
Trapdoor Sanitizable Signatures and their
Application to Content Protection?

Sébastien Canard1, Fabien Laguillaumie2, and Michel Milhau1

1 Orange Labs R&D, 42 rue des Coutures, BP6243, F-14066 Caen Cedex, France.
2 GREYC Université de Caen, Campus 2, Boulevard du Maréchal Juin, BP 5186,

14032 Caen Cedex, France.

Abstract. Sanitizable signatures allow a designated entity to modify
some specific parts of a signed message and to produce a new signature
of the resulting message without any interaction with the original signer.
In this paper, we extend these sanitizable signatures to formally intro-
duce trapdoor sanitizable signatures. In this concept, the power of saniti-
zation is given to possibly several entities, for a given message/signature
by using a trapdoor computed by the signer at any time. We also give a
generic construction of such trapdoor sanitizable signatures. Eventually,
we apply our new cryptographic tool to group content protection, per-
mitting members of the group to distribute a protected content among
themselves.

1 Introduction

Digital Rights Management (DRM) systems provide efficient mechanisms to pro-
tect digital contents against unauthorized usages. Despite its increasing usage,
in particular in video and music on-line services, users have difficulties to agree
with device limitations induced by these systems. Consumers want flexibility
with legal transfer or exchange of their acquired digital contents.

Let us consider the following scenario: a modern family made up of two par-
ents, teenagers and children connected to a physical or wireless LAN. This family
wants to buy some music songs offered by a well-known music service portal. The
father identifies itself and purchases the desired protected media content on the
portal of the license server. His local DRM agent installs in his device a license
associated to this musical content. A license is a data structure which contains
information about the authorized rights on the song and the cryptographic key
necessary for decrypting the content. For security reasons this license has been
strongly tied to the device. A license is protected by cryptographic functions: a
part of it is encrypted with the public key of the recipient’s device and conse-
quently, it is the only device able to decrypt information helpful for a content
use. In this situation, other family members could play this song only on the
father’s device.
? This work has been financially supported by the European Commission through the

IST Program under Contract IST-2002-507932 ECRYPT.



This is a main drawback in spite of a few advances made in this field. Some
private DRM applications allow the transfer of limited rights up to non con-
nected devices like Personal Digital Assistant (i.e. Microsoft WMDRM). The
normalization group OMA-DRM3 itself defined the notion of domain to resolve
exchange of rights/licenses inside a set of mobile devices belonging to a same
domain. In fact each domain’s device receives the same cryptographic key allow-
ing the use of the domain license. The management of these domains and the
generation of the associated keys are realized by the license server. This means
that this server gets a specific knowledge about domain’s members.

Similarly, iTunes from Apple enables buyers to transfer content to identified
machines that share the same license decryption key. The decryption key is sent
to a new computer from Apple’s servers that can, by this way, limit the number
of authorized computers (today limited to five).

To by-pass these restrictions, we propose a system which answers the follow-
ing needs: (1) dynamicity of license transfers; (2) local management of the group
members; (3) compliance with OMA-DRM architecture and protocols. The first
and second requirements are incompatible with OMA-DRM domains; in fact
we need to modify the former license received by the family’s father. The DRM
agent of the father will be able to create a new license targeted at another family
member. This modification of license requires both operations: (1) decrypt the
Content Encryption Key CEK thanks to the father’s private key, and encrypt
it again with the public key of the new recipient, (2) sign the new license such
that the DRM agent of the recipient recognizes this signature as a true license
server signature.

Technically, to get rid of this drawback, we need to adapt and develop a new
type of signature scheme where it is possible for a designated user to modify
some part of a message signed by a particular signer. The signature on the new
message is still seen as a message signed by the initial signer. In DRM systems,
the signer of a license is the license server and applying the new signature scheme,
the result is that the OMA-DRM agent of the final user will accept the signature
of the derived license as a real license server signature. Moreover, it should be
possible to give this particular power later (i.e. not at the creation of the license)
to permit users to change their mind when they want to.

1.1 Related Work

A usual way to expose declassified documents and keep a protection of intelli-
gence sources is to blot out the sensitive parts. Well-known examples were the
memo to US President that had been declassified for an inquiry into the 11
September 2001 terrorist attack and a US Department of Defense memo about
who helped Iraq to militarize civilian Hugues helicopters. These examples of
sanitized documents became famous because Naccache and Whelan demasked
the blotted out words [13].

3 Open Mobile Alliance is a standard consortium which develops open standards for
the mobile phone industry.



In this example, keeping secret the sanitized part is fundamental. When ap-
plied to electronic documents, sanitizing can of course easily resist Naccache
and Whelan attack, but an important issue is the authentication and integrity
of such sanitized documents. If the original document is signed with a traditional
signature scheme, modifying this document in any way will make the original
signature be invalid. If the authentication must be preserved, a traditional sig-
nature cannot be used in this case. Of course, the signer could sign the sanitized
document, but when applied to declassified documents for instance, the signer’s
secret key might have expired, or the signer may not be available at all. Saniti-
zable signatures have been introduced to address this problem.

Two different flavors of sanitizable signatures can be found in the literature.
The first kind illustrates the previous scenario, namely the signature of the
original message can be modified, without the help of the signer, to be also valid
for the sanitized document [16, 7, 15]. In other words, a designated user can erase
some part of a signed message and produce a new signature in such a way that
the resulting signature is seen as a correct signature on the new message from
the initial signer.

