]) provide an excellent review of these methods. Though these
methods succeed in parsing dissimilar regions, the regions in and of themselves
are not meaningful. For example, figure 2 shows regions parsed to maximize
differences between regions. The segments look like jigsaw puzzle pieces. Each
jigsaw segment is not relevant to the visual understanding of the context and
content or scene organization.

Fuzzy logic, however, provides an alternative school of thought where it makes
sense to view images as spatially overlapping universe of discourses, image seg-
mentation as a fuzzy set classification inference problem and the relative truth of
the meaning of underlying a segmentation query [14] as pre-requisite to solving
computer vision problems. In this way, image segmentation becomes a series of
fuzzy two-class inference problems.

2 Fuzzy Natural Vision Processing and Spatial-Taxon
Cut

By assuming the taxonomy prior to segmentation, parsing an image becomes
a series of two-class fuzzy inferences. In this section, I will describe a system
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that implements image segmentation as a nested two-class fuzzy inference sys-
tem. Figure 3 provides an overview of the whole system. The sub-system (box
A), shown on the left is similar to other fuzzy systems. It contains a fuzzi-
fication phase where the crisp values contained in the original image are re-
parameterized into fuzzy cognitively relevant variables (CV). CVs are designed
to fit human data or mimic human psychophysical and perceptual variables. A
discussion along with detailed examples of calculations of fuzzy CVs can be found
in Barghout (2003). Meaningfulness cues are composition styles with known CV
spatial-taxon configurations. Its inference system, uses CV premises and mean-
ingfulness rules to posit hypothetical spatial-taxons. Thus far, the fuzzy logic
system is pretty standard in its design.

The next process (box C on the right), decides on the hypothetical spatial-
taxon set and appropriate weighting. It is novel to this system. The system
iterates through various combinations of hypothetical spatial-taxons, to infer the
defuzzifed spatial-taxon that would result from each combination, and scoring
the output for each combination. This enables posits to ’abstain’®. The score is
a combination of spatial-taxon utility and the attentional resource requirement
of the hypothetical spatial-taxon combination. The optimal set is chosen such
that it maximizes utility and minimizes attentional resources.

8 lPosiTed hypothetical spatial taxons [H;, ...,Hg] ]

$ |
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Psychophysical & o Rules hypothetical spatial-
perception rules taxonset&
Thberence appropriate weighting.
RGB — | fuzzification ¥

Crisp|inputs 1 f

o Defuzzification
psychophysical & perceptual AR
parsed space [CV, ....CV,]

Crisp output .png

Fig. 3. Fuzzy natural-scene-perception system

The utility function I use to score the posited spatial-taxon was inspired by a
seminal study of pictorial object naming [10] that found that objects were iden-
tified first at an "entry point” level of abstraction. Curious as to the whether
the scene-architecture had an ’entry level’ region, I undertook a multi-year study

3 The idea to allow psychological detectors to abstain from contributing information
to the system was suggested to me by Lotfi Zadeh in 2006, personal communication.
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(2007-2011) surveying participants at the Burningman Arts Festival in NV, the
Macworld conference in CA and the department of motor vehicles in Raleigh,
N.C. The results suggest that images do indeed have an entry-level spatial taxon.
Furthermore the spatial-taxon rank-frequency distribution measured in these
studies suggest a law of least effort similar to that found in other cognitive
processes [7]. Thus the utility function is inspired by the law of least effort. I
define it operationally over an ordinal scale such that entry-level had the most
utility, super-ordinate the next highest utility and all sub-ordinate decrease util-
ity as a function of abstraction. This is a soft restriction, with granularity at
abstraction levels. Use of attentional resources was also defined on an ordinal
scale with granularity at the number of hypothetical spatial-taxons possible in
the natural-vision processing engine. It’s constrained to be inversely related to
the number of significant spatial-taxon combination sets above threshold, where
threshold was defined in terms of sub-population variance verses variance of the
sub-population with the lowest within-group variance. This process is described
in figure 4. Figure 5 provides a pictorial illustration using the image marked as
”original” in figure 6.

Posited hypothetical For possible k
spatial taxons Set F from Choose 2:Q sets
H, defuzzifications calculate utility
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Fig. 4. Process description of box C in Figure 3

Partitioning by spatial-taxon cut has two phases. In the first phase we decide
on the optimal hypothetical spatial-taxon set & appropriate rule weighting.

