
Improving the Security of an Efficient Unidirectional Proxy
Re-Encryption Scheme

Sébastien Canard∗

Orange Labs - Applied Crypto Group
Caen, France

sebastien.canard@orange-ftgroup.com

Julien Devigne∗

Orange Labs - Applied Crypto Group/GREYC - Université de Caen Basse-Normandie
Caen, France

julien.devigne@orange-ftgroup.com

Fabien Laguillaumie∗

GREYC - Université de Caen Basse-Normandie
Caen, France

fabien.laguillaumie@unicaen.fr

Abstract

A proxy re-encryption (PRE) scheme allows a designated proxy, that has beforehand received
a so-called re-encryption key, to translate a ciphertext intended to one user to a ciphertext in-
tended to another one. Traditionally, the re-encryption key is generated at the initiative of the
initial receiver and ideally, no secret keys should be known to the proxy. Such scheme is said
unidirectional if the transformation from one user to another does not necessarily imply the pos-
sibility to make the inverse transformation. Regarding the literature on unidirectional proxy re-
encryption, it seems hard to prove the strongest security level (namely indistinguishability under
chosen ciphertext attacks - IND-CCA) of such schemes. Most of the time, PRE either reaches a
chosen-plaintext security or a replayable CCA security. At Africacrypt 2010, Chow, Weng, Yang
and Deng proposed a scheme that satisfies CCA security in the random oracle model. However,
their model can actually be strengthen. Indeed, we show in this paper how to modify this scheme
so that its improved security achieves a full CCA security. In particular, we now allow the adver-
sary of the CCA security for re-encryption to corrupt the user i′ who is the initial receiver of the
challenged ciphertext and at the same time to obtain the re-encryption key from i′ to the targeted
users. The resulting scheme is therefore a fully secure PRE which does not rely on pairings, and
secure in the random oracle model. It can be implemented efficiently with any traditional modular
arithmetic.
Keywords: Proxy re-encryption, unidirectional, CCA security.

1 Introduction

Public-key encryption, as the core of all security systems, has been deeply studied and the most secure
schemes can be very efficiently implemented. This is however not always the case of encryption
schemes “with special features” that can be found in the literature. In this paper, we focus on the case
of proxy re-encryption schemes (PRE) that have been introduced in [4]. Such a scheme allows a semi-
trusted entity, called the proxy, to convert a “level 2” ciphertext originally intended to a receiver, say
Alice, into a “level 1” ciphertext intended to another receiver, called Bob, by using some re-encryption

∗This work has been supported by the French Agence Nationale de la Recherche under the PACE 07 TCOM Project,
and by the European Commission through the ICT Program under Contract ICT-2007-216676 ECRYPT II.

1

sebastien.canard@orange-ftgroup.com
julien.devigne@orange-ftgroup.com
fabien.laguillaumie@unicaen.fr

Improving the Security of PRE Canard, Devigne, and Laguillaumie

key. Obviously, this should be possible only if the initial receiver agrees and if the proxy does not
learn either the plaintext, or the secret key of both Alice and Bob.

There currently exists different flavors of proxy re-encryption schemes. Some of them are unidi-
rectional [2, 14, 17, 1, 7] and allow the proxy to only translate a ciphertext from Alice to Bob. The
other case is called bidirectional [4, 5, 9, 15] and permits the proxy, with only one re-encryption key,
to translate from Alice to Bob but also from Bob to Alice. Some schemes are multi-hop if a ciphertext
can be forwarded several times between users, and single-hop if a ciphertext can be transformed just
once. We will now focus on single-hop unidirectional re-encryption schemes.

Concerning the security aspects of a unidirectional PRE scheme, the strongest notion, introduced
in [5] (for bidirectional schemes but easily adaptable for the unidirectional case, as explained in [14])
is related to the traditional indistinguishability under chosen ciphertext attacks (IND-CCA). In this
model, ciphertexts should remain indistinguishable even if the adversary has access to a re-encryption
oracle (translating ciphertexts chosen by the adversary), to a re-encryption key generation oracle and
to traditional decryption oracles. If we consider the security of existing unidirectional schemes [2, 14,
17, 1, 7], the Ateniese et al.’s schemes [2, 1] only reach a CPA (chosen plaintext attack) security, the
Libert-Vergnaud scheme [14] is only replayable CCA secure [6, 5] and the Shao et al. [17] has been
shown in [7] to only reach a CPA security.

As we see, it seems very difficult to prove the CCA security of proxy re-encryption schemes,
since current constructions are either broken or only achieve a more restrictive security definition. To
the best of our knowledge, it only remains the paper from Chow et al. [7] to be CCA secure (in the
random oracle model), under the CDH assumption. But as we will show, the model presented in [7]
can be strengthen.

Indeed, the security of the Chow et al. scheme [7] can further be improved. First, for one (level
2) ciphertext (meaning that this ciphertext can be transformed into a ciphertext for another recipient)
and one re-encryption key, the result of the re-encryption procedure given in [7] is deterministic.
Making this algorithm probabilistic permits to improve the CCA security at level 1 (called transformed
ciphertext security in [7]). More precisely, in the related security experiment, the adversary cannot
corrupt the user i′ who is the original recipient of the challenged ciphertexts and cannot obtain in
the same time the re-encryption key from i′ to the targeted users. Second, in this same level 1 CCA
security proof, the authors claim that (using Coron’s trick [8] on user i′ or i?) it is possible to give the
adversary access to some keys whereas this is not true. Finally, for the level 2 CCA security (called
original ciphertext security in [7]), Chow et al. sometimes abort the experiment while this is possible
to go on through the proof.

In this paper, we first modify Chow et al.’s scheme proposed in [7] so that the re-encryption
procedure becomes probabilistic. This permits to reach a stronger notion of CCA security at level 2,
as noticed in [7], since the restrictions given in Definition 4 (on transformed ciphertext security) are
not relevant any more. Secondly, we make some corrections to the security proof proposed in [7].
Eventually, instead of aborting when some special cases occur, we succeed to go on the proof with
some extraction techniques in non-interactive zero-knowledge proofs. In particular, we use Fischlin’s
construction of a non-interactive proof of knowledge [12]. Our resulting security proof is consequently
improved compared to the original, while keeping the sole CDH assumption, in the random oracle
model.

The paper is now organized as follows. In Section 2, we define the security model for unidirec-
tional PRE schemes and next give some useful tools to design the modified scheme. Section 3 is
dedicated to our corrections on the Chow et al. scheme and Section 4 gives our new security proof.
We finally conclude in Section ??.

2

Improving the Security of PRE Canard, Devigne, and Laguillaumie

2 Unidirectional Proxy Re-Encryption

2.1 Syntactic Definition

Definition 1 (PRE). Let κ be an integer. A single-hop unidirectional proxy re-encryption scheme
consists of the eight algorithms defined as follows.

• Setup(κ)→P: this setup algorithm takes a security parameter κ as input and produces a set
of public parameters P shared by all parties.

• KeyGen(P)→ (sk, pk): this key generation algorithm, whose inputs are the public parameters,
outputs a pair of secret and public keys (sk, pk), and is executed by users.

• ReKeygen(P,ski, pki, pk j)→ Ri→ j: given the public parameters, the secret and public keys of
the user i, the public key of the user j, this algorithm produces a re-encryption key Ri→ j which
allows to transform second level ciphertexts intended to i into first level ciphertexts for j.

• Encrypt1(P, pk,m)→C: this first level encryption algorithm takes as inputs P , a public key
and a message. It outputs a first level ciphertext C that cannot be re-encrypted.

• Encrypt2(P, pk,m)→C: this second level encryption algorithm takes P , a public key and a
message as inputs, and produces a second level ciphertext C that can be re-encrypted.

• ReEncrypt(P,Ri→ j,C)→ C′/ ⊥: this algorithm takes as input the public parameters, a re-
encryption key Ri→ j and a second level ciphertext intended to user i. The output is a first level
ciphertext1 C′ re-encrypted for user j or an invalid message ⊥.

• Decrypt1(P,sk,C)→ m/ ⊥: this first level decryption algorithm takes as input P , a secret
key and a first level ciphertext and outputs a plaintext m or an invalid message ⊥.

• Decrypt2(P,sk,C)→ m/ ⊥: this second level decryption algorithm takes as input the public
parameters, a secret key and a second level ciphertext and outputs a plaintext m or ⊥.

