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Abstract. Attribute-based cryptography is a natural solution for fine-
grained access control with respect to security policies. In the case of
attribute-based signatures (ABS), users obtain from an authority their
secret keys as a function of the attributes they hold, with which they
can later sign messages for any predicate satisfied by their attributes. A
verifier will be convinced of the fact that the signer’s attributes satisfy
the signing predicate while remaining completely ignorant of the identity
of the signer. In many scenarios where authentication and anonymity are
required, like distributed access control mechanisms in ad hoc networks,
the bandwidth is a crucial and sensitive concern. The signatures’ size of
all previous ABS schemes grows linearly in the number of attributes in-
volved in the signing predicate. We propose the first two attribute-based
signature schemes with constant size signatures. Their security is proven
in the selective-predicate and adaptive-message setting, in the standard
model, under chosen message attacks, with respect to some algorithmic
assumptions related to bilinear groups. The described schemes are for the
case of threshold predicates, but they can be extended to admit some
other (more expressive) kinds of monotone predicates.

1 Introduction

Attribute-based cryptography offers a real alternative to public-key cryptog-
raphy when the systems to be protected also require anonymity among users
following a security policy. In this setting, users obtain their secret keys from an
authority as a function of their attributes. The operation involving the secret
key proves somehow that the user holds a certain subset of attributes, without
leaking information on his identity or on his total set of attributes.

One of the major issues in attribute-based cryptography is to save band-
width, and in particular to get ciphertexts or signatures of constant size, i.e.,
not depending on the number of involved attributes. Other important issues are
the construction of systems achieving security in the strongest possible model
and being as expressive as possible, i.e., admitting a wide variety of policies.



The goal of this work is to address the first question in the context of signature
design.

Attribute-based cryptography first appeared in [15] with an attribute-based
encryption scheme, as an extension of fuzzy identity-based cryptosystems [29].
Since then, the notion of attribute-based encryption (ABE for short, conjugated
into key policy or ciphertext policy) has received a lot of attention (see, e.g., [2,
17, 20]), notably with attempts to compress ciphertexts (see [13, 17, 1]).

Attribute-based signatures (ABS) have been explicitly introduced more re-
cently in [24] (see also [30, 21, 22]), although the idea was implicitly considered
before (for instance, in [10]). They are related to the notion of (threshold) ring
signatures [28, 9] or mesh signatures [8], but offer much more flexibility and versa-
tility to design secure complex systems, since the signatures are linked not to the
users themselves, but to their attributes. As a consequence, these signatures have
a wide range of applications, like private access control, anonymous credentials,
trust negotiations, distributed access control mechanisms for ad hoc networks or
attribute-based messaging (see [24] for detailed descriptions of applications). In
terms of security, ABS must first satisfy unforgeability, which guarantees that a
signature cannot be computed by a user who does not have the right attributes,
even if he colludes with other users by pooling together their secret keys. The
other security requirement is the privacy of user’s attributes, in the sense that a
signature should not leak any information about the actual attributes that have
been employed to produce it.

Related work. The schemes proposed by Maji, Prabhakaran, Rosulek in [24]
support very expressive signing predicates, but their most practical one is only
proven secure in the generic group model. The scheme of [27] is claimed to be
“almost optimally efficient”, although its signatures’ length grows linearly in
the size of the span program (which is greater than the number of involved
attributes in the signing predicate). Our result shows that specific families of
predicates (e.g., threshold predicates) allow for more compact signatures. Other
instantiations in [24] are secure in the standard model, but are substantially less
inefficient (i.e., signatures consist of a linear number of group elements in the se-
curity parameter) as they use Groth-Sahai proofs for relations between the bits of
elements in the group. In the standard model, Okamoto and Takashima designed
[27] a fully secure ABS which supports general non-monotone predicates. The
scheme is built upon dual pairing vector spaces [26] and uses proof techniques
from functional encryption [20]. Escala, Herranz and Morillo also proposed in
[14] a fully secure ABS in the standard model, with the additional property of
revocability, meaning that a third party can extract the identity of a signer in
case of dispute (thanks to a secret that can be computed by the master entity).
As it turns out, none of the previous schemes achieves constant-size signatures.

Our contribution. This paper describes the first two threshold ABS schemes fea-
turing constant-size signatures and proves them secure in the selective-predicate
setting (i.e., as opposed to the full security setting) in the standard model.
We hope our results will inspire ideas leading to the design of fully secure ABS
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schemes with constant-size signatures and supporting more expressive predicates
than in this paper. The new schemes are built (non-generically) on two different
constant-size attribute-based encryption schemes. In both schemes, n denotes
the maximum size of the admitted signing predicates.

– Our first scheme supports (weighted) threshold predicates for small1 uni-
verses of attributes. Its design is inspired by the constant-size ciphertext-
policy ABE scheme from [17] by Herranz, Laguillaumie and Ràfols, in the
sense that the signer implicitly proves his ability to decrypt a ciphertext by
using the Groth-Sahai proof systems [16], and by binding the signed message
(and the corresponding predicate) to the signature using a technique sug-
gested by Malkin, Teranishi, Vahlis and Yung [23]. The signature consists of
15 group elements, and the secret key of a user holding a set Ω of attributes
has |Ω|+n elements. Our scheme is selective-predicate and adaptive-message
unforgeable under chosen message attacks if the augmented multi-sequence
of exponents computational Diffie-Hellman assumption [17] and the Deci-
sion Linear assumption [5] hold. The privacy of the attributes used to sign
is proved in the computational sense under the Decision Linear assumption
[5].

