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Abstract. In this report, we study the adaptation of existing attacks
on short private exponent on fast variants of the well-known RSA
public-key cryptosystem, namely the RSA Multiprime and the Takagi
family cryptosystems. The first one consists in a variant whose mod-
ulus is made up with strictly more than two primes, which permits to
quickly decipher or sign using the Chinese Remainder Theorem. The
second scheme has been introduced by Takagi in [21] and generalized
by Lim, Kim, Yie and Lee, in [23]. A fast algorithm, involving some
n-adic expansion of the modulus of the form prqs, permits the decryp-
tion process to be very efficient. The use of short secret exponent may
increase decryption or signature, but must be balanced with the risk
to give rise to some powerful attacks, namely Wiener’s continued frac-
tion algorithm and Boneh-Durfee’s methods. We study these attacks
applied on the two fast variants of RSA.

Keywords. RSA type cryptosystem, low exponent attack, RSA
Multiprime, prqs modulus, Takagi family scheme.

1 Introduction

One of the main drawbacks in the use of the RSA public-key cryptosys-
tem [16] is the fact that encryption, decryption, signature generation or veri-
fication are quite slow, due to the size of the numbers and the exponentiation
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Short Private Exponent Attacks on Fast Variants of RSA 2

operations involved. For some devices, like for example a smart card that
generates RSA signatures, it is interesting to be able to do quickly the op-
erations involving the private key. To accelerate this process one might use
a short secret exponent. Unfortunately, Wiener showed in 1990 [25] that
the secret exponent d can be found in polynomial time by using a continued
fractions algorithm if (for a two-factors modulus N), d < N 1/4. Since that
time, the most significant improvement concerning the attacks on RSA with
low secret exponent is due to Boneh and Durfee in 1999 [2]. They recover d
in polynomial time, if d < N 0.292.

The RSA Multiprime is composed of a modulus N made up with at least
three prime factors: N = p1p2 . . . pr with r ≥ 3 . The encryption process
is the same as the classical RSA, but decryption and signature generation
are performed by using Chinese Remainder Theorem (CRT) which speeds
up these operations. Moreover parallel computation can be performed with
r exponentiators.

At Crypto 1998, Takagi proposed a new public key cryptosystem [21],
that is a modification of the well known RSA public key cryptosystem. He
presents an interesting method that permits to speedup the decryption part
when a specific modulus of the form prq is used. A fast algorithm is proposed
to retrieve m (mod pr): its running time is essentially that for computing cd

(mod p), where m is the plaintext and c the ciphertext, by considering the
p-adic expansion of m (mod pr): m (mod pr) = m0 + m1p + m2p

2 + . . . +
mr−1p

r−1 where m0,m1,m2, . . . ,mr−1 ∈ [0, p − 1]. The CRT is then used
to recover m (mod prq) from m (mod pr) and m (mod q). In [23], Takagi’s
public key cryptosystem was extended to moduli of the form prqs.

Another method to accelerate the secret key operations – that could be
used in conjunction with the previous one – is to use short secret exponents.
In this report we analyze the impact of the attacks on short secret exponent
against RSA MultiPrime and Takagi family scheme.

This report is organized as follows: after presenting some facts on RSA
MultiPrime and generalized Takagi schemes in section 2, Wiener’s attack is
extended to those schemes in section 3. Next, in section 4 we consider Boneh-
Durfee’s attack in its basic and improved (using geometrically progressive
matrices) form and give an upper bound on the exponent for which the
attacks can be applied, and discuss corrections suggested by Hinek et al.
in [10].
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2 Mathematical Background

In this section, we briefly recall some facts on RSA MultiPrime and Takagi
family schemes. This section may be safely skipped by the reader who already
knows those schemes. The rest of this report is self-contained and can be
understood without this part.

2.1 RSA MultiPrime

Compaq patented the RSA MultiPrime in January 1997. This technology
consists in using an RSA modulus N with at least three non-equal prime
factors:

N = p1p2 . . . pr with r ≥ 3 . (1)

The encryption process is the same as the one in the classical RSA, but
decryption and signature generation are performed by using the Chinese
Remainder Theorem (CRT), which speeds up these operations. Moreover,
parallel computation can be performed with r exponentiators. Figure 1 de-
scribes the recursive CRT algorithm for recovering the plaintext message m
from the ciphertext c = me (mod N), with N = p1p2 . . . pr.

• Input: c, d, pi (i = 1, . . . , r)

• Output: m

– q1 = 1

– for i = 2, . . . , r: qi = qi−1pi−1, ui = q−1
i (mod pi)

– for i = 1, . . . , r: di = d (mod (pi − 1)), ci = c (mod pi), mi = cdi

i

(mod pi).

– y1 = m1

– for i = 2, . . . , r: yi = yi−1 + qi × ((mi − yi−1) × ui (mod pi))

– m = yr

Figure 1: CRT algorithm for deciphering

We recall that the number of binary operations to compute xd (mod N) is
approximately 3

2
|d|×|N |2 where |.| denotes the number of bits. Table 1 shows

the number of binary operations1 required to decipher, using the classical
RSA and the RSA MultiPrime.