For correctness conditions, these algorithms must satisfy the following properties: for all pub-
lic parameter P generated by the Setup algorithm, for any message m, and any couple of valid
secret/public key pair (ski, pki), (sk j, pk j)

Decrypt1(P,ski,Encrypt1(P, pki,m))→ m, Decrypt2(P,ski,Encrypt2(P, pki,m))→ m
Decrypt1(P,sk j,ReEncrypt(P,ReKeygen(P,ski, pki, pk j),Encrypt2(P, pki,m)))→ m.

The wellformedness of a ciphertext cannot be publicly checked during a re-encryption, so that one
can re-encrypt incorrect ciphertexts, which will be revealed as invalid by the decryption algorithms.

2.2 Security

The security of our scheme is conducted in an adaptive corruption model, where the challenger gen-
erates public keys for all users and allows the adversary to get secret keys of some of these users (the
corrupted ones). Our model implicitly makes the knowledge of secret key (KOSK) assumption , mean-
ing that all users know the secret key corresponding to their published public key. In other words, the

1In a single-hop scheme, C′ cannot be re-encrypted.

3

Improving the Security of PRE Canard, Devigne, and Laguillaumie

KOSK means that when a user wants its public key to be certified by a certification authority, he has
to provide a proof of knowledge of his secret key. See [14] for a discussion of the stronger scenario
of chosen-key model.

Different (essentially equivalent) variants of the CCA indistinguishability model exist for PRE.
The one we present is inspired by the bidirectional case [5] (extending ideas from [6]). Our model
differs a bit in the presentation from those in [14, 2], and is precisely described in the following.
In particular, each algorithm that produces ciphertexts has to satisfy indistinguishability. This leads
to the three experiments depicted in Fig. 1 corresponding to the PRE.Encrypt1, PRE.Encrypt2 and
PRE.ReEncrypt algorithms.

Expind-cca
PRE.Encrypt1,A

(κ,n)

P ← Setup(κ)
for i = 1 to n do (ski, pki)← KeyGen(P)
PK ←{pki}i=1..n
O = {ODec1,OReKG,OSecKey}
(m0,m1, pki? ,st)←A O

f (P,PK)

δ
$←− {0,1}

C?← Encrypt1(P, pki? ,mδ)
δ ′←A O

g (st,C?)
Return (δ ′ = δ)

Expind-cca
PRE.Encrypt2,A

(κ,n)

P ← Setup(κ)
for i = 1 to n do (ski, pki)← KeyGen(P)
PK ←{pki}i=1..n
O = {ODec1,ODec2,OReKG,OReEnc,OSecKey}
(m0,m1, pki? ,st)←A O

f (P,PK)

δ
$←− {0,1}

C?← Encrypt2(P, pki? ,mδ)
δ ′←A O

g (st,C?)
Return (δ ′ = δ)

Expind-cca
PRE.ReEncrypt,A (κ,n)

P ← Setup(κ)
for i = 1 to n do (ski, pki)← KeyGen(P)
PK ←{pki}i=1..n
O = {ODec1,OReKG,OSecKey}
(C0,C1, pki? , pki′ ,st) ← A O

f (P,PK) with
C0,C1 two “good messages” which can be re-
encrypted from pki′ to pki∗ .

δ
$←− {0,1}

Ri′→i? ← ReKeyGen(P,ski′ , pki′ , pki?)
C?← ReEncrypt(P,Ri′→i? ,cδ)
δ ′←A O

g (st,C?)
Return (δ ′ = δ)

Figure 1: Security experiments for indistinguishability

IND-CCA SECURITY OF PRE.Encrypt1. We define the CCA indistinguishability of the Encrypt1
algorithm of a single-hop unidirectional PRE scheme by describing a two-stage adversary A =
(A f ,Ag) having access to the following oracles. The key pki? must be a key of an uncorrupted
user.

• ODec1: when queried on (pk,C), a first level ciphertext C intended to pk ∈PK , this ora-
cle answers with Decrypt1(P,sk,C). The second stage adversary Ag is not allowed to query
(pki? ,C?) to ODec1.

• OReKG: when queried on (pki, pk j) for a re-encryption key from user i to user j, OReKG an-
swers with Ri→ j← ReKeygen(P,ski, pki, pk j). There is no restriction on this oracle, therefore,

4

Improving the Security of PRE Canard, Devigne, and Laguillaumie

there is no need for a decryption oracle for level 2 ciphertexts, nor for a re-encryption oracle.

• OSecKey: when queried on pki, OSecKey answers with ski the secret key associated to pki.

Definition 2 (IND-CCA security of PRE.Encrypt1). Let κ and n be integers. Let A = (A f ,Ag) be an
adversary against the CCA indistinguishability of PRE.Encrypt1. Let Advind-cca

PRE.Encrypt1,A (κ,n) := 2 ·
Pr

[
Expind-cca

PRE.Encrypt1,A (κ,n)→ true
]
−1, with Expind-cca

PRE.Encrypt1,A as defined in Fig. 1 We say that PRE
has IND-CCA security of PRE.Encrypt1 if for every p.p.t. adversary A = (A f ,Ag), the advantage
Advind-cca

PRE.Encrypt1i,A (κ,n) is negligible.

IND-CCA SECURITY OF PRE.Encrypt2. We define the indistinguishability under a chosen cipher-
text attack of the Encrypt2 algorithm of a single-hop unidirectional proxy re-encryption scheme by
describing a two-stage attacker A = (A f ,Ag) having access to the following oracles. A is not al-
lowed to attack a key pki? if it is those of a corrupted user, or if he has queried for a re-encryption key
from pki? to a corrupted user.

• ODec1: when queried on (pk,C), a first level ciphertext C intended to pk ∈PK , this oracle
answers with Decrypt1(P,sk,C). If the second stage adversary Ag asks for a derivative of
(pki? ,C?), this oracle responds with ⊥. Such a derivative is any pair (pk,C) such that (pk,C) =
(pki? ,C?) or C = ReEncrypt(P,ReKeygen(P,ski? , pki? , pk),C?).

• ODec2: when queried on (pk,C), a second level ciphertext C intended to pk ∈PK , this
oracle answers with Decrypt2(P,sk,C). The second stage adversary Ag is not allowed to
query (pki? ,C?) to ODec2.

• OReEnc: on input (pki, pk j,C) where C is a second level ciphertext, this oracle answers ⊥
if (pki,C) = (pki? ,C?) and pk j is those of a corrupted user, otherwise it computes the re-
encryption key Ri→ j = ReKeygen(P,ski, pki, pk j) and outputs C′← ReEncrypt(P,Ri→ j,C).

• OReKG: when queried on (pki, pk j) for a re-encryption key from user i to user j, OReKG an-
swers with Ri→ j← ReKeygen(P,ski, pki, pk j). The attacker is not allowed to query (pki? , pk)
with pk associated to a corrupted user.

• OSecKey: when queried on pki, OSecKey answers with ski the secret key associated to pki. The
user associated to pki becomes corrupted. If the second stage adversary Ag asks for a secret key
associated to pki which has already been used on an input (pki∗ , pki,C∗) to OReEnc, this oracle
answers with ⊥.

Definition 3 (IND-CCA security of PRE.Encrypt2). Let κ and n be two integers. Let A = (A f ,Ag)

be an adversary against the CCA indistinguishability of PRE.Encrypt2. Let Advind-cca
PRE.Encrypt2,A (κ,n)

:= 2 · Pr
[
Expind-cca

PRE.Encrypt2,A (κ,n)→ true
]
− 1, with Expind-cca

PRE.Encrypt2,A as defined in Fig. 1 We say
that PRE has IND-CCA security of PRE.Encrypt2 if for every p.p.t. adversary A = (A f ,Ag),
Advind-cca

PRE.Encrypt2,A (κ,n) is negligible.

IND-CCA SECURITY OF PRE.ReEncrypt. In the security game for the indistinguishability under
CCA of PRE.ReEncrypt, the two-stage attacker A = (A f ,Ag) can specify the delegator i′. In this
case, he is not allowed to attack a key pki? if it is those of a corrupted user. The sole restriction in this
case, and contrary to Chow et al., is that the key pki? must be a key of an uncorrupted user. There is

5

Improving the Security of PRE Canard, Devigne, and Laguillaumie

no restriction on the key of the delegator pki′ , which can be one of a corrupted user. Therefore, the
oracles and their restrictions are the same as in the case of the IND-CCA security of PRE.Encrypt1.