The other kind of sanitizable signatures was introduced in [1] by Ateniese,
Chou, de Medeiros and Tsudik, also in terms of sanitizable signatures. Contrary
to the above case, such signatures allow a semi-trusted censor to modify (not
only to erase) some specific portions of a signed message and to produce a new
valid signature of the resulting message without any interaction with the original
signer. According to Ateniese et al., a sanitizable signature scheme must ensure
(1) immutability, which means that the censor must not be able to modify any
part of the message, not specified by the signer, (2) privacy, which means that
all sanitized information is unrecoverable, (3) accountability, which means that
in case of dispute, the signer can prove to the court that a given message was
sanitized, and (4) transparency which means that no one, except the signer and
the censor, can guess whether a message has been sanitized. As we will see in
section 3.1, Ateniese et al.’s scheme can easily be obtained via a sanitizable
signature scheme of the first kind.

In [9], Klonowski and Lauks propose some improvement of the Ateniese et
al. scheme [1] by proposing (in particular) generic techniques permitting first
to limit the set of possible modifications of a single mutable block using either
accumulator schemes or bloom filters and second to limit the number of modi-
fications of mutable blocks. Note that their methods cannot be applied to our
scheme since they do not use a trapdoor.

1.2 Our Contribution and Organization of the Paper

The sanitizable signature of Ateniese et al. may be useful for our application
of content protection. But in fact, the proposed properties of their sanitizable
signature scheme are not sufficient. More precisely, we need the possibility for
any authorized user to have a special trapdoor to modify some designated parts
of a signed message. Therefore, contrary to the modelization of Ateniese et al.,
the power of the sanitizer is not given during the signature process.



In this paper, we thus define in Section 2 the security model of a new type of
sanitizable signatures, called trapdoor sanitizable signatures, where the power of
sanitization is given to possibly several entities, for a given message/signature
by using a trapdoor issued by the signer at any time.

We also give the first generic construction in Section 3 of such sanitizable
signature scheme based on an identity-based chameleon hashing function and
on a classical signature scheme. We then give a possible instance of our generic
construction and apply in Section 4 our new cryptographic tool to content pro-
tection so as to fit our requirement for a DRM license, as described previously.

2 Trapdoor Sanitizable Signature Scheme

In a trapdoor sanitizable signature scheme, the signer allows a specific user to
modify a portion of a signed message by producing a piece of information that
will help this user in sanitizing the document. This trapdoor information is given
upon the will of the signer, who can choose to whom and when he will deliver
it. This last property makes a crucial difference with conventional sanitizable
signatures, and is of importance to design our DRM scheme.

In this section, we first briefly and informally describe sanitizable signatures
as they appear in the literature, and then, we propose a formal definition and a
precise security model for our new primitive of trapdoor sanitizable signatures.

2.1 Review of Existing Definitions for Sanitizable Signatures

We recall here several definitions for sanitizable signature schemes to enlight the
different notions and the difference with our new concept.

– According to [16, 7, 11, 12, 15], a sanitizable signature scheme is a scheme
which allows a specific user (not necessarily chosen by the signer) to sanitize
certain portions of a message (which means that these portions become un-
available) and to generate a valid signature for this new document, without
any interaction with the signer. The scheme consists of four procedures: the
key generation, the signing process, the sanitizing phase, and the verifica-
tion. This scheme must resist an existential forgery under a chosen message
attack, and must be indistinguishable under a chosen message attack (which
means that an attacker is not able to distinguish between two signatures,
which one is one a sanitized message).

– According to [1, 9], a sanitizable signature scheme permits a specific user to
modify a message (a priori chosen by the signer) and to produce a valid sig-
nature for the new message. The main difference with the previous definition
is therefore the possibility to replace some parts of the documents with some
others. The different algorithms which constitute the scheme are the same
as in the previous definition. The scheme must be existentially unforgeable
under a chosen message attack, and the authors also propose a notion of in-
distinguishability and one of identical distribution between the distribution
coming from the signing algorithm and the one coming from the sanitizing
algorithm.



2.2 Definition of a Trapdoor Sanitizable Signature Scheme

We present in this section a formal definition for trapdoor sanitizable signatures
and its security model. The main difference with Ateniese et al.’s definition is
that the original signer produces a trapdoor information, depending on a specific
message divided into several blocks of independent sizes, that he will transmit
to the sanitizer, who will be able to modify this message.

Definition 1 (Trapdoor sanitizable signature scheme). A trapdoor sani-
tizable signature scheme TSS consists in the following algorithms.

– Setup is a probabilistic algorithm which takes a security parameter k as input
and outputs the public parameters P. P ←− Setup(k).

– KeyGen is a probabilistic algorithm which takes the public parameters P as
input and outputs a pair of secret and public keys (sk, pk).

(sk, pk)←− KeyGen(P).

– Sign is a probabilistic algorithm which takes public parameters P, a message
m = m1‖ · · · ‖mL and a secret key sk as inputs, and outputs a signature σ
on the message m and the set I ⊂ [[1, L]] of the indices that are sanitizable
on this signature. (σ, I)←− Sign(P,m, sk).

– Trapdoor is a deterministic algorithm which takes public parameters P, a
message m and a valid signature σ and a secret key sk as inputs and outputs
a trapdoor t. t←− Trapdoor(P,m, σ, sk).

– Sanitize is an algorithm which takes public parameters P, a message m, a
valid signature σ on m under the public key pk, a message m̃, the set I of
the indices that are sanitizable and a trapdoor t and outputs a signature σ̃
on the message m̃. σ̃ ←− Sanitize(P,m, σ, pk, m̃, I, t).