1The final step of reconstitution is negligible and has therefore been left out.

CG–2003/4
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Table 1: Number of binary operations in RSA decipherment

Parallel computation Number of operations

RSA no 3
2
|N ||N |2 = 3

2
|N |3

RSA with CRT no 2.3
2

(

|N |
2

)(

|N |
2

)2

= 3
8
|N |3

RSA with CRT yes 3
2

(

|N |
2

)(

|N |
2

)2

= 3
16
|N |3

MultiPrime r-factor no r.3
2

(

|N |
r

)(

|N |
r

)2

= 3
2r2 |N |3

MultiPrime r-factor yes 3
2

(

|N |
r

)(

|N |
r

)2

= 3
2r3 |N |3

On a security point of view, the maximum number of prime factors al-
lowed in the modulus is determined by the point of intersection of the curves
representing the time necessary for the Number Field Sieve (NFS) and El-
liptic Curve Method (ECM) algorithms to factorize a fixed size modulus
depending on the number of prime factors. The complexity of the first algo-
rithm grows with the size of the number to be factorized. The second one
increases with the size of the prime factors in the number. These two meth-
ods have a sub-exponential complexity: LN [1

3
, c] with c a small constant for

NFS, and Lp[
1
2
,
√

2] for ECM if p is a factor of N . This criterion leads to
Table 2. Recall that

LN [α, c] = O(e(c+o(1))(ln N)α(ln ln N)1−α

) (2)

with c a small positive constant and α a real such as 0 < α < 1.
For instance, using a modulus with 3 prime factors makes it possible

to generate an RSA MultiPrime signature 9/4 times faster than with the
classical RSA without parallel computation, and 27/8 times faster with RSA
with parallel computation. Below we will see that decreasing the size of d
accelerates this generation even more.

2.2 Takagi family schemes

In this section, we briefly introduce the Takagi family schemes and give some
facts on the decryption part that is the main point of these schemes.

The pkq cryptosystem was first introduced by Takagi in [21], and gener-
alized by Lim, Kim, Yie and Lee, in [23] to moduli of the form prqs. The
moduli are appropriately chosen to resist factoring algorithms such as the

CG–2003/4
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Table 2: Optimal number of prime factors for a specific modulus size (cf. [26])

Modulus size in bits Number of primes

512 2
1024 3
1536 3
2048 3
2560 3
3072 3
3584 3
4096 4
8192 5

Number Field Sieve and Elliptic Curve Method (NFS and ECM respectively
for short).

The private and public parameters d and e are chosen as to verify the
following equation

ed ≡ 1 (mod lcm(p − 1, q − 1))

thus the secret exponent d is much smaller than the modulus n. The encryp-
tion is done as for the classical RSA, namely, for a message m, by computing
me (mod n), and the decryption part is decomposed in two phases: firstly re-
covering m (mod pr) and m (mod qs) (details are given below) and secondly
m (mod n) using the Chinese Remainder Theorem proposed by Quisquater
and Couvreur in [15]. To recover the exact value of m (mod pr), the algo-
rithm based on p-adic expansion introduced in [20] is used, the same holds
to recover the value of m (mod qs).

Let cp be the ciphertext me reduced modulo pr, and mp be the plaintext
modulo pr, related to cp by the following relationship

cp = me
p (mod pr) .

Given the ciphertext c, the value of mp is recovered using the p-adic expansion
of mp

mp ≡
r−1
∑

h=0

ph Kh (mod pr) . (3)

CG–2003/4
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For i ∈ {0, . . . , r − 1}, let

Fi(X0, . . . , Xi) =

(

i
∑

h=0

ph Xh

)e

and Gi(X0, . . . , Xi) = e

(

i
∑

h=0

ph Xh

)e−1

,

we have
Fi ≡ Fi−1 + pi Gi−1Xi (mod pi+1) . (4)

The values Kh of (3) are recursively recovered as the solution in Xh of the
following equation

cp ≡ Fh−1 + ph Gh−1Xh (mod ph+1) . (5)

The same is applied to recover m (mod qs), and m is finally obtained using
the Chinese Reminder Theorem applied on m (mod pr) and m (mod qs).
For further details concerning the running time of the decryption process, we
refer the reader to [22].

3 Wiener’s Attack.

The first important result about the attack over RSA with short secret ex-
ponent is due to Wiener in 1990 [25]. Continued fractions algorithm is used
to find a fraction involving the secret exponent from a fraction totally de-
termined by the public key. The starting point of this attack, and more
generally of all attacks on short secret exponent, is the following equation:

ed ≡ 1 (mod ϕ(N)) . (6)

where ϕ(.) is the Euler totient function, e the private exponent and d the

public exponent. Wiener exploits the fact that the fraction
e

pq
, that is totally

determined by public parameters, is an approximation of a fraction whose
denominator is a multiple of d.