Definition 4 (IND-CCA security of PRE.ReEncrypt). Let κ and n be integers. Let A = (A f ,Ag) be
an adversary against the CCA indistinguishability of PRE.ReEncrypt. Let Advind-cca

PRE.ReEncrypt,A (κ,n)
:= 2 ·Pr

[
Expind-cca

PRE.Encrypt1,A (κ,n)→ true
]
− 1, with Expind-cca

PRE.ReEncrypt,A as defined in Fig. 1 We say
that PRE has IND-CCA security of PRE.ReEncrypt if for every p.p.t. adversary A = (A f ,Ag),
Advind-cca

PRE.ReEncrypt,A (κ,n) is negligible.

Lemma 1. The IND-CCA security of PRE.ReEncrypt implies the Transformed Ciphertext Security
of [7]

Proof. We construct an algorithm B which will attack the IND-CCA security of PRE.ReEncrypt out
of an adversary A against the Transformed Ciphertext Security of IND-CCA security of [7]. If A
asks B’s oracles for a request, then B asks oracles for the same request and returns the result to A .
For the challenge phase, A outputs m0, m1, pki′ , pki∗ . B computes C0 = Encrypt2(P,ski′ , pki′ ,m0)
and C1 = Encrypt2(P,ski′ , pki′ ,m1). Those two messages are “good messages” which can be re-
encrypted from pki′ to pki∗ . B outputs C0, C1, pki′ , pki∗ in its challenge phase. It receives C′∗ =
ReEncrypt(P,Ri′→i∗ ,Cδ) and returns it to A . A outputs δ ′ as answer to his challenge and B simply
forwards it to its own challenger. We easily see that this algorithm allows to attack the IND-CCA
security of PRE.ReEncrypt.

Lemma 2. A deterministic re-encryption cannot achieve IND-CCA security of PRE.ReEncrypt.

Proof. The proof is trivial and left to the reader.

MASTER SECRET KEY SECURITY. Another important security notion was suggested in [2] which
refers to the impossibility of a coalition of dishonest delegatees to pool together their re-encryption
keys to recover the secret key of their delegator. This notion is actually implied by the IND-CCA
security of PRE.Encrypt1, where all re-encryption keys are given to the attacker (see e.g. [14]). Es-
sentially, the difficulty of the discrete logarithm problem is sufficient to prove this notion in our case.

2.3 Toolbox

In the following, [[a;b]] denotes the set of all integers between a and b.

2.3.1 Complexity Assumptions

Our modified scheme rely on the computational Diffie-Hellman assumption. The Computational
Diffie-Hellman assumption (CDH) posits the hardness of computing gab given (g,ga,gb).

The Divisible Computation Diffie-Hellman assumption (DCDH), introduced by Bao et al. [3],
posits the hardness of computing gb/a given (g,ga,gb). The DCDH assumption is shown in [3] to be
equivalent to the CDH assumption in the same group.

2.3.2 Non-interactive zero-knowledge proofs with online extractors.

Roughly speaking, a zero knowledge proof of knowledge [10] describes the way an entity proves to a
verifier that he knows secret values α1, . . . ,αq verifying a given relation R (that is R(α1, . . . ,αq) = 1)
without revealing anything about the secrets. In the following, we need a non-interactive proof of

6

Improving the Security of PRE Canard, Devigne, and Laguillaumie

knowledge (NIZK) with an online extractor to extract the secret during the security proof. In [7],
Chow et al. use a non-interactive version of the Schnorr protocol [16], using the Fiat-Shamir heuris-
tic [11] in the random oracle model. In our context, this makes the reduction in the security proof not
polynomial time because of the rewinds to get some secret keys during the proof. For our purpose,
in order to get a proof of the IND-CCA security, we use Fischlin’s constructions from [12]. More
precisely Fischlin shows how to turn out an interactive proof of knowledge into a NIZK with online
extractors (NIZKOE). This construction is proven to be secure in the random oracle model and can
be used for any discrete logarithm relation, which includes the Schnorr one. The NIZKOE we are
interested in is denoted NIZKOE(r : E = T r)(m) where r is the secret key known by the prover, E
and T are public values and m is a message to be signed.

Let κ denotes the security parameter. Roughly speaking, this signature is produced by first choos-
ing at random values com1, ..,coml ∈ Z∗q with l = O(log(κ)) and computing Tk = T comk , ∀k ∈ [[1; l]].
Let H3 be a hash function modelled as a random oracle mapping to {0,1}u with u = O(log(κ)) and
u≤ t. Then for each k ∈ [[1; l]], for each chk ∈ [[1;2t]] with t = O(log(κ)) and 2t ≤ q, the signer com-
putes respk = comk + r.chk, until one verifies the relation H3(E,T1, ..,Tl,k,chk,respk,m) = 0u. If
no such tuple is found, then one picks the first one for which the hash value is minimal among all
2t hash values. The signature consists of (Tk,chk,respk)k=1,..,l . The verification procedure consists

in checking that if T respk = TkEchk , for each k ∈ [[1; l]] and if
l
∑

k=1
H3(E,T1, ..Tl,k,chk,respk,m) ≤ S

with S = O(l).

As explained in [12], we can extract the secret r in the random oracle model, except with neg-
ligible probability. Let (Tk,chk,respk)k=1,..,l be a valid signature for public values E and T on the
message m. By browsing the list of queries to the random oracle H3, we can find one such query
(E,T1, ..Tl,k,ch′k,resp

′
k,m) with ch′k 6= chk but such that T resp′k = TkEch′k for one k ∈ [[1; l]], which is

possible with an overwhelming probability as a valid signature depends over the choice of H3. With
such a query, as we have two Schnorr signatures for the same commit comk, it is easy to recover r by
computing it as r = resp′k−respk

ch′k−chk
.

2.3.3 Hash Elgamal encryption.

The Elgamal encryption scheme (naturally IND-CPA under the DDH assumption) can be made IND-
CCA secure, in the random oracle model, thanks to Fujisaki-Okamoto’s technique [13], and is called
in this case the Hash Elgamal encryption scheme. For our purpose, the encryption process consists in
computing T0 = (m‖r)⊕H2(gH1(m,r)) and T1 = yH1(m,r) where m is the message, g is a generator of
the used group, y = gx is the public key, related to the secret key x, and H1 and H2 are hash functions
modeled as random oracles. The decryption of (T0,T1) is done by computing m‖r as T0⊕H2(T

1/x
1)

and checking that T1 = yH1(m,r) to recover m.

3 The modified scheme

In this section, we give the general framework of the Chow et al. scheme [7] and next proposed our
corrections to improve its security.

7

Improving the Security of PRE Canard, Devigne, and Laguillaumie

3.1 Review of Chow et al. scheme

We first review the important points of the design of Chow et al.’s unidirectional PRE scheme [7]
(keeping their notations in a discrete logarithm setting) by giving few words about the main steps of
their scheme (in particular, we avoid the Setup and the Enc2 phases, which are not crucial for the
understanding).

• Keygen(). User i has a secret key (xi,1,xi,2) and a public one (gi,1,gi,2) = (gxi,1 ,gxi,2).

• ReKeyGen(ski, pk j). The generation of re-encryption keys is somehow original since it does
not generate, as usual, a re-encryption key from the key of both users i and j of the form gxi/x j .
In fact, it generates this key using the key of user i and a fresh randomly picked key, denoted h.
The re-encryption key is of the form Ri→ j =

h
xi,1H4(gi,2)+xi,2

and a Hash Elgamal encryption of h,
w.r.t. the public key g j,2 of user j, is added.

• Enc(pki,m). The encryption of the message m is done with a Hash Elgamal encryption. The
message is (m‖w), where w is a random, the public key is gH4(gi,2)

i,1 gi,2 (which is related to the
secret key xi,1H4(gi,2)+xi,2) and the random number is r = H1(m,w). To reach the IND-CCA
property (and more precisely to allow the access to a decryption oracle), the proposed scheme
makes use of a Schnorr signature with the secret key r.

• ReEnc(Ri→ j,C, pki, pk j). If the ciphertext C is correct2 (i.e., if the Schnorr signature is correct),
the re-encryption procedure uses the re-encryption key Ri→ j to transform the Hash Elgamal

encryption of m and the public key gH4(gi,2)
i,1 gi,2 into the encryption of the same message m but

with the public key gh. The Hash Elgamal encryption of h with the public key g j,2 is also
returned.

• Dec1(sk j,C′). The decryption of a level 1 ciphertext is done by using x j,2 to retrieve the secret
value h, which is then used to decrypt the couple (m‖w).

• Dec2(ski,C). The decryption of a level 2 ciphertext is a Hash Elgamal decryption with secret
key xi,1H4(gi,2)+ xi,2 and the verification of the Schnorr signature and of the computation of r
as H1(m,w).