– Verif is a deterministic algorithm which takes public parameters P, a message
m, a putative signature σ, a public key pk and the set I of the indices that
are sanitizable as inputs and outputs 1 if the signature σ on m is valid and
0 otherwise. 0/1←− Verif(P,m, σ, pk, I).

Remark 1. Note that the Sanitize algorithm can be either deterministic or proba-
bilistic. In fact, in all existing constructions (including ours), as the construction
is based on the use of chameleon hash functions, this algorithm is deterministic.
But we can easily imagine that it is possible to design (trapdoor) sanitizable
signature schemes with a probabilistic Sanitize algorithm.

The security criteria which must be fulfilled are discussed in the following para-
graph.



2.3 Security Model

Correctness. A trapdoor sanitizable signature scheme must satisfy two cor-
rectness properties:

∀k ∈ N,∀P ← TSS.Setup(k),∀(pk, sk)← TSS.KeyGen(P),

∀(σ, I)← TSS.Sign(P,m, sk),TSS.Verif(P,m, σ, pk, I)→ 1

and
∀k ∈ N,∀P ← TSS.Setup(k),∀(pk, sk)← TSS.KeyGen(P),

∀(σ, I)← TSS.Sign(P,m, sk),∀t← TSS.Trapdoor(P,m, σ, sk),

∀σ̃ ← TSS.Sanitize(P,m, σ, pk, m̃, I, t),TSS.Verif(P, m̃, σ̃, pk, I)→ 1

Unforgeability. A trapdoor sanitizable signature scheme must also satisfy an
unforgeability property. The conventional notion of security for signatures was
introduced by Goldwasser, Micali and Rivest in [6]. A signature scheme must
be existentially unforgeable under a chosen message attack. We present here
the formal definition of existential unforgeability under a chosen message attack
(EU-CMA) for trapdoor sanitizable signatures.

First, we need to define the following oracles.

– OSign: this oracle is initialized with a public key pk and the corresponding
secret signing key sk. It takes as input a message m and outputs a valid
signature related to this message and the public key pk.

– OTrapdoor: this oracle is initialized with a public key pk and the corresponding
secret signing key sk. It takes as input a message m and a signature σ. If
Verif(P,m, σ, pk, I) = 0, then the oracle outputs error. Otherwise, it outputs
a trapdoor t related to the message m, the signature σ and the public key
pk as if it is output by the Trapdoor algorithm.

– OSanitize: this oracle is initialized with a public key pk and the corresponding
secret signing key sk. It takes as input two messages m and m̃ and a signature
σ. If Verif(P,m, σ, pk, I) = 0, then the oracle outputs error. Otherwise, it
computes a trapdoor t related to the message m, the signature σ and the
public key pk (using sk) and outputs the signature σ̃ on m̃ as if it is output
by the Sanitize algorithm on input m, σ and m̃. Note that the trapdoor t
can be either deleted or not at the end of the request.

We say that a trapdoor sanitizable signature scheme is existentially unforge-
able under a chosen message attack, if no PPT adversary F has a non negligible
success in the following game:

1. The challenger C runs the Setup algorithm to produce the public parameters
and then runs the KeyGen algorithm. It obtains the pair of keys (pk?, sk?)
to be attacked and gives the public key pk? to F .

2. The forger F adaptively interacts with the signing oracle OSign and the
trapdoor oracle OTrapdoor.



3. Eventually, F comes up with a message m? and a signature σ?. F is said to
succeed if the pair (m?, σ?) verifies the four following properties.
(a) TSS.Verif(P,m?, σ?, pk?, I)→ 1.
(b) (m?, σ?) does not come from the OSign oracle.
(c) (m?, σ?) does not come from the OSanitize oracle.
(d) (m?, σ?) is not linked to a tuple (t,m, σ) from the OTrapdoor oracle. More

precisely, for all message m being in input of the OTrapdoor oracle, we
should have that ∃i /∈ Im,m?

i 6= mi where Im corresponds to the set I
output with the signature σ and related to m.

Remark 2. Note that by describing condition (3d) like that, we reject the pos-
sibility for the adversary to forge a signature on a message related to one for
which a trapdoor has been asked. This can be seen as restrictive (we don’t know
if the adversary has used the trapdoor or not to produce the forge) but this is
not really a problem in practice. Note also that if the Sanitize algorithm is de-
terministic (see above), this is easily verifiable since the corresponding signature
can be also computed by the challenger.

The success of F is defined as the probability (over all internal random coins)
of its success in this previous game. F is said to (qS , qT , qSz, τ, ε)-breaks the
existential unforgeability in the chosen message attack of the trapdoor sanitizable
signature scheme, if its success is ε, its running time is τ , and its number of
queries to the signing oracle (resp. trapdoor oracle and sanitize oracle) is qS
(resp. qT and qSz).

Indistinguishability. We require that values produced by the Sanitize algo-
rithm are distributed identically to those produced by the Sign algorithm. In
particular, the following distributions DSanit and DSign are indistinguishable for
all P, pk, sk:

DSanit = {σ̃ : σ̃ = Sanitize(P,m, σ, pk, m̃, I, t), (m, m̃) ∈M,

(σ, I) = Sign(P,m, sk), t = Trapdoor(P,m, σ, sk)}

and
DSign = {σ : (σ, I) = Sign(P,m, sk),m ∈M}.

3 Generic Construction

Before describing a generic construction of a trapdoor sanitizable signature
scheme, we will first give an intuition of this construction by revisiting a bit
Ateniese et al.’s scheme from [1] in the light of a sanitizable scheme of Miyazaki
et al. [11, 12]. As we already explained, the corresponding two definitions of
sanitizable signatures are different. Nevertheless, the next section shows how
Ateniese et al.’s scheme can be obtained from Miyazaki et al.’s one.