Theorem 1 (cf. Theorem 184 of [9]). Suppose that gcd(a, b) = gcd(c, d) =
1 and

∣

∣

∣

a

b
− c

d

∣

∣

∣
≤ 1

2d2
.

Then c/d is one of the convergents of the continued fraction expansion of

a/b.

CG–2003/4
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3.1 Multiprime case

Let us consider the case of RSA Multiprime with a modulus N of r distinct
prime factors N = p1 . . . pr and suppose that gcd(pi − 1, pj − 1) = 2, for
all i 6= j, to combat factorization methods. Therefore, lcm(p1 − 1, . . . , pr −
1) = (p1 − 1) . . . (pr − 1)/2r−1. Without restriction we can suppose that
p1 < p2 < . . . < pr < 2p1 and consequently,

pr
1 < N < 2r−1pr

1 . (7)

From the equation ed ≡ 1 (mod lcm(p1 − 1, . . . , pr − 1)) we deduce the
existence of k ∈ Z, odd, such that

ed = 1 +
k

g
(p1 − 1) . . . (pr − 1) . (8)

with g = 2r′ , r′ ≤ r − 1. Equation (8) can be rewritten as

ed = 1 +
k

g
ϕ(N) . (9)

Then to apply Theorem 1, the following condition is needed
∣

∣

∣

∣

e

N
− k

dg

∣

∣

∣

∣

<
1

2(dg)2
,

and after simplification, we obtain that the attack is possible if

2(r−1)/rr

gN1/r
<

1

2(dg)2
i.e. d <

N1/2r

2(2r−1)/2r
√

rg
.

Therefore, the adaptation of Wiener’s attack to RSA MultiPrime with
r factors succeeds if d is approximately less than N 1/2r. There remains to
identify the correct convergent among all. Here is a test to find out k

dg
.

First of all, as ed > N , the inequality k > g holds. So, for each convergent
computed, the Euclidean division of edg by k leads to guesses for ϕ(N) and
g. If the guesses are true, calculating dg/g gives the secret exponent d. We
check whether it decrypts a ciphertext c = me (mod N) previously computed
with an arbitrary message m ∈ Z/NZ. If the message m is not recovered, we
perform this test for the following convergent, until d is found. This allows
to recover the factorization of the modulus, using the following result:

Lemma 2. Let N = p1 . . . ps an integer. The knowledge of a multiple of

ϕ(N) gives a probabilistic polynomial algorithm which factorizes N .

CG–2003/4
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Proof. Let N = p1 . . . ps, with pi − 1 = 2kiqi for each i = 1 . . . s. Moreover,
the pis are ordered so that k1 ≤ . . . ≤ ks. We write αϕ(N) = 2kr a multiple
of ϕ(N), with r odd. Let m ∈ Z/NZ such that gcd(m,N) = 1. The three
following facts may happen:

• mr ≡ 1 (mod N),

• ∃i ∈ N, 0 ≤ i < k such that m2ir ≡ −1 (mod N),

• ∃i ∈ N, 0 ≤ i < k such that m2ir 6≡ −1 (mod N) and m2i+1r ≡ 1
(mod N).

When the last case happens, m2ir is a square root of 1 modulo N , distinct
from ±1, so (m2ir−1) and (m2ir−1) are non trivial divisors of zero. Comput-
ing their gcd with N gives a non-trivial divisor h of N . We can perform this
operation again with N/h or h as ϕ(N) is still a multiple of ϕ(N/h) or ϕ(h)
because ϕ(N) = ϕ(N/h)ϕ(h). There remains to evaluate the probability to
find a m that allows to factorize. First, define

B(n) := {m ∈ (Z/nZ)∗ : mr ≡ 1 (mod n)

or ∃i ∈ N, 0 ≤ i < k : m2ir ≡ −1 (mod n)} .

P (n) := {m ∈ (Z/nZ)∗ : mr ≡ 1 (mod n)} ,

and
Bj(n) := {m ∈ (Z/nZ)∗ : m2jr ≡ −1 (mod n)} ,

for 0 ≤ j ≤ k − 1, so as

B(n) = P (n) ∪
⋃

0≤j≤k−1

Bj(n) .

Using the Chinese Remainder Theorem, we can evaluate ]P (n) =
∏s

i=1 ]P (pi),
and since ]P (pi) = gcd(r, pi − 1), we have

]P (n) =
s
∏

i=1

gcd(r, pi − 1) .

Now let us consider Qj(n). As before, ]Qj(n) =
s
∏

i=1

]Qj(pi). Note that

Qj(pi) 6= ∅ ⇐⇒ (−1)
pi−1

gcd(2jr,pi−1) = 1

⇐⇒ 2kiqi

2inf(j,ki) gcd(r,qi)
is even

⇐⇒ j < k

CG–2003/4
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and so ]Qj(n) = gcd(2jr, pi − 1) = 2j gcd(r, qi). Finally, as we have arranged
the pis we obtain

]Qj(pi) =

{

0 if j ≥ k1

2js
∏s

i=1 gcd(r, qi) if j < k1

Then ]B(n) = ]P (n) +
k−1
∑

j=0

]Qj(n) =

(

1 +
k−1
∑

j=0

)

s
∏

i=1

gcd(r, qi).