For [& ol defuzzifications calculate utility and attention-resources-requirement
where

Utility(P) = // hypothetical — spatial — taxon — utility(®)dP (1)
@

Attenional,esources(P) = // Attentional — inference — load(I")d®  (2)
®

Let A be a fuzzy set defined on a universe of @ discrete meaningfulness cues
& = [P1,Po,...,P,] defined on the universe of discourse of two discrete scene



Image Segmentation Using Fuzzy-Spatial Taxon Cut 169

architecture states S = [s1, s3] where s1 is a spatial taxon and sg is the back-
ground* Set @ represents the hypothetical spatial-taxons organizing constraints.

In the second phase, we ”cut” the spatial taxon by defuzzifying the fuzzy
conclusion. The crisp conclusion is normalized between zero and one. Spatial-
taxon threshold is chosen according to use-case. In this system the threshold was
set to 0.5.
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Fig. 5. Pictorial example of spatial-taxon inference as described in Figure 4. The mu
axis designates the fuzzy firing power of each spatial taxon.

Figure 5, a woman wearing a hooded poncho in a field of yellow flowers, is used
as an example. A series of meaningfulness cues are used to posit hypothetical
spatial taxon. To make it easier to follow, I show cut-outs from the original image,
next to the meaningfulness cues. An original is shown if the meaningfulness
firing power of that pixel exceeds threshold. Note that because the poncho is
orange, the intersection of yellow and red, it has membership in spatial-taxons
and complement. These conflicting cues abstain because including them in the
set drains attentional resources and provides little utility.

3 Performance Test Methods

70 real images composed of four ”generic scene types”, each of which required a
different combination of the perceptual organization rules built into our model,

4 Though the human perceptual state of ”ground” extends beyond the subject and
thus has fuzzy borders, it’s digital image counterpart exists in a defined pixel set
such that the ”ground” is the complement of the spatial taxon.
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Difference

Fig. 6. The Golden image was hand segmented by a human and is considered ”ground
truth”. The Crisp Output is the spatial taxon inferred by the system. The difference
between the Golden and system output is shown in Difference.

were collected. The natural-vision-processing system engine segmented them.
Golden segmentations (ground truths) were manually segmented for each image
using photoshop. A canny edge detector was used to produce the contours for
both ground truths and system outputs. Fuzzy correspondence was calculated
[3]. Tt was important to calculate fuzzy correspondence as opposed to crisp cor-
respondence so as to not create error artifacts from slight offsets or registration
errors. Hit-rate, false-alarm, correct-rejection and misses were determined and
used to calculate ROC curves. The same procedure was used on a downloaded
version of Normalized Cut [18].

Five human subjects rated image-segmentation quality on a scale from 1 to
5 (5 being the best). D-prime (detectability) was determined from the hit-rates
and false alarm rates. Human subjects also rated the meaningfulness cues with
results shown in Table 1.

Table 1. shows the four K spatial-taxon sets. An ANOVA was used to extract the
relative proportion of meaningfulness cue for each corpus type - shown as linguistic
hedges - as scored by 5 human subjects.

Cluster 1 Cluster 2
Lingulstic Meaningfulness Cue Lintegistic Meaningfulness Cue
Hedge Hedge
abstain Blurry some Blurry
some Color Surround abstain Color Surround
very Connected Taxon Color very Connected Taxon Color
abstain Wall-like Background some Wall-like Background
Cluster 3 Cluster 4
i e Meaningfulness Cue gt Meaningfulness Cue
Hedge Hedge
very Blurry low Blurry
very Color Surround some Color Surround
abstain Connected Taxon Color some Connected Taxon Color
some Wall-like Background not Wall-like Background
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Fig. 7. Example engine outputs organized by meaningfulness cue combination cluster.
In each example, the original image is on the left, the golden (hand segmented ground
truth) in the middle and spatial taxon segmentation on the right.
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4 Segmentation Results

ROC curves for all 70 images, figure 8a, show that the majority of images are
well segmented. This is confirmed by humans scoring (5 subjects) that show that
the majority of generic-scene-type images segmented via spatial taxon method
received a score of 4 or 5 (very good, perfect). Figure 8b, ROC plots for 20
generic-scene-type images segmented using normalized cut and spatial taxon

cut.
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Fig. 8. (Left) ROC plot for spatial-taxon cut (70 images). (Right) Comparison between
Spatial-taxon cut (circle) and normalized cut (square).

5 Conclusion

In conclusion, assuming taxonomy prior to segmentation enables quality parsing
contextually relevant regions. A novel methodology that finds the optimal set
and weight of premises performs well for optimizing spatial-taxon cut. Using
fuzzy inference provides significant advantage for quantifying relative truth of a
category, enabling cognitively relevant image segmentation. Both human grading
and ROC plots show that this engine performs better than normalized-cut [9]
on generic-scene type images.
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