3.1 Ateniese et al.’s Sanitizable Signatures Revisited

Let’s first recall the scheme SUMI-4 from Miyazaki et al.’s [11, 12]. The rough
idea is to replace the parts of the message that are censored by hash values of
these parts. Let Σ = (Setup,KeyGen,Sign,Verif) be a signature scheme and h be
a hash function. SUMI-4 works as follows.

Signer

1. Let m = m1‖ . . . ‖mL be the message to sign, the signer first picks random
values ri ∈ {0, 1}k for i = 1 . . . L.

2. The signer generates a set H = {hi}i=1...L where hi = h(mi, ri)
3. The signature is obtain as σ = Sign(H).
4. The signer outputs ({mi, ri)}i=1...L, σ)

Sanitizer

1. Determine I ⊂ [[1, L]] the indices of the message to be censored.
2. The sanitizer converts the document m to m̃ = m̃1‖ . . . ‖m̃L where

m̃i =
{

(mi, ri) if i 6∈ I
hi if i ∈ I

3. The sanitizer outputs (m̃, I)

Verifier

1. Let (m̃, I) the sanitized message and σ the original signature. The verifier
generates the set of hash values H̃ = {h̃i}i=1...L such that

h̃i =
{
h(m̃i) if i 6∈ I
m̃i if i ∈ I

2. The verifier then checks Verif(H̃, σ) to verify the validity of the signature.

Now, let’s look at this scheme from Ateniese et al.’s point of view. In their
definition of sanitizable signatures, a specific user can not only erase a part of
the message, but he can replace it by something else. Suppose that h is replaced
by a chameleon hash function, as introduced by Krawczyk and Rabin in [10].
This means that a pair of secret and public key parametrizes this hash function,
with the property that the owner of the secret key is able to find a collision to a
hash value computed thanks to his public key. In this setting, the signer chooses
the sanitizer (by selecting his “chameleon” public key) and replaces the function
h by the chameleon hash function hC . The sanitizer is then able to replace the
sanitized parts by values of his choice, thanks to his secret key. Indeed, given a
message m′i (for i ∈ I), he can compute an element r′i such that

hC(m′i, r
′
i) = hC(mi, ri) = hi.



The remaining works as follows: the sanitizer converts the document m to m̃ =
m̃1‖ . . . ‖m̃L where

m̃i =
{

(mi, ri) if i 6∈ I
(m′i, r

′
i) if i ∈ I

and the verifier generates the set of hash values {h̃i}i=1...L such that h̃i = hC(m̃)
and eventually checks Verif(H ′, σ) to verify the validity of the signature.

This is another look at Ateniese et al.’s scheme. Our idea to design trapdoor
sanitizable signature is to replace the chameleon hash function by an identity-
based chameleon hash function. The secret key extraction from an identity will
actually help us to generate the trapdoor allowing the sanitization of a specific
message. The following section rigorously describes our construction relying on
this idea.

3.2 A Generic Construction of Trapdoor Sanitizable Signatures

We propose in this section a generic construction which uses as building blocks an
identity-based chameleon hash function [10] to achieve our “trapdoor” require-
ment. Roughly speaking a chameleon hash function is a trapdoor hash function,
such that the owner of the trapdoor is able to find collisions for every given
input. When they are used instead of traditional hash functions in a signature
scheme based on the well-known hash-and-sign paradigm, the resulting scheme
is a chameleon signature scheme which is highly related to Chaum and van
Antwerpen’s undeniable signatures [5] and Jakobsson, Impagliazzo and Sako’s
designated verifier signatures [8].

Identity-based Chameleon Hashing. Identity-based chameleon hashing were
introduced by Ateniese and de Medeiros [2]. We assume that it is possible to
identify all systems to a bit-string easily derivable from a system’s public knowl-
edge. We call such a string an identity string and we note it Id. There are two
actors in such schemes: an authority A and a user U . Formally, an identity-
based chameleon hash scheme CH is defined by the following family of efficiently
computable algorithms.

– Setup: this probabilistic algorithm is executed by A to generate a pair of key
skCH and pkCH , taking on input a security parameter k.

(skCH , pkCH)←− Setup(k)

– Extract: this probabilistic algorithm, executed by A taking on inputs the
identity Id of a user U and the secret key skCH , outputs the derived trap-
door information B. B ←− Extract(Id, skCH)

– Proceed: this probabilistic algorithm that can be executed by anybody and
which takes on inputs the public key pkCH , the identity Id of a user, a
message m and a random value r and outputs the hash value h.

h←− Proceed(pkCH , Id,m, r)



– Forge: this algorithm is executed by the user with identity Id to compute a
hash value on a new message. It takes as inputs the public key pkCH , the
identity Id, the corresponding extracted value B, a new message m′ and the
hash value h on a message m with random value r and it outputs a new hash
value (h, r′). r′ ←− Forge(pkCH , Id,B,m′, r, h,m)

This construction must be correct, which means that if B = Extract(Id, skCH)
and if we assume that h = Proceed(pkCH , Id,m, r) where m is a message and r
a random value, then h = Proceed(pkCH , Id,m′,Forge(pkCH , Id,B,m′, r, h,m)).

We need to introduce the following new security property for the identity-based
hash function, to prove the security of our scheme. This notion is not defined in
Krawczyk and Rabin’s paper [10] nor in the one of Ateniese et de Meideros [2],
but it is a natural generalization of the notion of collision for traditional hash
functions. An Id-based chameleon hash function must be collision-resistant, in
the sense of the following game:

1. A challenger C runs the Setup algorithm to produce the pair of keys (pk?, sk?)
and gives the public key pk? to F .

2. The collision finder F adaptively interacts with an Extract oracle OExtract to
obtain a trapdoor information B corresponding to some identity string.