While noticing that k1 ≤ k, we obtain after a routine calculus

]B(n)

ϕ(N)
≤ 1

2s−1
.

This means that the probability of finding a m which allows the factorization
is greater than 1 − 1/2s−1

�

3.2 Takagi family schemes

In the case of Takagi family schemes the public modulus has a particular form
N = prqs, with p and q two large prime numbers. Moreover the exponents
are generated using the following equation:

ed ≡ 1 (mod lcm(p − 1, q − 1)). (10)

This generation seems to prevent a direct application of Wiener’s attack.
However, another possibility would be for the attacker to find d′ such that
ed′ ≡ 1 (mod ϕ(N)) where ϕ(N) = pr−1qs−1(p − 1)(q − 1), the attack will
work and the attacker will be able to recover the plaintext. Indeed, there is
an integer k such that ed′ = 1 + kϕ(N) and then

∣

∣

∣

∣

e

N
− k

d′

∣

∣

∣

∣

=

∣

∣

∣

∣

1

Nd′ +
k

d′

(

ϕ(N)

N
− 1

)
∣

∣

∣

∣

. (11)

We have
∣

∣

∣

∣

ϕ(N)

N
− 1

∣

∣

∣

∣

=
1

p
+

1

q
− 1

pq
.

Moreover, we suppose that p < q < 2p, which means that the prime factors
in the modulus have the same size. Then

∣

∣

∣

∣

ϕ(N)

N
− 1

∣

∣

∣

∣

≤ 2

p
and N < 2spr+s ,

thus

p >
N1/(r+s)

2s/(r+s)
.

CG–2003/4
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To mount the attack, we need

∣

∣

∣

∣

ϕ(N)

N
− 1

∣

∣

∣

∣

<
1

(d′)2
.

After simplification, we obtain that the attack is possible if

d′ < N
1

2(r+s) . (12)

However, since e < lcm(p − 1)(q − 1), it is easy to see that the two
conditions given by equations (10) and (12) are mutually exclusive. Wiener’s
attack is therefore not applicable.

4 Lattice Attacks

4.1 Adaptation of the lattice approach

In [2], Boneh and Durfee improved Wiener’s bound by using a lattice reduc-
tion approach.

4.1.1 Multiprime case

We focus on an r-factor MultiPrime and examine the impact and the prob-
lems when adapting the Boneh-Durfee lattice attack. The equality ed +
kϕ(N) = 1 holds with ϕ(N) = (p1 − 1) . . . (pr − 1). We define

A := N + (−1)r and s := ϕ(N) − N − (−1)r .

and have the following equation:

k(A + s) ≡ 1 (mod e) . (13)

Without restriction we can suppose that: e is of the same order as N , d < N δ

and p1 < . . . < pr < 2p1. Then

|k| =
ed − 1

ϕ(N)
≤ ed

ϕ(N)
≤ ed

N
< eδ, (14)

and

|s| <

r
∑

i=1

N

pi

< r
N

p1

< r2
1
r
−1N1− 1

r . (15)

CG–2003/4
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Let f(x, y) = x(A+y)−1 be a bivariate polynomial with integer coefficients.
The problem is then to find (x0, y0) ∈ Z

2 such that:

f(x0, y0) ≡ 0 (mod e) with |x0| < eδ =: X and |y0| < e1− 1
r =: Y .

(16)
Let us define a norm over polynomials P (x, y) =

∑

i,j ai,jx
iyj ∈ Z[x, y]

as:
‖P (x, y)‖2 =

∑

i,j

a2
i,j . (17)

Boneh-Durfee’s approach is based on the following theorem.

Theorem 3 cf. [11]. Let P (x, y) be a polynomial which is a sum of at most

w monomials. Suppose that P (x0, y0) ≡ 0 (mod em) for some positive in-

teger m, where |x0| < X and |y0| < Y . If ‖P (xX, yY )‖ < em/
√

w, then

P (x0, y0) = 0 holds over the integers.

The starting point of this attack is the polynomial f(x, y) := x(A+y)−1, for
which (k, s) is a solution modulo e. The main idea is to find two polynomials
of low norm, using LLL, that have (k, s) as a solution modulo em, to apply
Theorem 3. Then, we exploit the fact that the solutions live in Z to recover
them while computing a resultant of the two polynomials.

As far as the low norm polynomial is concerned, Boneh and Durfee con-
struct these two polynomial families:

gi, k(x, y) := xifk(x, y)em−k and hj, k(x, y) := yjfk(x, y)em−k .