– The second scheme supports threshold predicates (as well as compartmented
and hierarchical predicates) for large universes of attributes, which can be
obtained by hashing arbitrary strings. It is built upon a key-policy ABE
scheme proposed by Attrapadung, Libert and de Panafieu [1] and has signa-
tures consisting of only 3 group elements. The secret keys are longer than in
the first scheme, as they include (2n+ 2)× (|Ω|+n) group elements. On the
other hand, its selective-predicate and adaptive-message unforgeability relies
on the more classical n-Diffie-Hellman exponent assumption. Moreover, the
scheme protects the privacy of the involved attributes unconditionally.

Organization. Section 2 gives the algorithmic setting and defines the syntax
and the security properties of attribute-based signatures. In Sections 3 and 4
we describe our two constructions for threshold predicates. Section 5 discusses
extensions of both schemes to more general predicates.

2 Background

We will treat a vector as a column vector. For any ~α = (α1, . . . , αn)> ∈ Znp ,
and any element g of a group G, g~α stands for (gα1 , . . . , gαn)> ∈ Gn. The inner
product of ~a, ~z ∈ Znp is denoted as 〈~a, ~z〉 = ~a>~z. Given g~a and ~z, (g~a)~z :=
g〈~a,~z〉 is computable without knowing ~a. For equal-dimension vectors ~A and ~B
of exponents or group elements, ~A · ~B stands for their component-wise product.
We denote by In the identity matrix of size n. For any set U , we define 2U =
{S | S ⊆ U}. Given a set S ⊂ Zp, and some i ∈ S, the i-th Lagrange basis
polynomial is ∆S

i (X) =
∏
j∈S\{i}(X − j)/(i− j).

1 i.e. polynomial in the security parameter, which is sufficient for many applications.
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2.1 Complexity Assumptions

Our two schemes work in the setting of bilinear groups. That is, we use a pair
of multiplicative groups (G,GT ) of prime order p with an efficiently computable
mapping e : G×G→ GT s.t. e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G, a, b ∈ Z
and e(g, h) 6= 1GT whenever g, h 6= 1G.

The security of our first scheme is partially based on the hardness of the com-
putational version of a problem appeared in [17] under the name of augmented
multi-sequence of exponents decisional Diffie-Hellman problem. Its decisional ver-
sion was proven to be hard in generic groups.

Definition 1 ((˜̀, m̃, t̃)-aMSE-CDH - [17]). The (˜̀, m̃, t̃)-augmented multi-
sequence of exponents computational Diffie-Hellman ((˜̀, m̃, t̃)-aMSE-CDH) prob-
lem related to the group pair (G,GT ) is to compute T = e(g0, h0)κ·f(γ) when
κ, α, γ, ω are unknown random elements of Zp and g0 and h0 are generators of
G on input the vector ~x˜̀+m̃ = (x1, . . . , x˜̀+m̃)>, whose components are pairwise
distinct elements of Zp, and the values

g0, g
γ
0 , . . . , g

γ
˜̀+t̃−2

0 , g
κ·γ·f(γ)
0 , (l.1)

gωγ0 , . . . , gωγ
˜̀+t̃−2

0 , (l.2)

gα0 , g
αγ
0 , . . . , gαγ

˜̀+t̃

0 , (l.3)
h0, h

γ
0 , . . . , h

γm̃−2

0 , h
κ·g(γ)
0 (l.4)

hω0 , h
ωγ
0 , . . . , hωγ

m̃−1

0 , (l.5)

hα0 , h
αγ
0 , . . . , hαγ

2(m̃−t̃)+3

0 (l.6),

where f(X) =
∏˜̀

i=1(X + xi) and g(X) =
∏˜̀+m̃

i=˜̀+1
(X + xi).

The security analysis of our first scheme also relies on the Decision Linear as-
sumption.

Definition 2 ([5]). In a group G of order p, the Decision Linear Problem
(DLIN) is to distinguish the distributions (g, ga, gb, ga·δ1 , gb·δ2 , gδ1+δ2) and (g, ga, gb,
ga·δ1 , gb·δ2 , gδ3), with a, b, δ1, δ2, δ3

R← Zp.

This problem is to decide if vectors ~g1 = (ga, 1, g)>, ~g2 = (1, gb, g)> and ~g3 =
(gaδ1 , gbδ2 , gδ3)> are linearly dependent in the Zp-module G3 formed by entry-
wise multiplication.

The security of our second scheme is based on a non-interactive and falsifiable
[25] assumption, the hardness of n-Diffie-Hellman Exponent problem, proven to
hold in generic groups in [4].