3. Eventually, F comes up with a tuple (m,m′, r, r′, Id). F is said to succeed
if Proceed(pk?, Id,m, r) = Proceed(pk?, Id,m′, r′) and Id has not been pro-
posed to the Extract oracle.

Moreover, it is required that the distributions of r and r′ must be the same
(random and uniform) and that a message m induces the same probability dis-
tribution on Proceed(pk?, Id,m, r) for a random r (cf. Krawczyk and Rabin’s
uniformity from [10]).

The Construction. Our construction also relies on a classical signature scheme
Σ = (Setup,KeyGen,Sign,Verif) which follows the “hash-and-sign” paradigm.
That is, from a key pair (skS , pkS), output by the Σ.KeyGen algorithm, and
a message m, the signature σ is computed as σ = Σ.Sign(skS ,m). Eventually,
from a signature σ, a message m and a public key pkS , the verifier checks that
Σ.Verif(pkS ,m, σ) = 1. This signature scheme must be existentially unforgeable
under a chosen message attack as defined in [6].

– Setup: the Setup consists in executing Σ.Setup to output some public pa-
rameters.

– KeyGen: the KeyGen phase consists in executing the CH.Setup(k) for the
chameleon hash function and the Σ.KeyGen(k) for the signature scheme.
Consequently, the global secret key of the trapdoor sanitizable scheme is
sk = (skCH , skS) and the corresponding public key is pk = (pkCH , pkS).



Procedure KeyGen(k):

(skCH , pkCH)←− CH.Setup(k)
(skS , pkS)←− Σ.KeyGen(k)
sk = (skCH , skS)
pk = (pkCH , pkS)
Output (sk, pk)

– Sign: the Sign step first consists in choosing the set I of the indices that are
sanitizable. For each i ∈ I, we execute CH.Proceed(pkCH ,m,mi, ri) which
outputs hi. For all i ∈ [[1, L]], we set m̂i = mi if i /∈ I and m̂i = hi otherwise.
We denote by m̂ = m̂1‖ · · · ‖m̂L. σ is the concatenation of the output s of
the Σ.Sign algorithm on input skS and m̂ and of all elements of the set R.
We also add a verification value hc so as to prevent some types of attacks.
The output of the algorithm is finally σ and the set I.

Procedure Sign(P,m, sk):

m1‖ · · · ‖mL ←− m
Set I ⊂ [[1, L]]
∀i ∈ I, ri ∈R R
∀i ∈ I, hi ←− CH.Proceed(pkCH ,m,mi, ri)
∀i ∈ [[1, L]] \ I, m̂i ←− mi

∀i ∈ I, m̂i ←− hi
rc ∈R R
hc ←− CH.Proceed(pkCH ,m,m, rc)
m̂ = m̂1‖ · · · ‖m̂L‖hc
R←− {ri : i ∈ I}
σ ←− Σ.Sign(skS , m̂)
∀i ∈ I, σ ←− σ‖ri
σ ←− σ‖rc
Output (σ, I)

– Trapdoor: the Trapdoor function consists in executing the CH.Extract of the
Id-based chameleon hash function with m as the identity and skCH . It out-
puts the derived trapdoor information t.

Procedure Trapdoor(P,m, σ, sk):

if Verif(P,m, σ, pk, I) = 1 then
t←− CH.Extract(m, skCH)
Output t

otherwise output error

– Sanitize: let m̃ = m̃1‖ · · · ‖m̃L. Remember that σ is the concatenation of s
and all elements of R = {ri : i ∈ I}. The CH.Forge algorithm is executed
for all i ∈ I on input pkCH , m, t, the new message m̃i, ri, hi and mi that



outputs each time a new r̃i and we do the same for the verification value
hc. The new signature σ̃ is thus the concatenation of s (unchanged) and all
elements of R̃ = {r̃i : i ∈ I} plus rc.

Procedure Sanitize(P,m, σ, pk, m̃, I, t):

m1‖ · · · ‖mL ←− m
m̃1‖ · · · ‖m̃L ←− m̃
Retrieve s, R and rc from σ
∀i ∈ I, hi ←− CH.Proceed(pkCH ,m,mi, ri)
∀i ∈ I, r̃i ←− CH.Forge(pkCH ,m, t, m̃i, ri, hi,mi)
R̃←− {r̃i : i ∈ I}
hc ←− CH.Proceed(pkCH ,m,m, rc)
r̃c ←− CH.Forge(pkCH ,m, t, m̃, rc, hc,m)
σ ←− s
∀i ∈ I, σ ←− σ‖r̃i
σ ←− σ‖r̃c
Output σ

– Verif: the verification procedure consists in computing hi for each mi with
i ∈ I by using CH.Proceed on input pkCH , m = m1‖ · · · ‖mL, mi and ri. For
all i ∈ [[1, L]], we set m̂i = mi if i /∈ I and m̂i = hi otherwise and we denote
by m̂ = m̂1‖ · · · ‖m̂L‖hc. The output of the Verif algorithm is the output of
Σ.Verif(pkS , s, m̂) = 1.