We note that (k, s) is a solution modulo em of all these polynomials, for
k = 0, . . . , m. The aim is to find a low norm integer linear combination of the
polynomials gi, k(xX, yY ) (called x-shifts) and hj, k(xX, yY ) (called y-shifts).
Thus, a lattice is built using the coefficients of these polynomials. For each
k = 0, . . . , m, Boneh and Durfee use gi, k(xX, yY ) for i = 0, . . . , m−k, and
hj, k(xX, yY ) for j = 0, . . . , t to construct a matrix like the one in Figure 2.
The two integers m and t are parameters which are optimized during the
construction.

Now, we can use the very powerful LLL’s lattice reduction algorithm
to obtain low norm elements of this lattice. The size of these elements is
bounded by the following well-known results [12].

Lemma 4. Let L be a lattice and (b1, . . . , bd) be an LLL-reduced basis of L.

Then

‖b1‖ ≤ 2d/2 det(L)1/d . (18)

CG–2003/4
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1 x xy x2 x2y x2y2 x3 x3y x3y2 x3y3 y xy2 x2y3 x3y4

e3 e3

xe3 e3X

fe2 – – e2XY

x2e3 e3X2

xfe2 – – e2X2Y

f2e – – – – – eX2Y 2

x3e3 e3X3

x2fe2 – – e2X3Y

xf2e – – – – – eX3Y 2

f3 – – – – – – – – – X3Y 3

ye3 e3Y

yfe2 – – e2XY 2

yf2e – – – – – eX2Y 3

yf3 – – – – – – – – X3Y 4

Figure 2: The matrix spanned by gi, k and hj, k for k = 0, . . . , 3, i =
0, . . . , 3 − k, and j = 0, 1. The ‘–’ symbols denote non-zero entries whose
value are not accounted for (cf. [2])

Lemma 5. Let L be a lattice spanned by (u1, . . . , ud), and let (b1, . . . , bd)
be the result of applying LLL to the given basis. Suppose that mini ‖u∗

i ‖ ≥ 1.
Then

‖b2‖ ≤ 2d/2 det(L)1/(d−1) . (19)

With the two above lemmas and Boneh-Durfee’s theorem we can find con-
ditions on δ so that the norm of the first two basis vectors is small enough
to have (x0, y0) as a solution over the integers. We can then recover s by
computing the resultant h(y) = Resx(g1, g2), and by finding its root over the
integers. We are then able to compute ϕ(N).

Remark. Boneh and Durfee [2] note that this attack is heuristic because
nothing guarantees that g1(x, y) and g2(x, y) are algebraically independent.
If it is not the case, the resultant is null and the factorization cannot be
recovered. However, they also note that the attack works well in practice.

Being triangular, the determinant of the matrix is easy to compute:

det(L) = detxdety , (20)

with
{

detx = e
m(m+1)(m+2)

3 X
m(m+1)(m+2)

3 Y
m(m+1)(m+2)

6

dety = e
tm(m+1)

2 X
tm(m+1)

2 Y
t(m+1)(m+t+1)

2 .
(21)

CG–2003/4
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The determinant detx is the determinant of the sub-matrix only spanned by
the x-shifts, and dety is the product of the diagonal terms of the part of the
matrix involving only the y-shifts.

Remark. If we consider the lattice corresponding to the matrix of the x-shifts,
we theoretically recover Wiener’s bound, but Blömer and May noticed in [1]
that LLL always provides two algebraically dependant vectors in that case,
which means that the attack is not effective.

The dimension of the matrix becomes w = (m+1)(m+2)
2

+ t(m + 1), and,
substituting X and Y by their value in the whole lattice, we obtain:

det(L) = e( δ
3
+ 1

2
− 1

6r
)m3+(1+ δ

2
− 1

2r
)tm2+( 1

2
− 1

2r
)mt2+O(m3) . (22)

To apply Theorem 3 on the two first vectors produced by LLL. We have to
find out the largest value for δ such that:

det(L) <
em(w−1)

γ
with γ = (w2w)

w−1
2 . (23)

By neglecting the low terms, and writing w = m2/2+tm+O(m2), we obtain:

(

δ

3
− 1

6r

)

m3 +

(

δ

2
− 1

2r

)

tm2 +

(

1

2
− 1

2r

)

t2m < 0 . (24)

For each m, the minimum is reached for t =
1 − rδ

2(r − 1)
m. So we obtain:

m3

(

δ

3
− 1

6r
− (δr − 1)

2(r − 1)

(

δ

2
− 1

2r

)

+
(δr − 1)2

4(r − 1)2

(

1

2
− 1

2r

))

< 0 . (25)

and we study

−r

8(r − 1)
δ2 +

(

1

3
+

1

4(r − 1)

)

δ − 1 − 4r

24r(r − 1)
< 0 . (26)

and finally

δ <
4

3
− 1

3r
− 2

3r

√
4r2 − 5r + 1 . (27)

Hence we can obtain a polynomial g1(x, y) ∈ Z[X, Y ] which has (x0, y0) as
a solution over the integers. We need another polynomial g2(x, y) which will
be found as Lemma 5 holds. We obtain another polynomial with (x0, y0) as
a solution. We recover y0 when solving the resultant h(y) = Resx(g1, g2) ∈
Z[y], which allows us to compute ϕ(N), and this scheme is broken. The bound
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for our adaptation of Wiener’s attack on 3-factor MultiPrime is improved: our
general bound is equal to 0.1799 in this case. However, if the two polynomials
g1 and g2 have a common factor, then h(y) is identically null. In this sense,
this attack is heuristic, but according to Boneh and Durfee, it works well in
practice. By the way, using a secret exponent less than N

4
3
− 1

3r
− 2

3r

√
4r2−5r+1

can be dangerous.