Definition 3 ([6]). In a group G of prime order p, the n-Diffie-Hellman Ex-
ponent (n-DHE) problem is, given a tuple (g, gγ , gγ

2
, . . . , gγ

n

, gγ
n+2

, . . . , gγ
2n

)
where γ R← Zp, g R← G, to compute gγ

n+1
.
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2.2 Groth-Sahai Proof Systems

To simplify the description, our first scheme uses Groth-Sahai proofs based on
the DLIN assumption and symmetric pairings, although instantiations based on
the symmetric external Diffie-Hellman assumption are also possible. In the DLIN
setting, the Groth-Sahai proof systems [16] use a common reference string com-
prising vectors ~g1, ~g2, ~g3 ∈ G3, where ~g1 = (g1, 1, g)>, ~g2 = (1, g2, g)> for some
g1, g2, g ∈ G. To commit to X ∈ G, one sets ~C = (1, 1, X)> · ~g1r · ~g2s · ~g3t

with r, s, t
R← Zp. In the soundness setting (i.e., when proofs should be per-

fectly sound), ~g3 is set as ~g3 = ~g1
ξ1 · ~g2ξ2 with ξ1, ξ2

R← Z∗p. Commitments
~C = (gr+ξ1t1 , gs+ξ2t2 , X · gr+s+t(ξ1+ξ2))> are then Boneh-Boyen-Shacham (BBS)
ciphertexts [5] that can be decrypted using a = logg(g1), b = logg(g2).

In contrast, defining ~g3 = ~g1
ξ1 · ~g2ξ2 · (1, 1, g−1)> gives linearly independent

{~g1, ~g2, ~g3} and ~C is a perfectly hiding commitment. Moreover, proofs are per-
fectly witness indistinguishable (WI) in that two proofs generated using any two
distinct witnesses are perfectly indistinguishable. Under the DLIN assumption,
the WI and the soundness setting are computationally indistinguishable.

To prove that committed group elements satisfy certain relations, the Groth-
Sahai techniques require one commitment per variable and one proof element
(made of a constant number of group elements) per relation. Such proofs are
available for pairing-product relations, which are of the type

n∏
i=1

e(Ai,Xi) ·
n∏
i=1

·
n∏
j=1

e(Xi,Xj)aij = tT , (1)

for variables X1, . . . ,Xn ∈ G and constants tT ∈ GT , A1, . . . ,An ∈ G, aij ∈ Zp,
for i, j ∈ {1, . . . , n}.

At some additional cost (typically, auxiliary variables have to be introduced),
pairing-product equations admit non-interactive zero-knowledge (NIZK) proofs
(this is the case when the target element tT has the special form tT =

∏t
i=1 e(Si, Ti),

for constants {(Si, Ti)}ti=1 and some t ∈ N): on a simulated common reference
string (CRS), prepared for the WI setting, a trapdoor makes it possible to sim-
ulate proofs without knowing the witnesses. Linear pairing product equations
(where aij = 0 for all i, j in (1)) consist of only 3 group elements and we only
need linear equations here.

2.3 Syntax of Threshold Attribute-Based Signatures

We describe the syntax and security model of attribute-based signatures with
respect to threshold signing predicates Γ = (t, S), but the algorithms and security
model for more general signing predicates can be described in a very similar way.
In the threshold case, every message Msg is signed for a subset S of the universe
of attributes and a threshold t such that 1 ≤ t ≤ |S| of the sender’s choice.

An attribute-based signature ABS = (ABS.TSetup,ABS.MSetup,ABS.Keygen,
ABS.Sign,ABS.Verify) consists of five probabilistic polynomial-time (PPT) algo-
rithms:
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– TSetup(λ,P, n): is the randomized trusted setup algorithm taking as input
a security parameter λ, an attribute universe P and an integer n ∈ poly(λ)
which is an upper bound on the size of threshold policies. It outputs a set
of public parameters pms (which contains λ, P and n). An execution of this
algorithm is denoted as pms← ABS.TSetup(1λ,P, n).

– MSetup(pms): is the randomized master setup algorithm, that takes as in-
put pms and outputs a master secret key msk and the corresponding master
public key mpk.We write (mpk,msk) ← ABS.MSetup(pms) to denote an ex-
ecution of this algorithm.

– Keygen(pms,mpk,msk, Ω): is a key extraction algorithm that takes in public
parameters pms, the master keys mpk and msk, and an attribute set Ω ⊂ P.
The output is a private key SKΩ . To denote an execution of this algorithm,
we write SKΩ ← ABS.Keygen(pms,mpk,msk, Ω).

– Sign(pms,mpk, SKΩ ,Msg, Γ ): is a randomized signing algorithm which takes
as input the public parameters pms, the master public key mpk, a secret key
SKΩ , a message Msg and a threshold signing policy Γ = (t, S) where S ⊂ P
and 1 ≤ t ≤ |S| ≤ n. It outputs a signature σ. We denote the action taken
by the signing algorithm as σ ← ABS.Sign(pms,mpk, SKΩ ,Msg, Γ ).

– Verify(pms,mpk,Msg, σ, Γ ): is a deterministic verification algorithm taking
as input the public parameters pms, a master public key mpk, a message
Msg, a signature σ and a threshold predicate Γ = (t, S). It outputs 1 if the
signature is deemed valid and 0 otherwise. To refer to an execution of the
verification protocol we write b← ABS.Verify(pms,mpk,Msg, σ, Γ ).

For correctness, for any λ ∈ N, any integer n ∈ poly(λ), any universe P, any
set of public parameters pms ← ABS.TSetup(1λ,P, n), any master key pair
(mpk,msk) ← ABS.MSetup(pms), any subset Ω ⊂ P and any threshold policy
Γ = (t, S) where 1 ≤ t ≤ |S|, it is required that

ABS.Verify
(
pms,mpk,Msg,ABS.Sign(pms,mpk, SKΩ ,Msg, Γ ), Γ

)
= 1

whenever SKΩ ← ABS.Keygen(pms,mpk,msk, Ω) and |Ω ∩ S| ≥ t.