Procedure Verif(P,m, σ, pk, I):

Retrieve s, R = {ri : i ∈ I} and rc from
σ
m1‖ · · · ‖mL ←− m
∀i ∈ I, hi ←− CH.Proceed(pkCH ,m,mi, ri)
∀i ∈ [[1, L]] \ I, m̂i ←− mi

∀i ∈ I, m̂i ←− hi
hc ←− CH.Proceed(pkCH ,m,m, rc)
m̂ = m̂1‖ · · · ‖m̂L‖hc
Output Σ.Verif(pkS , s, m̂)

3.3 Security

First of all, the correctness of our scheme is obvious. We will then concentrate
our security analysis on unforgeability and indistinguishability.

Theorem 1 (Unforgeability).
Let F be a (qS , qT , qSz, τ, ε)-forger against our trapdoor sanitizable signature

scheme. Then their exists a (ε′, τ ′, qS)-existential forger F ′ against the under-
lying signature scheme and a (ε′′, τ ′′, qT + qSz)-collision finder C against the
identity-based hash function and a such that:



ε ≤ 1
2

(ε′ + ε′′) and τ ≥ max{τ ′ + (qT + qSz)tcollision, τ
′′ + qStsign}

where tcollision and tsign are the necessary time to compute a collision and to sign
a message respectively.

Proof. To simplify the proof (and in particular to get rid of the set I of indices
in the proof), we will suppose that a message consists of a single block4. The
condition (3d) of acceptation of the forge by the adversary needs then to be
modified, taking into account that our Sanitize algorithm is deterministic. More
precisely, considering the forge (m?, σ?) output by the adversary, we can easily
test, for all message (m,σ) for which the adversary has asked the OTrapdoor oracle,
whether or not the Sanitize algorithm, on input m,σ,m?, t output σ?. If this is
the case, the output of the adversary is rejected.

Let’s suppose that their exists a (qS , qT , qSz, τ, ε)-forger against our trapdoor
sanitizable signature scheme. Given a public key pk as input, after at most qS
queries to the signing oracle, qT queries to the trapdoor oracle, and qSz queries
to the sanitize oracle, the forger outputs a pair m?, σ?, with σ? corresponding
to a random coin r?. For the forger to win the game, two possibilities arise:

– case 1: m? is a non-sanitized message and σ? has not been obtained from
the signing oracle

– case 2: m? is a sanitized message which has not been formed with a trapdoor
information obtained from the trapdoor oracle nor the sanitize oracle. The
pair (σ?, r?) must not come from the signing oracle. Nevertheless, we can
suppose that σ? comes from the signing oracle.

We will show that the first case allows the construction of a forger against
the signature scheme Σ, the second allows the construction of a collision-finder
on the identity-based hash function CH. We will exhibit a reduction R which
will flip a coin b ∈ {0, 1} to bet which case will happen.

Case 1. Let’s first consider the case 1 where the reduction designs an existential
forger F ′. R will use F as a sub-routine to build this forger, which has as input a
public key pk? and some global parameters P, and has to produce an existential
forgery related to this public key. First, R generates a pair of key (pkCH , skCH)
for the identity-based chameleon hash function thanks to CH.Setup. Then he
sets pk = (pk?, pkCH) and gives this public key to F . R now has to simulate
F ’s signing, trapdoor and sanitize oracles. To simulate the trapdoor and the
sanitize oracles OTrapdoor and OSanitize, the reduction R uses its knowledge of
the trapdoor secret key skCH to create the trapdoor (and, in case of OSanitize,
computes the corresponding signature). To simulate the signing oracle OSign ,

4 However, this do not prevent an adversary to create new signatures without the
knowledge of the trapdoor. The proof can be generalizable but will not be detailled
in this paper due to space constraints.



R must answer to F ’s query related to a message m. It forwards this query to
F ′’s signing oracle which is parametrized by the secret key sk, and therefore
R simulates perfectly F ′s environment. At the end of the game, F outputs a
pair (m?, σ?) (with corresponding random bits r?). R then sets (m?, σ?) as F ′’s
outputs. This is clearly a successful forgery.

Case 2. Now, we consider that the reduction designs a collision-finder C against
the identity-based chameleon hash function CH from case 2. The reduction R
has to deal with C’s challenge : namely a public key pk?CH for the chameleon
hash function. R then executes Σ.Setup and Σ.KeyGen to obtain the system’s
global parameters and a pair of keys (skΣ , pkΣ) for the signature scheme Σ. As
before, R constructs a public key for the trapdoor sanitizable signature scheme
pk = (pk?CH , pkΣ), which he forwards to the forger F . To simulate the signing
oracle, the reduction R uses the secret key skΣ . When the forger F queries
a trapdoor for a pair (m,σ), R first checks the validity of the signature with
the public key pkΣ and then asks C’s extractor oracle OTrapdoor with m as the
(identity) request. OTrapdoor’s answer is a trapdoor t which corresponds to a
correct trapdoor for sanitization. When the forger F queries a sanitization for a
message m and its signature σ, R first checks the validity of the signature with
the public key pkΣ , secondly asks C’s extractor oracle OTrapdoor with m as the
(identity) request to obtain the corresponding trapdoor t and finally computes
the new signature using the trapdoor. The reduction therefore perfectly simulates
F ’s environment.

At the end of this game, F comes up with a pair (m?, σ?) corresponding to
a random string r?. As we suppose that m? is a sanitized message, their exists a
message m̃?, corresponding to a signature (σ?, r̃?), which has been asked to the
signing oracle, such that

CH.Proceed(pkCH ,m?,m?, r?) = CH.Proceed(pkCH ,m?, m̃?, r̃?).