3.2 Discussion

As mentioned in the introduction, this scheme has been proven in [7] to be CCA secure. However,
looking at the proposed security model and the corresponding security proof, we argue that it is
possible to add some improvements to the scheme, the model and the proofs, following the three
points below.

(1) First, we note that the ReEnc procedure always outputs the same re-encryption when applied
on the same ciphertext and users: this procedure is deterministic.

This can be avoided by generating different re-encryption keys (as they are random from j’s point
of view) but the result is not very practical. Another solution is to add randomness to the resulting
ciphertext. When applied to the Hash Elgamal encryption (E = (gH4(gi,2)

i,1 gi,2)
r,F = H2(gr)⊕ (m‖w))

of the message (m‖w), the re-encryption procedure already modifies E but not the value F . In our
modified scheme, we use for that purpose a one-time-pad on the value F , using a fresh key H2(gz).
The value z is next encrypted, using Hash Elgamal, with the key x j,2.

2which does not mean it is well-formed

8

Improving the Security of PRE Canard, Devigne, and Laguillaumie

Thanks to this, it is now possible to prove the CCA security of the re-encryption while giving
the adversary the possibility to both corrupt the user i′ who is the original recipient of the challenged
ciphertext, and obtain the re-encryption key from i′ to the targeted users. Note that this restriction was
said by the authors of [7] to be weaker than the definition given in [14], that only obtained a RCCA
security. Consequently, we obtain a scheme with the advantages and none of the drawbacks of [7, 14].

(2) In the same CCA security at level 1, the authors conclude by saying that some re-encryption
keys can be given to the adversary while in the security proof given in [7], this is not allowed. More
precisely, according to the simulation of the re-keygen oracle, the re-encryption keys from i′ or i? to a
corrupted user cannot be given to the adversary. In our proof, given in Section 4, we fix it.

(3) Finally, regarding CCA security at level 2, the proof given in [7] sometimes aborts the experi-
ment while it will actually be possible to conclude as we will see. More precisely, in the simulation of
the ReEnc procedure, if the used value r does not come from the random oracle, then the experiment
is aborted. In our modified scheme, we use a NIZKOE, to extract without rewind, from the signature,
the secret r, using the random oracle related to this signature.

3.3 Our Modified Scheme

Using the above remarks and high-level description, we now give the complete updated scheme.

Setup(κ): Choose p and q two primes such that q|p− 1 and the bit-length of q is the security pa-
rameter κ . Let g be a generator of G, which is a subgroup of Z?

p of order q. Choose three hash
functions H1 : {0,1}l0×{0,1}l1 → Z?

q, H2 : G→{0,1}l0+l1 and H4 : G→ Z?
q. Here l0 and l1

are security parameters polynomial in κ and the message space is {0,1}l0 . The global param-
eters are P = (κ,q,G,g, l0, l1,H1,H2,H3,H4) (H3 comes from Fischlin’s construction, see
Section 2.3).

Keygen(P): On input the public parameters, this algorithm picks sk = (x1,x2)
$← Z?

q×Z?
q and sets

pk = (pk1, pk2) = (gx1 ,gx2).

ReKeygen(P,ski, pki, pk j): On input the public parameters, user i’s private key ski = (xi,1,xi,2)
and public key pki = (pki,1, pki,2) and user j’s public key pk j = (pk j,1, pk j,2), this algorithm
generates the re-encryption key Ri→ j as follows.

1. Pick h $←{0,1}l0 and ϖ
$←{0,1}l1 , compute v = H1(h,ϖ).

2. Compute V = pkv
j,2 and W = H2(gv)⊕ (h‖ϖ).

3. Define R̃i→ j =
h

xi,1H4(g
xi,2)+xi,2

and return Ri→ j = (pki, pk j,2, R̃i→ j,V,W).

Encrypt1(P, pki,m): On input the public parameters, user i’s public key pki = (pki,1, pki,2) and a
plaintext m ∈ {0,1}l0 , this algorithm creates a first level ciphertext of m intended to user i as
follows.

1. Pick h $←{0,1}l0 , ϖ
$←{0,1}l1 and compute v = H1(h,ϖ).

2. Compute V = pkv
i,2 and W = H2(gv)⊕ (h‖ϖ).

3. Pick ω
$←{0,1}l1 and compute r = H1(m,ω), E ′ = grh.

4. Pick z $←∈{0,1}l0 , ϖ2
$←∈{0,1}l1 and compute x =H1(z,ϖ2), X = pkx

j,2, Y =H2(gx)⊕
(z‖ϖ2) and F ′ = H2(gz)⊕H2(gr)⊕ (m‖ω).

9

Improving the Security of PRE Canard, Devigne, and Laguillaumie

5. Output the first level ciphertext C′ = (E ′,F ′,V,W,X ,Y).

Encrypt2(P, pki,m): On input the public parameters, user i’s public key pki = (pki,1, pki,2) and a
plaintext m ∈ {0,1}l0 , this encryption algorithm works as below.

1. Pick ω
$← and compute r = H1(m,ω).

2. Compute E = (pkH4(pki,2)
i,1 pki,2)

r and F = H2(gr)⊕ (m‖ω).

3. Define (Tk,chk,respk)k=1..l = NIZKOE(r : E = (pkH4(pki,2)
i,1 pki,2)

r)(F) and output the
second level ciphertext C = (E,F,(Tk,chk,respk)k=1..l).

ReEncrypt(P,Ri→ j,C): On input the public parameters, a re-encryption key Ri→ j = (pki, pk j,2,
R̃i→ j, V,W) and a second level ciphertext C = (E,F,(Tk,chk,respk)k=1..l) intended to user i,
this algorithm re-encrypts this ciphertext into another one intended to user j as follows.

1. If (Tk,chk,respk)k=1..l is not valid for F under E and pki, return ⊥.

2. Otherwise, compute E ′ = E R̃i→ j .

3. Pick z $←∈{0,1}l0 , ϖ2
$←∈{0,1}l1 and compute x =H1(z,ϖ2), X = pkx

j,2, Y =H2(gx)⊕
(z‖ϖ2) and F ′ = H2(gz)⊕F .

3. Output the first level ciphertext C′ = (E ′,F ′,V,W,X ,Y).

Decrypt1(P,ski,C′): On input user i’s private key ski = (xi,1,xi,2) and a first level ciphertext C′ =
(E ′,F ′,V,W,X ,Y), this algorithm works as follows.

1. Compute (z‖ϖ2) = Y ⊕H2(X1/xi,2), (h‖ϖ) =W ⊕H2(V 1/xi,2) and (m‖ω) = F ′⊕
H2(E ′1/h)⊕H2(gz).

2. If X = pkH1(z,ϖ2)
i,2 , V = pkH1(h,ϖ)

i,2 and E ′ = gH1(m,ω)h then return m, else return ⊥.

Decrypt2(P,ski,C): On input user i’s private key ski = (xi,1,xi,2) and a second level ciphertext
C = (E,F,(Tk,chk,respk)k=1..l), this algorithm works as follows.

1. If (Tk,chk,respk)k=1..l is not valid for F under E and pki, return ⊥.

2. Otherwise, compute (m‖ω) = F⊕H2(E
1

xi,1H4(pki,2)+xi,2).

3. If E = (pkH4(pki,2)
i,1 pki,2)

r then return m, else return ⊥.

The correctness of the scheme is easy to verify and is left to the reader.

4 Security

This section includes the security results (in the sense of Def. 2, 3, 4) concerning our modification of
Chow et al.’s scheme. The algorithmic assumptions underlying our security proofs are described in
Appendix 2.3.1.

In the sequel, qH1 ,qH2 ,qD1 ,qD2 ,qrk,qre denote respectively the number of queries to the random
oracle H1, H2, to the decryption oracle for first level ciphertexts, to the decryption oracle for second
level ciphertexts, to the re-encryption key generation oracle and to the re-encryption oracle. Let τ

denote the negligible probability of success for an adversary against the CCA security of our Hash

10

Improving the Security of PRE Canard, Devigne, and Laguillaumie

Elgamal encryption given in Section 2.3.3. Let φ , denote the negligible probability of non-success
to extract the secret from a NIZKOE and let ψ , denote the negligible probability of non-success to
simulate a valid proof of knowledge associated to a NIZKOE (see [12]).

4.1 IND−CCA security of PRE.Encrypt2
Theorem 1. The scheme has IND-CCA security of PRE.Encrypt2 under the CDH assumption in the
random oracle model.