2.4 Security of Threshold Attribute-Based Signatures

Unforgeability and privacy are the typical requirements for attribute-based sig-
nature schemes.

Unforgeability. An ABS scheme must satisfy the usual property of unforgeability,
even against a group of colluding users that pool their secret keys. We consider
a relaxed notion where the attacker selects the signing policy Γ ? = (t?, S?) that
he wants to attack at the beginning of the game. However, the message Msg?

whose signature is eventually forged is not selected in advance. The attacker can
ask for valid signatures for messages and signing policies of his adaptive choice.
The resulting property of selective-predicate and adaptive-message unforgeability
under chosen message attacks (sP-UF-CMA, for short) is defined by considering
the following game.
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Definition 4. Let λ be an integer. Consider the following game between a prob-
abilistic polynomial time (PPT) adversary F and its challenger.

Initialization. The challenger begins by specifying a universe of attributes P as
well as an integer n ∈ poly(λ), which are sent to F . Then, F selects a subset
S? ⊂ P of attributes such that |S?| ≤ n and a threshold t? ∈ {1, . . . , |S?|}.
These define a threshold predicate Γ ? = (t?, S?).

Setup. The challenger runs pms ← ABS.TSetup(1λ,P, n) and (mpk,msk) ←
ABS.MSetup(pms), and sends pms,mpk to the forger F .

Queries. F can interleave private key and signature queries.
Private key queries. F adaptively chooses a subset of attributes Ω ⊂ P

under the restriction that |Ω ∩ S?| < t? and must receive SKΩ ←
ABS.Keygen(pms,mpk,msk, Ω) as the answer.

Signature queries. F adaptively chooses a pair (Msg, Γ ) consisting of a
message Msg and a threshold predicate Γ = (t, S) such that 1 ≤ t ≤ |S| ≤
n. The challenger chooses an arbitrary attribute set Ω ⊂ P such that
|Ω∩S| ≥ t, runs SKΩ ← ABS.Keygen(pms,mpk,msk, Ω) and computes2

a signature σ ← ABS.Sign(pms,mpk, SKΩ ,Msg, Γ ) which is returned to
F .

Forgery. At the end of the game, F outputs a pair (Msg?, σ?). We say that F
is successful if:

– ABS.Verify(pms,mpk,Msg?, σ?, Γ ?) = 1, and
– F has not made any signature query for the pair (Msg?, Γ ?).

The forger’s advantage in breaking the sP-UF-CMA security of the scheme is
defined as SuccsP-UF-CMA

F,ABS (λ) = Pr[F wins]. A threshold attribute-based signature
scheme ABS is selective-predicate adaptive-message unforgeable (or sP-UF-CMA
unforgeable) if, for any PPT adversary F , SuccsP-UF-CMA

F,ABS (λ) is a negligible func-
tion of λ.

Privacy (of Involved Attributes). This property ensures that a signature leaks
nothing about the attributes that have been used to produce it beyond the fact
that they satisfy the signing predicate. Privacy must hold even against attackers
that control the master entity and is defined via a game between an adversary D
and its challenger. Depending on the resources allowed to D and on its success
probability, we can define computational privacy and perfect (unconditional)
privacy.

Definition 5. Let λ ∈ N and consider this game between a distinguisher D and
its challenger.

Setup. The adversary D specifies a universe of attributes P and an integer
n ∈ poly(λ), that are sent to the challenger. The challenger runs pms ←

2 Since a given attribute setΩ may have many valid private keys SKΩ , a generalization
of the definition could allow F to obtain many signatures from the same private key
SKΩ . However, due to the signer privacy requirement, which is formalized hereafter,
this does not matter.
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ABS.TSetup(1λ,P, n) and sends pms to D. The adversary D runs (mpk,msk)←
ABS.MSetup(pms) and sends (mpk,msk) to the challenger (who must verify
consistency of this master key pair).

Challenge. D outputs a tuple (Γ,Ω0, Ω1,Msg), where Γ = (t, S) is a threshold
predicate such that 1 ≤ t ≤ |S| ≤ n and Ω0, Ω1 are attribute sets satisfying
|Ωb ∩ S| ≥ t for each b ∈ {0, 1}. The challenger picks a random bit β R←
{0, 1}, runs SKΩβ ← ABS.Keygen(pms,mpk,msk, Ωβ) and computes σ? ←
ABS.Sign(pms,mpk, SKΩβ ,Msg, Γ ), which is sent as a challenge to A.

Guess. D outputs a bit β′ ∈ {0, 1} and wins if β′ = β.

The advantage of D is measured in the usual way, as the distance AdvPriv
D,ABS(λ) :=

|Pr[β′ = β]− 1
2 |.

A threshold attribute-based signature scheme ABS is said computationally
private if AdvPriv

D,ABS(λ) is a negligible function of λ for any PPT distinguisher
D and it is said perfectly/unconditionally private if AdvPriv

D,ABS(λ) = 0 for any
(possibly computationally unbounded) distinguisher D.

3 A First Short Attribute-Based Signature Scheme for
Threshold Predicates

We present here our first scheme to produce attribute-based signatures with con-
stant size, for threshold predicates. The secret key skΩ for a user holding a set
of attributes Ω contains |Ω| + n elements, where n is the maximum size of the
attribute set for any signing policy. This construction is for “small” universes of
attributes P = {at1, . . . , atη}, for some integer η ∈ N, as public parameters have
linear size in η; therefore, η must be polynomial in the security parameter of the
scheme. Attributes {ati}ηi=1 are arbitrary strings which some encoding function
ς maps to Z∗p. Since the scheme is a small universe construction, we may set
n = η in the description hereafter.