Eventually, (m?, m̃?, r?, r̃?,m?) is a collision for the chameleon hash function.
The final success probability and running time are straightforward, and this
concludes the proof. ut

Theorem 2 (Indistinguishability). The following distributions are perfectly
indistinguishable for all P, pk, sk:

DSanit = {σ̃ : σ̃ = Sanit(P,m, σ, pk, m̃, I, t), (m, m̃) ∈M,

(σ, I) = Sign(P,m, sk), t = Trapdoor(P,m, sk)}

and
DSign = {σ : (σ, I) = Sign(P,m, sk),m ∈M}.

Proof. Let’s first consider DSign. As described in the previous section, the output
of Sign consists in a signature σ and a set I. The signature σ is composed of
the outputs of Σ.Sign and a random (uniformly chosen) value ri ∈ R where Sign
is a classical signature scheme. Let us denotes Im(Σ.Sign) the distribution of



all outputs of the Sign algorithm of the chosen signature scheme. Consequently,
DSign = {(σ, ri) : σ ∈ Im(Σ.Sign), ri ∈ R}.

Let us now consider DSanit. As described in the previous section in the de-
scription of the Sanitize algorithm, the signature σ̃ is composed of the value σ
such that (σ, I) = Sign(P,m, sk) and a value r̃i that is output by a call to the
CH.Forge algorithm. As explained above, it implies that σ ∈ Im(Σ.Sign) and
that σ is on the same distribution Im(Σ.Sign) as the previous one. Moreover, as
shown in the previous section in useful tool, a secure identity-based chameleon
hashing function has the property that Im(CH.Forge) is the set of all ri ∈ R
informally distributed and thus the set R. Consequently,

DSanit = {(σ, ri) : σ ∈ Im(Σ.Sign), r̃i ∈ R}.

These two distributions are obviously indistinguishable in the sense of the infor-
mation theory which concludes the proof. ut

3.4 An Example of Instantiation

In [2], the authors propose the following construction of an Id-based chameleon
hash function.

– CH.Setup: n = pq is an RSA modulus where p and q are of size the security
parameter k, v is a random prime element and w corresponds to the inverse
of v modulo ϕ(n).Then, skCH = (p, q, w) and pkCH = (n, v).

– CH.Extract: from the secret key skCH and an identifier Id, it is possible to
construct the extracted key by first computing J = EMSA − PSS(Id) and
t = Jw (mod n).

– CH.Proceed: from the public key pkCH , the identifier Id and a message m,
choosing at random r, it is possible to compute J = EMSA− PSS(Id) and the
value h is then h = JH(m)rv (mod n) where H is a classical hash function.

– CH.Forge: this algorithm, taking on input pkCH , Id, t, a new message m′,
r, h and m outputs the random value r′ associated with m′ and h. This is
done by r′ = rtH(m)−H(m′) (mod n).

We can thus use this instantiation of an Id-based chameleon hash function
in our proposal. The proof of Theorem 1 of [2] can be easily modified to prove
that the scheme reaches the collision resistance property as defined previously
in this paper. Other choices for secure identity-based chameleon hash function
can be found in [17].

A lot of classical signature schemes can be used for our generic construction
and one possible choice is RSA with EMSA-PSS padding [14].

4 Application to group content protection

4.1 Classical Approach and Limitations

As defined in OMA DRM, a DRM agentA needs an encryption key pair (ska, pka)
to interact with a License Server L which will provide him a license. The License



Server needs a signature key pair (skl, pkl). A protected content is always en-
crypted with a unique secret key denoted by CEK. A license is related to a
single protected content denoted by Idc. It consists in the following fields:

– the license identifier Idl which is a unique serial number of the license,
– the content identifier Idc,
– the rights which describe what is possible to do (read, copy, etc.) with this

content using this license,
– the content key CEK encrypted for the receiver using pka,
– the signature σ from the License Server of all the previous fields.

Consequently, the license can be viewed as the concatenation of a message m =
Idl‖Ids‖rights‖[CEK]pka

and a signature σ.
There are several steps to describe the way a DRM agent is able to read a

protected content in the classical approach. These are the following ones.

– SystemCreation: the License Server generates his signature keys.

(skl, pkl)←− SystemCreation(P).

In the OMA DRM standard, it is recommended to use the RSA signature
scheme with an EMSA-PSS padding.

– AgentCreation: a DRM agent generates his encryption keys.

(ska, pka)←− AgentCreation(P).

The OMA DRM standard recommends to use the RSA encryption scheme.
– ContentEncapsulation: during this phase, the License Server encrypts the con-

tent C using a randomly generated secret key CEK. The encrypted content
is then published.

PC ←− ContentEncapsulation(CEK,C).

– LicenseGen: this is an interactive protocol between a DRM agent A and the
License Server L where A first sends to L the chosen content Idc and its
encryption public key pka. L then creates the license L = (m,σ) as described
above and sends it back to A.

L←− LicenseGen(Idl, Idc, rights, CEK, skl, pka).

– ContentRead: the DRM agent retrieves the protected content and the license,
verifies the signature of the License Server on the license, verifies the rights,
decrypts CEK using its private decryption key and finally decrypts the
content using CEK.

C ←− ContentRead(PC,L, ska, pkl).



On one hand, the problem is that the license is completely related to the DRM
agent and this latter cannot send a received license to other DRM agents. In
fact, this security property is very useful in many cases since it prevents fraud,
but in the context of a group of DRM agents which wants to buy some contents
and then to share them, this may be a too much important restriction.

On the other hand we do not want to modify the way a DRM agent proceeds
when reading a protected content. Consequently, it is necessary to design a way
to transfer a license to another DRM agent without modifying the structure of
a license nor the signature from the License Server. A license bought from the
License Server and a license coming from another DRM agent should have the
same structure, including the same signature. By this way, constructors need to
implement only one type of DRM agent. But, for this purpose, we need first to
introduce some new procedures to the ones described above.