Proof. We construct an algorithm B which breaks the DCDH assumption out of an adversary A
against the IND-CCA security of PRE.Encrypt2 in the random oracle model with probability greater
than

Advind-cca
PRE.Encrypt2,A (κ)

qH2e(1+nc +qrk +qre)
− qH1

qH22l1
− ψ

qH2

− (qrk +qD2)φ

qH2

−max
(

qD1τ

qH2

,
3qD1

qqH2

)
.

Let (g,ga,gb) be a DCDH instance, the aim of B is to compute gb/a. In a preparation phase, B
provides A with public parameters (κ,q,G,g, l0, l1,H1,H2,H3,H4). Random oracles H1, H2 and
H3 (for the Fischlin construction) are controlled by B, who maintains three lists: H list

1 , H list
2 and

H list
3 , which are initialized as empty. B answers to the queries to random oracles as follows:

• (E,T1, ..,Tl,k,ch,resp,m) is asked to H3: if there is a tuple (E,T1, ..,Tl,k,ch,resp,m,c) in

H list
3 then return c, otherwise choose c $← {0,1}u, add the tuple (E,T1, ..,Tl,k,ch,resp,m,c)

to H list
3 and return c.

• (m,ω) is asked to H1: if there is a tuple (m,ω,r) in H list
1 then return r, otherwise choose

r $← Zq?, add the tuple (m,ω,r) to H list
1 and return r.

• R is asked to H2: if there is a tuple (R,β) in H list
2 then return β , otherwise choose β

$←
{0,1}l0+l1 , add the tuple (R,β) to H list

2 and return β .

B maintains three lists: K list, R list and C list, which are initially set as empty and will store
public/private keys, re-encryption keys and some ciphertext with its re-encryption in some special
cases.

Key generation: B generates public-keys as follows: B picks (xi,1,xi,2)∈Z?
q×Z?

q and uses Coron’s
technique [8]: ci is a bit set at 1 with probability θ and at 0 otherwise (θ will be chosen later).

• if ci = 1, B defines pki = (pki,1, pki,2) = (gxi,1 ,gxi,2).

• if ci = 0, B defines pki = (pki,1, pki,2) = ((ga)xi,1 ,(ga)xi,2).

Then B adds the tuple (pki,xi,1,xi,2,ci) to K list and returns pki to A .

Phase 1. B answers different queries of A as follows:

OSecKey(pki) : B begins by recovering the entry corresponding to pki from K list. If ci = 0, B
outputs “failure” and aborts, otherwise it returns ski = (xi,1,xi,2) to A .

11

Improving the Security of PRE Canard, Devigne, and Laguillaumie

OReKG(pki,pkj) : B begins by recovering the entries corresponding to pki and pk j from K list and
next generates re-encryption keys as follows:

• ci = 1: B runs fairly the ReKeygen algorithm.

• ci = c j = 0: B generates a random (fake) re-encryption key. Indeed, it picks R̃i→ j
$← Z?

q,

h $←{0,1}l0 , ϖ
$←{0,1}l1 and computes v =H1(h,ϖ), V = pkv

j,2, W =H2(gv)⊕ (h‖ϖ).

• ci = 0 and c j = 1: B aborts and outputs “failure”.

If B does not abort, then it adds the tuple (pki, pk j, R̃i→ j,V,W,h) to R list and returns Ri→ j =
(pki, pk j,2, R̃i→ j,V,W) to A .

OReEnc(pki,pkj,C) : the ciphertext C is parsed as (E,F,(Tk,chk,respk)k=1..l). In the case where
(Tk,chk,respk)k=1..l is not valid for F under E and pki, return ⊥. Otherwise, there are several
cases.

• ci = 1 or ci = c j = 0: recover the re-encryption key Ri→ j (or ask OReKG(pki, pk j) as
described above), then re-encrypt to obtain C′ and add (i, j,C,C′) to C list. If ci = c j = 0,
the plaintext related to C′ can not correspond to the one related to C as (see above) the re-
encryption key is fake. As A may have this fake key in possession, B should re-encrypt
“correctly”, even in this case. Note that we need to consider this case in the simulation of
the decryption (see below).

• ci = 0 and c j = 1: B does not know the re-encryption key and cannot work similarly. In
this case, Chow et al. [7] use the random oracle H1 to retrieve r. But, as the adversary may
have created this level 2 ciphertext without asking the random oracle, they sometimes need
to abort. On contrary, we use in this case the Fischlin NIZKOE (see [12] and Section 2.3)
which permits us to always extract the secret r. This way, B will be able to re-encrypt
correctly as follows.

– If R list has an entry (pki, pk j,⊥,V,W,h), recover it. Otherwise pick h $← {0,1}l0 ,

ϖ
$← {0,1}l1 , compute v = H1(h,ϖ), V = pkv

j,2 and W = H2(gv)⊕ (h‖ϖ). Add
(pki, pk j,⊥,V,W,h) to R list.

– Pick z $←∈ {0,1}l0 , ϖ2
$←∈ {0,1}l1 and compute E ′ = grh, x = H1(z,ϖ2), X = pkx

j,2,
Y = H2(gx)⊕ (z‖ϖ2) and F ′ = H2(gz)⊕F .

– Output the first level ciphertext C′ = (E ′,F ′,V,W,X ,Y).

ODec2(pki,C) : B decrypts a second level ciphertext as follows.

• ci = 1: run Decrypt2(P,ski,C).

• ci = 0: in this case, B does not have the decryption key. As for the OReEnc oracle
above, we use the Fischlin NIZKOE to extract r (which, again, was not always possible
in [7]). This way, B will be able to decrypt correctly. For this purpose, it computes
(m‖ω) = F⊕H2(gr) and return m (and ⊥ otherwise) if E = (pkH4(pki,2)

i,1 pki,2)
H1(m,ω).

ODec1(pk j,C′): the ciphertext C′ is parsed as (E ′,F ′,V,W,X ,Y). B decrypts this ciphertext as
follows. If c j = 1, it runs Decrypt1(P,sk j,C′). Otherwise we distinguish the two following
cases.

12

Improving the Security of PRE Canard, Devigne, and Laguillaumie

• If there is an entry (pki, pk j,Ri→ j,V,W,h) in R list, then there are two cases.

• ci = 0: if there is an entry (i, j,C,C′) in C list, call ODec2(pki,C) and return the result
to A . Otherwise, if possible, use the random oracles H1 and/or H2 to recover z from
(X ,Y), then compute F = F ′⊕H2(gz) and compute E = E ′R̃i→ j and if possible use
the random oracle H1 and/or H2 to recover m from (E,F) and return m if it succeeds.
Else, return ⊥.
• ci = 1: B first obtains h by recovering the entry (pki, pk j,Ri→ j,V,W,h) in R list.

Again, B can use H1 and/or H2 to recover z from (X ,Y) (otherwise, return⊥). Then
B computes (m‖ω)=F ′⊕H2(gz)⊕H2(E ′1/h) and returns either m if E ′= gH1(m,ω)h

and ⊥ otherwise.

• If there is no entry (pki, pk j,Ri→ j,V,W,h) in R list, it uses the random oracles H1 and H2
to recover z, h and m. If it succeeds, it returns m, and it returns ⊥ otherwise.

Challenge. A outputs an uncorrupted public key pki? = (pki?,1, pki?,2) and two messages m0 and
m1.
If c?i = 1, then B aborts and outputs “failure”. Else:

• B picks δ
$← {0,1}, ω? $←∈ {0,1}l1 . It computes E? = (gb)xi?,1H4(pki?,2)+xi?,2 , implicitly

defines r = H1(mδ ,ω
?) = b/a.

• It uses the random oracle H3 to create a valid NIZKOE on a random F? under E? and pk?i .
For each k, let τk be a random application over [[1;2t]] mapping to {0,1}u. Let ch?k be the
smallest one obtaining the minimum over all these 2t values. It then chooses at random
resp?k ∈ Z?

q and computes T ?
k = (ga)resp

?
k(xi?,1H4(pki?,2)+xi?,2)(gb)−ch

?
k(xi?,1H4(pki?,2)+xi?,2). It

implicitly defines com?k = resp?k −
b
ach

?
k . It picks F? $← {0,1}l0+l1 and defines the value

H3(E?,T ?
1 , ..,T

?
l ,k,ch?k ,resp?k ,F

?) = τk(ch?k).

• B gives (E?,F?,(T ?
k ,ch

?
k ,resp

?
k)k=1..l) to A .