4.1.2 Takagi family scheme

In this section, we try to apply the attack to the Takagi family cryptosystems.
Once again, we take into account the possibility for the attacker to find a d′

such that ed′ ≡ 1 (mod ϕ(N)). For convenience, let us denote this d′ by d.
Starting from equation (6), we have, for some k ∈ Z,

ed + k(pr−1qs−1(p − 1)(q − 1)) = 1.

Defining A := N and u := pr−1qs−1 − prqs−1 − pr−1qs, we can rewrite this as

k(A + u) ≡ 1 (mod e) .

Thus we need some upper bounds on k and u. If we suppose that e has
the same size as N and that d = N δ, then

|k| = | 1−ed
ϕ(N)

| < eδ =: X (28)

|u| < 2spr+s−1 < N
r+s−1

r+s =: Y . (29)

We construct the same matrix than in the previous section. The deter-
minant of the matrix becomes:

det(L) = e(
δ
3
+ 1

3
− r+s−1

6(r+s))m3+( 1
2
+ δ

2
+ r+s−1

2(r+s))tm2+( r+s−1
2(r+s))mt2+o(m3) . (30)

In order to apply Theorem 3 to the first two vectors of the reduced basis,
we need to verify the condition of Lemma 5, which means that we have to
search for the largest δ such that

det(L) <
1

γ
em(w−1) with γ = (w2w)

w−1
2 , (31)

where

w =
(m + 1)(m + 2)

2
+ t(m + 1) = m2/2 + tm + o(m2) .
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Neglecting some constant, equation (31) is equivalent to

(

δ

3
− 1

6(r + s)

)

m3 +

(

δ

2
− 1

2(r + s)

)

tm2 +

(

1

2
− 1

2(r + s)

)

t2m < 0 .

For each m the value of t that minimizes this expression is

t =
1 − δ(r + s)

2(r + s − 1)
.

Substituting this value to t in the previous equation, a new equation in δ of
degree two is obtained

− r + s

8(r + s − 1)
δ2 +

2(r + s) − 1

6(r + s − 1)
δ +

1 − 4(r + s)

24(r + s − 1)(r + s)
< 0,

which means that

δ <
4(r + s) − 1 − 2

√

4(r + s)2 − 5(r + s) + 1

3(r + s)
.

Therefore, the first two vectors, g1(x, y) and g2(x, y), given by LLL will have
(k, u) as a solution over the integers, and the resultant h(y) := Resx(g1, g2)
allows to recover u: once u is known, p and q can be recovered with high
probability by computing p + q = (u/gcd(N, u)) + 1 and pq = N/gcd(N, u).
The attack therefore requires that there exists d′, with ed′ ≡ 1 (mod ϕ(N)),
such that

d′ < N
4(r+s)−1−2

√
4(r+s)2−5(r+s)+1

3(r+s)

with N = prqs. Once again, such d cannot satisfy 10. Special case and
numerical values are given in Appendix A.

Remark. Recently Hinek et al. [10] pointed out that, due to some careless
approximation (we refer to their paper for details), Boneh-Durfee’s bound
was inaccurate and too optimistic. In Appendix A.1 we take their remarks
into account to compute more precise and rigorous values for a bound on δ.
By the way, since the LLL algorithm used to mount the attack is heuristic,
it is important to notice that the constant can clearly be neglected. Indeed,
in practice, the constants appear to be small enough to be ignored.
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4.2 Improved bound using geometrically progressive ma-

trices

In [2], Boneh and Durfee introduce the notion of geometrically progressive

matrices. Rows and columns of the matrix M are divided into a + 1 blocks
of size b, for a, b ∈ N. Rows (resp. columns) are indexed by pairs (i, j),
with i = 0, . . . , a and j = 0, . . . , b, so that the pair (i, j) corresponds to the
(bi + j)th row (resp. column) of M . The element of the (i, j)th column and
(k, l)th row is denoted M(i, j, k, l). Geometrically progressive matrices are
defined as follows.

Definition 6. Let C,D, c0, c1, c2, c3, c4, β be real numbers with C,D, β ≥
1. A matrix M is said to be geometrically progressive with parameters

(C,D, c0, c1, c2,
c3, c4, β) if the following conditions hold for all i, k = 0, . . . , a and j, l =
1, . . . , b:

1. |M(i, j, k, l)| ≤ C.Dc0+c1i+c2j+c3k+c4l,

2. M(k, l, k, l) = Dc0+c1k+c2l+c3k+c4l,

3. M(i, j, k, l) = 0 whenever i > k or j > l,

4. βc1 + c3 ≥ 0 and βc2 + c4 ≥ 0.