The construction builds on the ABE scheme of Herranz et al. [17]. The in-
tuition is to have the signer implicitly prove his ability to decrypt a ciphertext
corresponding to that ABE scheme. This non-interactive proof is generated using
the Groth-Sahai proof systems [16], by binding the signed message (and the cor-
responding predicate) to the non-interactive proof using a technique suggested
by Malkin et al. [23]. In some sense, this technique can be seen as realizing
signatures of knowledge in the standard model: it consists in embedding the
message to be signed in the Groth-Sahai CRS by calculating part of the latter
as a “hash value” of the message. As noted in [23], Waters’ hash function [32]
is well-suited to this purpose since, in the security proof, it makes it possible
to answer signing queries using simulated NIZK proofs. At the same time, with
non-negligible probability, adversarially-generated signatures are produced using
a perfectly sound Groth-Sahai CRS and they thus constitute real proofs, from
which witnesses can be extracted.

In [23], the above technique was applied to an instantiation of Groth-Sahai
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proofs based on the Symmetric eXternal Diffie-Hellman assumption (and thus
asymmetric pairings). In this section, we adapt this technique so as to get it to
work with symmetric pairings and the linear assumption.

In the notations of the verification algorithm, when ~C = (C1, C2, C3)> ∈ G3

is a vector of group elements and if g ∈ G, we denote by E(g, ~C) the vector of
pairing values

(
e(g, C1), e(g, C2), e(g, C3)

)>.

I TSetup(λ,P, n): the trusted setup algorithm conducts the following steps.
1. Choose groups (G,GT ) of prime order p > 2λ with an efficiently computable

bilinear map e : G×G→ GT . Select generators g, h R← G and also choose a
collision-resistant hash function H : {0, 1}∗ → {0, 1}k, for some k ∈ poly(λ).

2. Define a suitable injective encoding ς sending each one of the n attributes
at ∈ P onto an element ς(at) = x ∈ Z?p. Choose a set D = {d1, . . . , dn−1}
consisting of n − 1 pairwise different elements of Z∗p, which must also be
different from the encoding of any attribute in P. For any integer i lower or
equal to n− 1, we denote as Di the set {d1, . . . , di}.

3. Generate Groth-Sahai reference strings by choosing random generators g1, g2
R←

G and defining vectors ~g1 = (g1, 1, g)> ∈ G3 and ~g2 = (1, g2, g)> ∈ G3. Then,
for each i ∈ {0, . . . , k}, pick ξi,1, ξi,2

R← Zp at random and define a vector
~g3,i = ~g1

ξi,1 · ~g2ξi,2 =
(
g
ξi,1
1 , g

ξi,2
2 , gξi,1+ξi,2

)>. Exponents {(ξi,1, ξi,2)}ki=0 can
then be discarded as they are no longer needed.

The resulting public parameters are

pms =
(
P, n, λ, G, GT , g, h, ~g1, ~g2, { ~g3,i}ki=0, H, ς, D

)
.

I MSetup(pms): picks at random α, γ
R← Z∗p and sets u = gαγ and v = e(gα, h).

The master secret key is msk = (α, γ) and the master public key consists of

mpk =
(
u, v, gα,

{
hαγ

i
}
i=0,...,2n−1

)
.

I Keygen(pms,mpk,msk, Ω): given an attribute set Ω and msk = (α, γ), pick
r
R← Z∗p and compute

SKΩ =
({

g
r

γ+ς(at)

}
at∈Ω

,
{
hrγ

i
}
i=0,...,n−2

, h
r−1
γ

)
. (2)

I Sign(pms,mpk, SKΩ ,Msg, Γ ): to sign Msg ∈ {0, 1}∗ w.r.t. the policy Γ =
(t, S), where S ⊂ P is an attribute set of size s = |S| ≤ n and 1 ≤ t ≤ s ≤ n,
the algorithm returns ⊥ if |Ω ∩ S| < t. Otherwise, it first parses SKΩ as in (2)
and conducts the following steps.
1. Let ΩS be any subset of Ω ∩ S with |ΩS | = t. From all at ∈ ΩS , using the

algorithm Aggregate of [12], compute the value

A1 = Aggregate({g
r

γ+ς(at) , ς(at)}at∈ΩS ) = g
r∏

at∈ΩS
(γ+ς(at)) .

From A1, compute T1 = A

1∏
at∈(S∪Dn+t−1−s)\ΩS

ς(at)

1 .
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2. Define the value P(ΩS ,S)(γ) as

P(ΩS ,S)(γ) =
1
γ

 ∏
at∈(S∪Dn+t−1−s)\ΩS

(γ + ς(at))−
∏

at∈(S∪Dn+t−1−s)\ΩS

ς(at)

.
Since |ΩS | = t, the degree of P(ΩS ,S)(X) is n − 2. Therefore, from the pri-

vate key SKΩ , one can compute hr·P(ΩS,S)(γ)/(
∏

at∈(S∪Dn+t−1−s)\ΩS
ς(at)) and

multiply it with the last element h
r−1
γ of SKΩ to obtain

T2 = h
r−1
γ · h

r
P(ΩS,S)(γ)∏

at∈(S∪Dn+t−1−s)\ΩS
ς(at)

.