Phase 2. B answers A ’s queries as in phase 1 for OSecKey, OReKG, ODec2 with restrictions
of the IND-CCA security PRE.Encrypt2. It differs a bit for OReEnc and ODec1, as B has to
check if the input of a query to these oracles include the challenge ciphertext or a re-encryption
of it. B answers different queries of A to both oracles as follows:

OReEnc(pki,pkj,C) : the ciphertext C is parsed as (E,F,(Tk,chk,respk)k=1..l). In the case where
(Tk,chk,respk)k=1..l is not valid for F under E and pki, return ⊥. Otherwise, there are several
cases.

• ci = 1 or ci = c j = 0: recover the re-encryption key Ri→ j (or ask OReKG(pki, pk j) as
described above), then re-encrypt to obtain C′ and add (i, j,C,C′) to C list. If ci = c j = 0,
the plaintext related to C′ can not correspond to the one related to C as (see above) the re-
encryption key is fake. As A may have this fake key in possession, B should re-encrypt
“correctly”, even in this case. Note that we need to consider this case in the simulation of
the decryption (see below).

• ci = 0 and c j = 1: if i = i∗ and C = C∗, then B aborts and outputs “failure”. Otherwise,
B does not know the re-encryption key and cannot work similarly. In this case, Chow et
al. [7] use the random oracle H1 to retrieve r. But, as the adversary may have created

13

Improving the Security of PRE Canard, Devigne, and Laguillaumie

this level 2 ciphertext without asking the random oracle, they sometimes need to abort.
On contrary, we use in this case the Fischlin NIZKOE (see [12] and Section 2.3) which
permits us to always extract the secret r. This way, B will be able to re-encrypt correctly
as follows.

– If R list has an entry (pki, pk j,⊥,V,W,h), recover it. Otherwise pick h $← {0,1}l0 ,

ϖ
$← {0,1}l1 , compute v = H1(h,ϖ), V = pkv

j,2 and W = H2(gv)⊕ (h‖ϖ). Add
(pki, pk j,⊥,V,W,h) to R list.

– Pick z $←∈ {0,1}l0 , ϖ2
$←∈ {0,1}l1 and compute E ′ = grh, x = H1(z,ϖ2), X = pkx

j,2,
Y = H2(gx)⊕ (z‖ϖ2) and F ′ = H2(gz)⊕F .

– Output the first level ciphertext C′ = (E ′,F ′,V,W,X ,Y).

ODec1(pk j,C′): the ciphertext C′ is parsed as (E ′,F ′,V,W,X ,Y). B decrypts this ciphertext as
follows. If c j = 1, it runs Decrypt1(P,sk j,C′). Otherwise we distinguish the two following
cases.

• If there is an entry (pki, pk j,Ri→ j,V,W,h) in R list, then there are three cases.

• ci = 1: B first obtains h by recovering the entry (pki, pk j,Ri→ j,V,W,h) in R list.
Again, B can use H1 and/or H2 to recover z from (X ,Y) (otherwise, return⊥). Then
B computes (m‖ω)=F ′⊕H2(gz)⊕H2(E ′1/h) and returns either m if E ′= gH1(m,ω)h

and ⊥ otherwise.
• i = i∗: if there is an entry (i∗, j,C∗,C′) in C list, then B outputs ⊥ as C′ is a re-

encryption of the challenge ciphertext. Else it uses the random oracles H1 and/or H2
to recover z from (X ,Y), otherwise it returns ⊥. Then B computes E = (E ′)1/R̃i∗→ j

and F =F ′⊕H2(gz). If E =E∗ and F =F∗, then it outputs⊥, as C′ is a re-encryption
of C∗. Otherwise if possible, it uses the random oracles H1 and/or H2 to recover m
from (E,F) and return m if it succeeds. Else, return ⊥.
• ci = 0 and i 6= i∗: if there is an entry (i, j,C,C′) in C list, B calls ODec2(pki,C)

and returns the result to A . Otherwise, if possible, it uses the random oracles H1
and/or H2 to recover z from (X ,Y), then computes F = F ′⊕H2(gz), E = E ′1/R̃i→ j

and if possible it uses the random oracles H1 and/or H2 to recover m from (E,F)
and return m if it succeeds. Else, return ⊥.

• If there is no entry (pki, pk j,Ri→ j,V,W,h) in R list, it uses the random oracles H1 and H2
to recover z, h and m. If it succeeds, it returns m, and it returns ⊥ otherwise.

Guess. A returns δ ′ and B picks a tuple (R,β) ∈H list
2 and returns R as solution to the DCDH

instance.

ANALYSIS OF THE SIMULATION. We now want to compute the success probability of our algo-
rithm B. For this purpose, we study each step to detect where the simulation is not perfect.

1) The simulation of oracle H4 is perfect, as well as these of H1, H2, H3, except when b
a is

asked to H1, gb/a is asked to H2 and (E?,T ?
1 , ..,T

?
l ,k,ch?k ,resp?k ,F

?) is asked to H3 before the
challenge phase for some k ∈ [[1; l]].

2) The simulation of the key generaiton is perfect.

14

Improving the Security of PRE Canard, Devigne, and Laguillaumie

3) If B does not abort, the simulation of OSecKey is perfect.

4) The simulation of OReKG is perfect, except when ci = c j = 0 while B does not abort. In
this case, since A has neither h nor xi,1H4(pki,2) + xi,2, a real re-encryption key (R̃i→ j =

h
xi,1H4(g

xi,2)+xi,2
) is computationally indistinguishable from a random value given by B since

(i) the value (xi,1,xi,2) is unknown from A and (ii) under the indistinguishability of the hash
Elgamal encryption scheme, and thus the CDH assumption [13]. Then if B does not abort, the
simulation of OReKG is also perfect.

5) If B does not abort, the simulation of OReEnc in the second phase is the same as the one in the
first phase (with some restrictions of the IND-CCA security PRE.Encrypt2), so we analyse the
simulation of this oracle independtly of both phases. The simulation of OReEnc re-encrypts
correctly with the help of the online extractor, which, according to [12], allows to recover the
value r with a high probability 1− φ (see [12]). The sole exception is the case ci = c j = 0.
Here, B executes a true re-encryption but with a fake re-encryption key. As A does not have
the corresponding decryption key, A cannot detect it and thus, the simulation of OReEnc is
also perfect.

6) The simulation of ODec2 is perfect too due to the online extractors with a high probability
1−φ (see [12]).

7) The simulation of ODec1: we see easily that the simulation ODec1 in the second phase finally
gives the same result as the one in the first phase (with restrictions of the IND-CCA security
PRE.Encrypt2), so we analyse the simulation of this oracle independently of both phases. If
c j = 1, the simulation is perfect. Otherwise, we distinguish the two following cases.

• There is no entry (pki, pk j, R̃i→ j,V,W,h) in R list. The simulation is perfect, except when
the simulation gives ⊥. This case implies that the oracle lists H list

1 and H list
2 cannot be

used to recover z, h, m. In fact, the probability that the adversary comes up with a valid
triple (z,ϖ2,x) (resp. (h,ϖ ,v) and (m,ω,r)) w.r.t. H1 but without requesting the random
oracle is 1

q .

• There is an entry (pki, pk j,∗,V,W,h) in R list, then there are two cases. Except with prob-
ability ≤ 1

q , there is only one entry in R list with V,W for j so B will use the right entry
with probability 1− 1

q . There are next two cases.

∗ ci = 1: B recovers the value h in the entry (pki, pk j, R̃i→ j,V,W,h) of R list. As this
value necessarily corresponds to the correct value h, B next uses the random oracles
H1 and/or H2 to recover z and m. The simulation is also perfect, except when the
simulation gives ⊥, which occurs with the probability 1

q , as seen above.

∗ ci = 0: if there is an entry (i, j,C,C′), the simulation runs the simulation of ODec2
on (i,C) which is perfectly simulated as we saw it before. Otherwise, there are two
cases.
· If the ciphertext C′ corresponds to the re-encryption of a ciphertext C under the

fake key Ri→ j, then we are not able to use C as we have no way to obtain it.
We thus use the random oracle H1 and/or H2 to recover z or return ⊥ (which
occurs with probability 1

q). Using z, B can next compute E = E ′R̃i→ j and F =

F ′⊕H2(gz) (as for a true decryption) and finally uses again the random oracle

15

Improving the Security of PRE Canard, Devigne, and Laguillaumie

H1 to recover m. The simulation is next perfect, except when the random oracle
cannot be used, which occurs with probability 1

q .