Boneh and Durfee proved the following theorem that gives a bound on the
determinant of a geometrically progressive matrix, from which some rows
have been removed.

Theorem 7. Let M be an (a+1)b×(a+1)b geometrically progressive matrix

with parameters (C,D, c0, c1, c2, c3, c4, β), and B a real number. Define

SB := {(k, l) ∈ {0, . . . , a} × {1, . . . , b}|M(k, l, k, l) ≤ B},
and set w := |SB|. If L is the lattice defined by the rows (k, l) ∈ SB of M ,

then

det(L) ≤ ((a + 1)b)w/2(1 + C)w2
∏

(k,l)∈SB

M(k, l, k, l).

The idea of this method is to remove some vectors of the basis, in par-
ticular those whose contribution in the determinant of the lattice is too big.
The previous theorem permits to control the value of this determinant. As
the following lemma states, the matrix, denoted My, and defined as the ma-
trix made up with the rows corresponding to the y-shifts of the matrix M of
Sect. 4.1, and whose columns correspond to the columns of this matrix such
that xiyj with j > i, is geometrically progressive.
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4.2.1 Multiprime case

Lemma 8. For all positive integers m, t, the matrix My is geometrically

progressive with parameters (m2m, e,m, δ + 1 − 1/r,−1/r,−1, 1, 2).

Proof. To simplify, we take e = N . We recall that

hl,k(xX, yY ) = em−kylY lfk(xX, yY ) =
k
∑

u=0

u
∑

v=0

cu,vx
uyv+l,

with

cu,v =

(

k

u

)(

u

v

)

(−1)k−uem−kAu−vXuY v+l.

So we can compute

My(i, j, k, l) = ci,i+j−l =

(

k

i

)(

i

i + j − l

)

(−1)k−iem−kAl−jX iY i+j.

Condition (iii) of the definition is satisfied, and by replacing X = eδ, Y = e1− 1
r ,

and because A = e, we have:

|My(i, j, k, l)| ≤
(

k

i

)(

i

i + j − l

)

em−k+l−j+δi+(1−1/r)(i+j),

so
|My(i, j, k, l)| ≤ m2mem+(δ+1− 1

r
)i− 1

r
j−k+l.

We calculate
My(k, l, k, l) = em+(δ+1− 1

r
)k− 1

r
l−k+l,

which satisfies condition (ii). Finally, as these two inequalities:

2(δ + 1 − 1/r) − 1 ≥ 0 and 2(−1/r) + 1 ≥ 0

hold, our matrix My is a geometrically progressive matrix with parameters

(m2m, e,m, δ + 1 − 1

r
,−1

r
,−1, 1, 2). �

The geometrically progressive matrix, noted M1, is constructed on the
basis of the matrix defined in Sect. 4.1, but taking twice as many y-shifts
as in the previous one, i.e. setting t = 1−δr

r−1
. Then the rows corresponding

to the y-shifts whose entry on the diagonal exceeds em are removed. Using
Gaussian elimination, we obtain a unitary matrix A, such that M1 = AM2,
with M2 of the form:
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1 x xy . . . xmym y y2 . . . yt . . . xmym+1 . . . xmym+t

x-shifts ∆ 0

selected y-shifts 0 M ′
y

with ∆ a diagonal matrix. So we can apply Theorem 7 on the lattice L2,
because det(L1) = det(L2). Moreover, det(L2) = det(∆) det(L′

y), since x-
shifts and selected y-shifts are orthogonal. The dimension w of lattice L2 is
computed as follows:

w = m(m + 1)(m + 2)/2 + w′,

where w′ is the dimension of L′
y. The elements M(k, l, k, l) that will be

removed are those for which M(k, l, k, l) < em, i.e.

em+(δ− 1
r
)k+(1− 1

r
)l < em ,

which leads to

l <
1 − δr

r − 1
k .

Thus we have

w′ =
m
∑

k=0

⌊

1 − δr

r − 1
k

⌋

≥
m
∑

k=0

(

1 − δr

r − 1
k + 1

)

=
1 − δr

2(r − 1)
m2 + o(m2) .

Finally, combining with Theorem 7 we obtain:

det(L′
y) ≤ c

m
∏

k=0

b 1−δr
r−1

kc
∏

l=0

em+(δ− 1
r
)k+(1− 1

r
)l

det(L′
y) ≤ ce

(δr+3r−1)(1−δr)
6(r−1)r

m3+o(m3) ,

where c is only a function of δ which can be neglected.
We can now bound

det(L1) = det(∆) det(L′
y) < e−

(δr+rδ2−3r+1)
6(r−1)

m3+o(m3),

and we need this term to be lower than em(w′′−1), where w′′ = (1/2)(m +
1)(m + 2) + w′, which leads to

(−rδ2 + 2δr − 1)m3 < 0,
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which gives

δ < 1 −
√

r2 − r

r
.