Note that the obtained values T1, T2 ∈ G satisfy the equality

e(T2, u
−1) · e

(
T1, h

α·
∏

at∈(S∪Dn+t−1−s)
(γ+ς(at)))

= e(gα, h) (3)

and that, in the terms in the left-hand-side of equality (3), the second argu-
ment of each pairing is publicly computable using pms and mpk.

3. Compute M = m1 . . .mk = H(Msg, Γ ) ∈ {0, 1}k and use M to form a
message-specific Groth-Sahai CRS gM = (~g1, ~g2, ~g3,M ). Namely, for i = 0
to k, parse ~g3,i as (gX,i, gY,i, gZ,i)> ∈ G3. Then, define the vector ~g3,M =(
gX,0 ·

∏k
i=1 g

mi
X,i, gY,0 ·

∏k
i=1 g

mi
Y,i, gZ,0 ·

∏k
i=1 g

mi
Z,i

)>.

4. Using the newly defined gM = (~g1, ~g2, ~g3,M ), generate Groth-Sahai com-

mitments to T1 and T2. Namely, pick r1, s1, t1, r2, s2, t2
R← Zp and compute

~CTj = (1, 1, Tj)> · ~g1rj · ~g2sj · ~g
tj

3,M for j ∈ {1, 2}. Then, generate a NIZK
proof that committed variables (T1, T2) satisfy the pairing-product equation
(3). To this end, we introduce an auxiliary variable Θ ∈ G (with its own
commitment ~CΘ = (1, 1, Θ)> · ~g1rθ · ~g2sθ · ~g tθ

3,M , for rθ, sθ, tθ
R← Zp), which

takes on the value Θ = h, and actually prove that

e(T1, HS) = e(gα, Θ) · e(T2, u) (4)
e(g,Θ) = e(g, h), (5)

where HS = h
α·

∏
at∈(S∪Dn+t−1−s)

(γ+ς(at))

. The proofs for relations (4) and (5)
are called ~π1 and ~π2, respectively, and they are given by

~π1 =
(
Hr1
S · (g

α)−rθ · u−r2 , Hs1
S · (g

α)−sθ · u−s2 , Ht1
S · (g

α)−tθ · u−t2
)>

~π2 =
(
grθ , gsθ , gtθ

)>
.

Finally, output the signature σ =
(
~CT1 ,

~CT2 ,
~Cθ, ~π1, ~π2

)
∈ G15.
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I Verify(pms,mpk,Msg, σ, Γ ): it first parses Γ as a pair (t, S) and σ as
(
~CT1 ,

~CT2 ,
~Cθ, ~π1, ~π2

)
. It computes M = m1 . . .mk = H(Msg, Γ ) ∈ {0, 1}k and forms the

corresponding vector

~g3,M =
(
gX,0 ·

k∏
i=1

gmiX,i, gY,0 ·
k∏
i=1

gmiY,i, gZ,0 ·
k∏
i=1

gmiZ,i

)>
∈ G3.

Then, parse the proofs ~π1 and ~π2 as vectors (π1,1, π1,2, π1,3)> and (π2,1, π2,2, π2,3)>,

respectively. Define HS = h
α·

∏
at∈(S∪Dn+t−1−s)

(γ+ς(at))

and return 1 if and only if
these relations are both satisfied:

E(HS , ~CT1) = E(gα, ~Cθ) · E(u, ~CT2) · E(π1,1, ~g1) · E(π1,2, ~g2) · E(π1,3, ~g3,M )(6)

E(g, ~Cθ) = E
(
g, (1, 1, h)

)
· E(π2,1, ~g1) · E(π2,2, ~g2) · E(π2,3, ~g3,M ). (7)

Correctness. The correctness follows from that of Groth-Sahai proofs.

Security Analysis. The scheme is selective-predicate and adaptive-message
unforgeable assuming the hardness of both the DLIN problem and the (˜̀, m̃, t̃)-
aMSE-CDH problem. Computational privacy can be proven based on the hard-
ness of the DLIN problem.

Theorem 1. The scheme is selective-predicate and adaptive-message unforge-
able under chosen-message attacks assuming that (1) H is a collision-resistant
hash function; (2) the DLIN assumption holds in G; (3) the (˜̀, m̃, t̃)-aMSE-CDH
assumption holds in (G,GT ). (The proof can be found in [18]).

Theorem 2. This scheme has computational privacy, assuming that DLIN holds
in G.

Proof. (Sketch.) The proof consists in considering two games: Game0 and Game1.
The first game, Game0, is the real privacy game as described in Definition 5. In
particular, when executing the trusted setup algorithm ABS.TSetup, the chal-
lenger chooses the vectors (~g1, ~g2, { ~g3,i}ki=0) such that ~g3,i is linearly dependent
with (~g1, ~g2), for all i = 0, . . . , k. The only difference between Game1 and Game0

is that, in Game1, the vector ~g3,i is chosen at random so that it is linearly in-
dependent with (~g1, ~g2), for all i = 0, . . . , k. Groth-Sahai [16] proved that this
change is indistinguishable, under the DLIN assumption. Finally, in Game1, the
only values that could leak any information about the subset of attributes held
by the signer are ~CT1 ,

~CT2 , ~π1. But in the setting of Game1, these commitments
and proofs are perfectly hiding: they do not reveal any information about the
committed values T1, T2. Therefore, privacy of the attributes holds uncondition-
ally in Game1. ut

4 A Second Short Attribute-Based Signature Scheme for
Threshold Predicates

The main advantage of our second ABS scheme over the previous one is that
signatures are much shorter, since they have only three group elements. This
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comes at the cost of longer secret keys skΩ , containing (2n + 2) × (|Ω| + n)
group elements. Another advantage is that the size of the considered universe of
attributes may be much larger, even exponential in the security parameter λ; we
only need that all attributes in the universe P are encoded as different elements
of Z∗p.