· Otherwise, the ciphertext C′ is a direct level 1 ciphertext. First, A could not
know the value h since it only knows (V,W) and does not have the corresponding
decryption key. Thus, if the ciphertext C′ is well-formed with h hidden in (V,W),
the only way for A to obtain h is to break the IND-CCA security of hash ElGa-
mal, which occurs with negligible probability τ . As a consequence, similarly as
above, we can use the random oracles to output the correct message m, except
with probability ≤ 2

q when the random oracle are not useful.

8) If B does not abort, the simulation of the challenge is perfect if (E?,T ?
1 , ..,T

?
l ,k,ch?k ,resp?k ,F

?)
has not been asked to H3 before the challenge phase for any k ∈ [[1; l]].

We now consider the following events to compute our final success probability.

• Let H ?
1 be the event that A queries (mδ ,ω

?) to H1 during the game. The answer of this
request is b

a , which is unknown.

• Let H ?
2 be the event that A queries g

b
a to H2 during the game. It is the value we are looking

for.

• Let H ?
3 be the event that A queries (E?,T ?

1 , ..,T
?

l ,k,chk,resp?k ,F
?) is asked to H3 before the

challenge phase for some k ∈ [[1; l]].

• Let Abort be the event that B aborts and outputs “failure” in the game.

• Let OEErr be the event that there is a value r that B cannot recover with the help of the online
extractor in OReEnc and ODec2.

• Let D1Err be the event that the simulation of Decrypt1 gives something different from what it
should.

• Let Err = (H ?
1 ∨H ?

2 ∨H ?
3 ∨OEErr∨D1Err)|¬Abort

Due to the randomness of the output of the random oracle H2, it is easily to see if Err does not occur,
A will have any advantage greater than 1

2 to win its challenge. So Pr(δ = δ ′|¬Err) = 1
2 . As explain

in [7], we have eadv ≤ Pr(Err), where eadv denote the advantage of A to win its challenge. We
also obtain Pr(H ?

2)≥ Pr(¬Abort)eadv−Pr(H ?
1)−Pr(OEErr)−Pr(D1Err). And as B picks a tuple

(R,β)∈H list
2 and returns R as solution to the challenge, if the event H ?

2 occurs, there is a probability
of 1

qH2
to B to return the good one. The success probability of B to win the DCDH challenge is finally

lower bounded by H ?
2

qH2
≥ Pr(¬Abort)Advind-cca

PRE.Encrypt2,A
(κ)

qH2
− Pr(H ?

1)
qH2

− Pr(H ?
3)

qH2
− Pr(OEErr)

qH2
− Pr(D1Err)

qH2
. We now

detail each remaining probabilities.

• Pr(H ?
1): at most, qH 1 chances over 2l1 to find ω?, Pr(H ?

1)≤ qH1
2l1

.

• Pr(H ?
3)≤ ψ: see [12] for more details on this value.

• Pr(OEErr): the probability that B cannot recover the value r for one NIZKOE is φ (see [12] for
more details on this value), so for qrk requests to OReEnc and qD2 requests to ODeC2, oracles
which can use the extractor, Pr(OEErr)≤ 1− (1−φ

qrk+qD2)≤ (qrk +qD2)φ as φ is negligible.

16

Improving the Security of PRE Canard, Devigne, and Laguillaumie

• Pr(D1Err): using our remarks above, we clearly have Pr(D1Err)≤max(qD1τ,
2qD1

q).

• Pr(¬Abort): B aborts if (i) OSecKey is asked for pki with ci = 0, (ii) OReKG is asked for
(pki, pk j) with ci = 0 and c j = 1, (iii) c?i = 1 in the challenge or (iv) i = i∗, C =C∗, c j = 1, with
pk j not yet associated to a corrupted user, in OReEnc of the second phase (if pk j is associated
to a corrupted user, then A is not allowed to ask for it). The fact that c?i 6= 1 in the challenge
phase is controlled with the value θ . For queries to the secret key oracle or to the re-encryption
oracle, we cannot control the case where i = i? because it is not a random entity among uncor-
rupted entities. But for the IND-CCA security PRE.Encrypt2, it is not a problem as A does
not have access to the secret key of i∗ or to the re-encryption key from i? to j corrupted. So
we have ¬Abort: c?i = 0∧ (ci = 1 in OSecKey)∧ (ci 6= 0∨ c j 6= 1 in OReenc)∧ (i 6= i∗∨C 6=
C∗ ∨ c j 6= 0∨ pk j is already associated to a corrupted user). We see easily that Pr(¬Abort) ≥
Pr(c?i = 0∧ ci = 1 in OSecKey, OReKG and OReEnc)≥ (1−θ)θ qnc+qrk+qre which is maxi-
mized at θopt =

nc+qrk+qre
1+nc+qrk+qre

by
(1

1+nc+qrk+qre

)(nc+qrk+qre
1+nc+qrk+qre

)nc+qrk+qre ≥ 1
e(1+nc+qrk+qre)

, which
proves the lower bound announced in the theorem.

4.2 IND-CCA security of PRE.Encrypt1 and PRE.ReEncrypt

Theorem 2. The scheme has IND-CCA security of PRE.Encrypt1 and PRE.ReEncrypt under the
CDH assumption in the random oracle model.

Proof. We construct an algorithm B which breaks the DCDH assumption out of an adversary A
against the IND-CCA security of PRE.Encrypt1 and PRE.ReEncrypt in the random oracle model with

success probability greater than
Advind-cca

PRE.Algo,A (κ)

qH2 e(1+nc)
− qH1

qH2 2l1
− qD1

qqH2
with Algo ∈ {ReEncrypt,Encrypt1}.

Let (g,ga,gb) be a DCDH instance, the aim of B is to compute gb/a. In a preparation phase, B
provides A with public parameters (κ,q,G,g, l0, l1,H1,H2,H3,H4). Random oracles H1, H2 and
H3 (for the Schnorr signature) are controlled by B, who maintains three lists: H list

1 , H list
2 and H list

3 ,
which are initialized as empty and B answers to the queries to random oracles as show for the proof
of Theorem 4.1. B maintains two lists K list and R list, which are initially set as empty and will store
public/private keys, re-encryption keys.

Key generation. B picks (xi,1,xi,2) ∈ Z?
q×Z?

q and uses Coron’s technique [8]: ci is a bit set at
1 with probability θ and at 0 otherwise (θ will be chosen later). If ci = 1, B defines pki =
(pki,1, pki,2) = (gxi,1 ,gxi,2). If ci = 0, B defines pki = (pki,1, pki,2) with pki,2 = (ga)xi,2 and
pki,1 =

(
(g

ga)xi,2/H4(pki,2)
)
gxi,1 , implicitly define ski,1 =

(1−a)xi,2
H4(pki,2)

+xi,1 and ski,2 = axi,2. We remark
that ski,1H4(pki,2)+ ski,2 = (1−a)xi,2 + xi,1H4(pki,2)+axi,2 = xi,1H4(pki,2)+ xi,2, value that
B knows. Then B adds the tuple (pki,xi,1,xi,2,ci) to K list and returns pki to A .

Phase 1. B answers different queries of A as follows:

OSecKey(pki): B begins by recovering the entry corresponding to pki from K list. If ci = 0, B
outputs “failure” and aborts, otherwise it returns ski = (xi,1,xi,2) to A .

OReKG(pki, pk j): B begins by recovering the entries corresponding to pki and pk j from K list. In
all cases, B knows ski,1H4(pki,2)+ ski,2, so it does as in ReEncrypt. Then it adds the tuple
(pki, pk j, R̃i→ j,V,W,h) to R list and returns Ri→ j = (pki, pk j,2, R̃i→ j,V,W) to A .

17

Improving the Security of PRE Canard, Devigne, and Laguillaumie

ODec1(pk j,C′): If c j = 1, B has the secret key sk j,2, so it does as in Decrypt1. If c j = 0, B needs
to recover z, h and m with the random oracles and returns m to A or ⊥ if it cannot succeed.

Challenge for the IND-CCA security of PRE.Encrypt1. A outputs two messages m0,m1 and an
uncorrupted key pki? = (pki?,1, pki?,2). If c∗i = 1, then B aborts and outputs “failure”. Else,

B picks h? $← {0,1}l0 , ϖ
$← {0,1}l1 and computes v? = H2(h?,ϖ?), V ? = pkv?

i?,2 and W ? =

H2(gv?)⊕ (h?‖ϖ?). It next picks δ
$← {0,1}, ω? $← {0,1}l1 and computes r? = H1(mδ ,ω

?),

E ′? = gr?h? , F? = H2(gr?)⊕ (mδ‖ω?). Then B picks z? $← {0,1}l0 , ϖ2
$← {0,1}l1 , Y ? $←

{0,1}l0+l1 , t? $← Z?
q and computes F ′ = H2(gz?)⊕ F?, X? = (gb)t? , implicitly define x? =

H1(z?,ϖ?
2)=

b
a

t?
xi?,2

and H2((g
b
a)

t?
xi?,2)=Y ?⊕(z?‖ϖ?