For a 3-prime modulus, the obtained bound is around 0.184, which improves
the previous one.

5 Concluding Remarks

This report extends Wiener’s and Boneh-Durfee’s results to the case of mul-
tiprime RSA, and shows that these attacks are probably not applicable to
Takagi schemes.

As far as multiprime RSA is concerned, results show that, although that
attack is still applicable, its efficiency quickly decreases as the number of
factors increases. However one must keep in mind that the modulus size has
to increase with the number of factors in order to keep the same security
level as for classical RSA. In fact the results tend to suggest that there is
a fixed range for which the attack is applicable. For example, for a secu-
rity level comparable to 1024-bit classical RSA the secret exponent must be
theoretically greater than 250 or 300 bits.

However, we would like to insist on the heuristic nature of LLL and so of
the attack, that sometimes turns out to be much more efficient than expected.
An extra security margin would therefore be desirable. As Boneh and Durfee
pointed out, we cannot give our results as theorems, because nothing ensures
that LLL outputs two algebraically independent vectors.

We show in this report that it is possible to use quite a short secret
exponent with the RSA MultiPrime. This improves signature generation in
comparison with the use of classical RSA and CRT. Nevertheless, as Durfee
and Nguyen explain in [7], one should be very cautious when using a short
secret exponent with RSA. The bound N 1/6 is improved by the lattice tools,
and it might be possible that it could grow a little if we examine the resolution
of modular polynomial equations with low solutions in more details. A way
to defeat this attack is to increase the size of e by adding a multiple of
lcm(p−1, q−1, r−1). Moreover, adding primes in the modulus could make
the Boneh-Durfee approach less effective because the number of variables of
the polynomials involved in their process could produce too large lattices.

Wiener proposes, as a countermeasure which quickly computes the secret
exponentiation, the possibility to find a large secret exponent d such that
dpi

= d (mod pi−1) is small for each prime factor pi of the modulus. Whether
there exists an efficient attack on such secret exponent is an open problem.
The best attack known runs in time min(

√

dp,
√

dq) for a 2-prime modulus.
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A Lattice Attacks

A.1 Adaptation of lattice attack

In [23], it was suggested to use a modulus such that r = s + 1, in this case
the explicit bound is given by: for N = ps+1qs, if there exists d′ as before,
such that

d′ < N ( 8
3
s+1− 2

3

√
16s2+6s)/(2s+1)

then its exact value can be recovered in polynomial time.
Figure 3 illustrates numerical results for upper bound.

N p2q p3q2 p4q3 p5q4 p6q5 p7q6 p8q7

Upper bound 0.1799 0.1043 0.0735 0.0568 0.0463 0.0390 0.0338

Figure 3: Upper bound on δ for Boneh-Durfee’s attack, when constants are
neglected

In the following, we apply Hinek and al.’s correction to Boneh-Durfee’s
attack.

Considering that e has the same size as N and that d = N δ, we easily get

|k| = | 1−ed
ϕ(N)

| < 2eδ (32)

|u| < |2spr+s−1| < |2sN
r+s−1

r+s | (33)
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The exact expression of the upper bound on δ is too complex to fit in these
pages2. They also present a tabular. Figure 4 presents numerical results for
some typical values of r, s and N .

N 1024 2048 3072 8192
p2q 0.163 0.169 0.170 n/a
p3q2 0.090 0.095 0.097 n/a
p4q3 0.058 0.065 0.067 n/a
p8q7 0.030

Figure 4: Upper bound on δ for various modulus forms and sizes

A.2 Geometrically progressive matrices

Once again, it is interesting to see how this applies to the suggestion of [23]
to use a modulus such that r = s+1. In this case the explicit bound is given
by: for N = ps+1qs, if

d′ < N1−
√

2s
2s+1

then its exact value can be recovered in polynomial time.
Figure 5 gives numerical results.

N p2q p3q2 p4q3 p5q4 p6q5 p7q6 p8q7

Boneh-Durfee 0.1835 0.1056 0.0742 0.0572 0.0465 0.0392 0.0339

Figure 5: Upper bound on δ for Boneh-Durfee’s geometrical progressive ma-
trices attack

B Summary

Figure 6 gives a table to summarize the bound obtained in this report.

N p2q p3q2 p4q3 p5q4 p6q5 p7q6 p8q7

Wiener 0.1667 0.1000 0.0714 0.0556 0.0455 0.0385 0.0333

Boneh-Durfee 0.1799 0.1043 0.0735 0.0568 0.0463 0.0390 0.0338

B-D’s geo. proj. 0.1835 0.1056 0.0742 0.0572 0.0465 0.0392 0.0339

Figure 6: Upper bound on δ for Wiener’s attack, and Boneh-Durfee’s attack
and Boneh-Durfee’s geometrical progressive matrices attack

2Note that Hinek et al. experience the same problem: although Boneh-Durfee’s ini-
tial (incorrect) bound is elegant (δ = 0.292), the corrected bound is more complex and
depending on N .
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