I TSetup(λ,P, n): chooses a collision-resistant hash function H : {0, 1}∗ →
{0, 1}k, for some integer k ∈ poly(λ), as well as bilinear groups (G,GT ) of prime
order p > 2λ with g

R← G. It also picks u0, u1, . . . , uk
R← G and sets ~U =

(u0, u1, . . . , uk)>. It finally chooses a set D = {d1, . . . , dn} of n distinct elements
of Zp that will serve as dummy attributes.
The resulting public parameters are pms =

(
P, n, λ, G, GT , g, ~U, D, H

)
.

I MSetup(pms): randomly chooses α, α0
R← Zp, ~α = (α1, . . . , αN )> R← ZNp , where

N = 2n+ 1. It then computes e(g, g)α, h0 = gα0 , ~H = (h1, . . . , hN )> = g~α.
The master secret key is defined to be msk = gα and the master public key is
mpk =

(
e(g, g)α, h0, ~H

)
.

I Keygen(pms,mpk,msk, Ω): to generate a key for the attribute set Ω, the
algorithm picks a polynomial QΩ [X] = α + β1X + · · · + βn−1X

n−1 where
β1, . . . , βn−1

R← Zp. Then, it proceeds as follows.
1. For each attribute ω ∈ Ω, choose a random exponent rω

R← Zp and generate
a key component SKω = (Dω,1, Dω,2,Kω,1, . . . ,Kω,N−1) where

Dω,1 = gQΩ(ω) · hrω0 , Dω,2 = grω ,
{
Kω,i =

(
h−ω

i

1 · hi+1

)rω}
i=1,...,N−1

.

(8)

2. For each d ∈ D, choose a fresh random value rd ∈ Zp and generate a private
key component SKd = (Dd,1, Dd,2,Kd,1, . . . ,Kd,N−1) as in (8):

Dd,1 = gQΩ(d) · hrd0 , Dd,2 = grd ,
{
Kd,i =

(
h−w

i

1 · hi+1

)rd}
i=1,...,N−1

.

(9)

The private key finally consists of SKΩ =
(
{SKω}ω∈Ω , {SKd}d∈D

)
.

I Sign(pms,mpk, SKΩ ,Msg, Γ ): to sign Msg ∈ {0, 1}∗ w.r.t. the policy Γ =
(t, S), where S is an attribute set of size s = |S| ≤ n and t ∈ {1, . . . , s}, the
algorithm first computes M = H(Msg, Γ ) ∈ {0, 1}k and parses the private key
SKΩ as

(
{SKω}ω∈Ω , {SKd}d∈D

)
.

1. It considers the subset Dn−t ⊂ D containing the n − t first attributes of
D (chosen in some pre-specified lexicographical order). It also chooses an
arbitrary subset St ⊂ Ω∩S such that |St| = t and defines ~Y = (y1, . . . , yN )>

as the vector containing the coefficients of the polynomial

PS(Z) =
n−t+s+1∑

i=1

yiZ
i−1 =

∏
ω∈S

(Z − ω) ·
∏

d∈Dn−t

(Z − d). (10)
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Since n− t+ s+ 1 ≤ 2n+ 1 = N , the coordinates yn−t+s+2, . . . , yN are all
set to 0.

2. For each ω ∈ St, use SKω = (Dω,1, Dω,2, {Kω,i}N−1
i=1 ) to compute

D′ω,1 = Dω,1 ·
N−1∏
i=1

K
yi+1
ω,i = gQΩ(ω) ·

(
h0 ·

N∏
i=1

hyii
)rω

. (11)

The last equality comes from the fact that PS(ω) = 0 for all ω ∈ S.
3. Likewise, for each dummy attribute d ∈ Dn−t, use SKd = (Dd,1, Dd,2, {Kd,i}N−1

i=1 )
to compute

D′d,1 = Dd,1 ·
N−1∏
i=1

K
yi+1
d,i = gQΩ(d) ·

(
h0 ·

N∏
i=1

hyii
)rd . (12)

4. Using {D′ω,1}ω∈St and {D′d,1}d∈Dn−t and the corresponding Dω,2 = grw ,
Dd,2 = grd , compute

D1 =
∏
ω∈St

D′ω,1
∆
St∪Dn−t
ω (0) ·

∏
d∈Dn−t

D′d,1
∆
St∪Dn−t
d (0) = gα · (h0 ·

N∏
i=1

hyii )r(13)

D2 =
∏
ω∈St

Dω,2
∆
St∪Dn−t
ω (0) ·

∏
d∈Dn−t

Dd,2
∆
St∪Dn−t
d (0) = gr, (14)

where r =
∑
ω∈St ∆

St∪Dn−t
ω (0) · rω +

∑
d∈Dn−t ∆

St∪Dn−t
d (0) · rd.