2). It finally gives (E ′?,F ′?,V ?,W ?,X?,Y ?)

to A .

Challenge for the IND-CCA security of PRE.ReEncrypt. A outputs an uncorrupted key pki? =
(pki?,1, pki?,2), a (corrupted or not) key pki′ = (pki′,1, pki′,2) and two “good messages” C0,C1
which can be re-encrypted from pki′ to pki∗ . If c∗i = 1, then B aborts and outputs “failure”.
Else, B recovers (pki′ , pki? ,Ri′→i? ,V ?,W ?,h) from R list or runs OReEnc(i′, i?). It next picks

δ
$←{0,1}, parses Cδ as (E,F,(Tk,chk,respk)k=1..l)) and computes E ′? =ERi′→i∗ . Then it picks

z? $←{0,1}l0 , ϖ?
2

$←{0,1}l1 , Y ? $←{0,1}l0+l1 , t? $← Z?
q and computes F ′ = H2(gz?)⊕F , X? =

(gb)t? , implicitly define x? = H1(z?‖ϖ?
2) =

b
a

t?
xi?,2

and H2((g
b
a)

t?
xi?,2) = Y ?⊕ (z?‖ϖ?

2). Finally,
B gives (E ′?,F ′?,V ?,W ?,X?,Y ?) to A .

Phase 2. B answers A ’s queries as in phase 1, with restrictions of the IND-CCA considered secu-
rity.

Guess. A returns δ ′ and B picks a tuple (R,β) ∈H list
2 and return R

xi?,2
t? as solution to the DCDH

instance.

ANALYSIS OF THE SIMULATION.

1) The simulation of oracles H3 and H4 are perfect, as well as these of H1, H2, except when
b
a

t?
xi?,2

is asked to H1 and (g
b
a)

t?
xi?,2 is asked to H2.

2) The simulation of OPubKey and of OReKG are perfect.

3) If B does not abort, the simulation of the challenge and of OSecKey is perfect too.

4) The simulation of ODec1: Applying the idea (∗), we can conclude that except for some special
cases with probability ≤ 1

q , the simulation will return the same result as Decrypt1.

We consider different events:

• Let H ?
1 be the event that A queries (z?,ϖ?

2) to H1 (since B does not know b
a

t?
xi?,2

).

• Let H ?
2 be the event that A queries (g

b
a)

t?
xi?,2 to H2. It is the value we are looking for.

18

Improving the Security of PRE Canard, Devigne, and Laguillaumie

• Let Abort be the event that B aborts and outputs “failure” in the game.

• Let D1Err be the event that the simulation of Decrypt1 gives something different from what it
should.

• Let Err = (H ?
1 ∨H ?

2 ∨D1Err)|¬Abort

Due to the randomness of the output of H2, if Err does not occur then the advantage of A is greater
than 1

2 . So Pr(δ = δ ′|¬Err) = 1
2 . As explain in [7], we have Advind-cca

PRE.Algo,A (κ) ≤ Pr(Err), where
Advind-cca

PRE.Algo,A (κ) denotes the advantage of A to win its challenge for Algo∈ {ReEncrypt,Encrypt1}.
We also obtain Pr(H ?

2) ≥ Pr(¬Abort).Advind-cca
PRE.Algo,A (κ)−Pr(H ?

1)−Pr(D1Err). And as B picks a

tuple (R,β) ∈H list
2 and returns R

xi?,2
t? as solution to the challenge, if the event H ?

2 occurs, there is a
probability of 1

qH2
to B to return the good one. The success probability of B is finally bounded by:

H ?
2

qH2
≥ Pr(¬Abort).Advind-cca

PRE.Algo,A (κ)

qH2
− Pr(H ?

1)
qH2

− Pr(D1Err)
qH2

. We now detail each remaining probabilities.

• Pr(H ?
1): at most, qH1 chance over 2l1 to find ϖ?

2 , Pr(H ?
1)≤ qH1

2l1
.

• Pr(D1Err): we already have seen Pr(D1Err)≤
qD1

q .

• Pr(¬Abort): B aborts if (i) OSecKey is asked for pki with pki = 0 or (ii) c∗i = 1 in the
challenge. As we saw it before, we have Pr(¬Abort) ≥ (1− θ)θ nc which is maximized at
θopt =

nc
1+nc

by
(1

1+nc

)(nc
1+nc

)nc ≥ 1
e(1+nc)

, which proves the lower bound announced in the the-
orem.

Acknowledgements

We are grateful to Damien Vergnaud, from the École Normale Supérieure (Paris, France), for his
suggestions of improvement, and to anonymous referees for their valuable comments.

References
[1] Giuseppe Ateniese, Karyn Benson, and Susan Hohenberger. Key-private proxy re-encryption. In CT-RSA

2009, volume 5473 of Lecture Notes in Computer Science, pages 279–294. Springer, 2009.
[2] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy re-encryption

schemes with applications to secure distributed storage. ACM Trans. Inf. Syst. Secur. 2006, 9(1):1–30,
2006.

[3] Feng Bao, Robert H. Deng, and Huafei Zhu. Variations of diffie-hellman problem. In ICICS, pages
301–312, 2003.

[4] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic proxy cryptography. In
EUROCRYPT’98, volume 1403 of Lecture Notes in Computer Science, pages 127–144. Springer, 1998.

[5] Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-encryption. In ACM Conference
on Computer and Communications Security 2007, pages 185–194. ACM, 2007.

[6] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-ciphertext security. In CRYPTO
2003, volume 2729 of Lecture Notes in Computer Science, pages 565–582. Springer, 2003.

[7] Sherman S. M. Chow, Jian Weng, Yanjiang Yang, and Robert H. Deng. Efficient unidirectional proxy re-
encryption. In AFRICACRYPT 2010, volume 6055 of Lecture Notes in Computer Science, pages 316–332.
Springer, 2010.

19

Improving the Security of PRE Canard, Devigne, and Laguillaumie

[8] Jean-Sébastien Coron. On the exact security of full domain hash. In CRYPTO’00, volume 1880 of Lecture
Notes in Computer Science, pages 229–235. Springer, 2000.

[9] Robert H. Deng, Jian Weng, Shengli Liu, and Kefei Chen. Chosen-ciphertext secure proxy re-encryption
without pairings. In CANS 2008, volume 5339 of Lecture Notes in Computer Science, pages 1–17.
Springer, 2008.

[10] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. J. Cryptology, 1(2):77–94, 1988.
[11] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and signature

problems. In CRYPTO’86, volume 263 of Lecture Notes in Computer Science, pages 186–194. Springer,
1986.

[12] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with online extractors. In
CRYPTO, pages 152–168, 2005.

[13] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. In CRYPTO’99, volume 1666 of Lecture Notes in Computer Science, pages 537–554. Springer,
1999.

[14] Benoı̂t Libert and Damien Vergnaud. Unidirectional chosen-ciphertext secure proxy re-encryption. In
Public Key Cryptography 2008, volume 4939 of Lecture Notes in Computer Science, pages 360–379.
Springer, 2008.

[15] Toshihide Matsuda, Ryo Nishimaki, and Keisuke Tanaka. Cca proxy re-encryption without bilinear maps
in the standard model. In Public Key Cryptography 2010, volume 6056 of Lecture Notes in Computer
Science, pages 261–278. Springer, 2010.

[16] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In CRYPTO’89, volume 435
of Lecture Notes in Computer Science, pages 239–252. Springer, 1989.

[17] Jun Shao and Zhenfu Cao. Cca-secure proxy re-encryption without pairings. In Public Key Cryptography
2009, volume 5443 of Lecture Notes in Computer Science, pages 357–376. Springer, 2009.

20

	Introduction
	Unidirectional Proxy Re-Encryption
	Syntactic Definition
	Security
	Toolbox
	Complexity Assumptions
	Non-interactive zero-knowledge proofs with online extractors.
	Hash Elgamal encryption.

	The modified scheme
	Review of Chow et al. scheme
	Discussion
	Our Modified Scheme

	Security
	IND-CCA security of PRE.Encrypt2
	IND-CCA security of PRE.Encrypt1 and PRE.ReEncrypt