5. Parse M ∈ {0, 1}k as a string m1 . . .mk where mj ∈ {0, 1} for j = 1, . . . , k.

Then, choose z, w R← Zp and compute

σ1 = D1 ·
(
h0 ·

N∏
i=1

hyii
)w · (u0 ·

k∏
j=1

u
mj
j

)z
, σ2 = D2 · gw, σ3 = gz.

Return the signature σ = (σ1, σ2, σ3) ∈ G3.
I Verify(pms,mpk,Msg, σ, Γ ): it parses Γ as a pair (t, S). It computes M =
H(Msg, Γ ) ∈ {0, 1}k and considers the subset Dn−t ⊂ D containing the n − t
first dummy attributes of D. Then, it defines the vector ~Y = (y1, . . . , yN )>

from the polynomial PS(Z) as per (10). The algorithm accepts the signature
σ = (σ1, σ2, σ3) as valid and thus outputs 1 if and only if

e(g, g)α = e(σ1, g) · e
(
σ2, h0 ·

N∏
i=1

hyii
)−1 · e

(
σ3, u0 ·

k∏
j=1

u
mj
j

)−1
. (15)

Correctness. The correctness of the scheme follows from the property that
for each attribute ω ∈ St ⊂ S ∩ Ω, the vector ~XN

ω = (1, ω, ω2, . . . , ωN−1) is
orthogonal to ~Y , so that we have

D′ω,1 = gQΩ(ω) ·
(
h0 · h

−(〈 ~XNω ,~Y 〉−y1)
1

N∏
i=2

hyii

)rω
= gQΩ(ω) ·

(
h0 ·

N∏
i=1

hyii

)rω
,
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which explains the second equality of (11) and the same holds for (12). In addi-
tion, the values (D1, D2) obtained as per (13)-(14) satisfy e(D1, g) = e(g, g)α ·
e(h0 ·

∏N
i=1 h

yi
i , D2), which easily leads to the verification equation (15).

Security Analysis. This second scheme is selective-predicate and adaptive-
message unforgeable by reduction to the hardness of the n-Diffie-Hellman Ex-
ponent (n-DHE) problem ([6]). This scheme also enjoys unconditional privacy,
which is another advantage over our first scheme.

Theorem 3. The scheme is selective-predicate and adaptive-message unforge-
able under chosen-message attacks if H is collision-resistant and if the (2n+ 1)-
DHE assumption holds in G, where n is the maximal number of attributes in the
set S. (The proof can be found in [18].)

Theorem 4. This second ABS scheme enjoys perfect privacy.

Proof. A valid signature for the threshold policy (t, S) which was produced using
the subset of attributes St ⊂ S, |St| = t and with randomness w can also
be produced for any other set S′t ⊂ S, |S′t| = t with randomness w′. More
specifically, if r =

∑
ω∈St ∆

St∪Dn−t
ω (0) · rω +

∑
d∈Dn−t ∆

St∪Dn−t
d (0) · rd and r′ =∑

ω∈S′t
∆
St∪Dn−t
ω (0) · rω +

∑
d∈Dn−t ∆

St∪Dn−t
d (0) · rd, any pair (w,w′) satisfying

r + w = r′ + w′ will result in the same signature for St and S′t. ut

5 More General Signing Predicates

Our schemes admit some extensions to deal with more general monotone pred-
icates. In general, a predicate is a pair (S, Γ ), where S = {at1, . . . , ats} is a set
of attributes and Γ ⊂ 2S is a monotone increasing family of subsets of S. An
attribute-based signature for a pair (S, Γ ) convinces the verifier that the signer
holds some subset of attributes A ∈ Γ , without revealing any information on A.

5.1 Extensions for the First Scheme

Similarly to what is suggested in [12], our first signature scheme can be extended
to admit weighted threshold predicates, that is, pairs (S, Γ ) for which there exists
a threshold t and an assignment of weights ω : S → Z+ such that Ω ∈ Γ ⇐⇒∑

at∈Ω ω(at) ≥ t.
Furthermore, since the final form of the signatures in our first threshold

scheme is that of a Groth-Sahai non-interactive proof, one could consider signing
predicates which are described by a monotone formula (OR / AND gates) over
threshold clauses. The Groth-Sahai proof would be then a proof of knowledge
of some values that satisfy a monotone formula of equations. The size of such a
proof (and therefore, the size of the resulting attribute-based signatures) would
be linear in the number of threshold clauses in the formula. We stress that this
is still better than having size linear in the number of involved attributes, as in
all previous constructions.
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5.2 Extensions for the Second Scheme

The idea of our second scheme is that a (threshold) attribute-based signature
can be computed only if the signer holds t attributes in S which, combined with
n − t dummy attributes, lead to n attributes at such that PS(at) = 0. This
makes it possible to interpolate a polynomial QΩ(X) with degree n− 1, recover
in some way the value gα and produce a valid signature. To admit any possible
value of the threshold t in {1, . . . , n}, the number of dummy attributes must be
n. We can use similar ideas for other families of predicates which are realized
with a secret sharing scheme with properties which resemble those of Shamir’s.
The ideas underlying this extension are quite related to those in [11], where
dummy attributes were used to design attribute-based encryption schemes for
general decryption predicates. An illustrative example, considering hierarchical
threshold predicates, is given in the full version of this paper [18].
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