4.2 Some New Procedures

We use the same model as the one of classical OMA DRM one we describe
above except that the License Server needs a new key pair (sk, pk) related to
the computation of a trapdoor that will permit a designated DRM agent to
modify a designated license so that other chosen DRM agents will be able to use
the license. We thus add the new following procedures.

– TrapdoorGen: this is an interactive protocol between a DRM agent A and
the License Server L where the latter gives to A the possibility to modify
some part of a specific license.

t←− TrapdoorGen(L, sk).

– TransferLicense: a DRM agent sends to another one a license. This latter can
be used classically by the receiver using the ContentRead procedure.

L̃←− TransferLicense(L, t, p̃ka, pk).

Note that we want to give the buyer a maximum of flexibility. This implies
the possibility for her to choose, whenever she wants, a classical license with no
possibility of transfer and later the possibility to transfer a previously obtained
license. This is done by using our trapdoor sanitizable signature scheme as de-
scribed in the next section. Note also that this is for this particular reason that
the Ateniese et al. [1] proposal of sanitizable signature is not suitable here.

4.3 General description

In our proposal, we maintain previous known procedures as they are. We do not
modify the SystemCreation, AgentCreation, ContentEncapsulation, LicenseGen and
ContentRead procedures. The only modification concerns the signature scheme
since we do not use a classical RSA signature scheme but a trapdoor sanitizable
signature scheme based on RSA with EMSA-PSS padding.



Consequently, the SGen call in the SystemCreation procedure is replaced in the
OMA DRM standard by the execution of the KeyGen of a trapdoor sanitizable
signature scheme that outputs (sk, pk).

Moreover, in the LicenseGen protocol, the Σ.Sign algorithm is replaced by an
execution of the TSS.Sign of the trapdoor sanitizable signature scheme. Conse-
quently, a license has the same fields as a classical one except that the signature
from the License Server is not a calssical signature. Notice however that the
underlying signature scheme is standard since and we can use the RSA signa-
ture scheme as a building block (as a hash and sign type signature scheme).
The verification of the signature done by a DRM Agent when trying to read a
content, initially done by the Σ.Verif algorithm of a classical signature scheme
is also replaced by a call to the TSS.Verif algorithm of the trapdoor sanitizable
signature scheme. Let us now describe the two new procedures.

– TrapdoorGen: this is done by executing the TSS.Trapdoor algorithm of the
trapdoor sanitizable signature scheme with the public parameters, the license
L and the secret key sk of the trapdoor sanitizable signature scheme as
inputs. The output is the trapdoor t.

– TransferLicense: a DRM Agent having a valid license and a trapdoor t can
execute the TransferLicense procedure by executing the TSS.Sanitize algo-
rithm of the trapdoor sanitizable signature scheme with the initial license L
(containing the message M and the signature σ), the trapdoor sanitizable
signature public key pk, the new message m̃ that corresponds to the different
fields (except the signature) of the new license, the corresponding set I of
indices in the message that are sanitizable (see Section 4.4 below) and the
trapdoor t as inputs. The output is a signature σ̃ which is concatenated to
the message m̃ to create the new license L̃.

4.4 On the Modification of a License

As described above, it is possible for a DRM Agent to modify some fields of
a valid license using the trapdoor sanitizable signature scheme properties. We
consider that a license is a (reduced) message m and the signature σ of the
License Server. The message m is divided into several blocks: m1 = Idl, m2 =
Idc, m3 = rights and m4 = [CEK]pka . In the following, we study which parts of
the license are sanitizable.

The messages m1 and m2 should of course not be modified. On the contrary,
the message m4 will be modified by the DRM Agent since the receiver should
be able to decrypt the CEK to read the content. Thus the value 4 necessary
belongs to the set I that is output by the TSS.Sign algorithm.

The case of the rights is a bit more complicated and there are several possi-
bilities. Either it is not possible for the DRM Agent to modify the rights, or it
is possible but only in a set of predefined values (at least no more rights than
the ones the DRM Agent already has). In the first case, our trapdoor sanitizable
signature scheme can be used as it is. In the second case, we need to modify it
and it is an open problem to adapt the techniques of [9] to our scheme.



5 Conclusion

We formally introduce a new variant of sanitizable signatures and apply our new
tool to manage licenses for digital contents protection within a group. We hope
that our new variant can also be useful for medical applications or secure routing
(see [1]). Among some open problems, we suggest to add a traitor tracing layer
or to have a better control on the message that can be sanitized.

Acknowledgments. We are grateful to anonymous referees for their valuable
comments.

References

1. G. Ateniese, D. H. Chou, B. de Medeiros and G. Tsudik. Sanitizable Signatures.
Proc. of ESORICS 2005, Springer LNCS, vol. 3679, pp. 159-177 (2005)

2. G. Ateniese and B. de Medeiros. Identity-based chameleon hash and application.
Proc. of Financial Crypto 2004, Springer LNCS, vol. 3110, pp. 164–180 (2004)

3. G. Ateniese and B. de Medeiros. On the Key Exposure Problem in Chameleon
Hashes. Proc. of SCN 2004, Springer LNCS, vol. 3352, pp. 165–179 (2005)

4. M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign
with RSA and Rabin. Proc. of Eurocrypt’96, Springer LNCS, vol. 1070, pp. 399–416
(1996)

5. D. Chaum and H. van Antwerpen, Undeniable Signatures. Proc. of Crypto’89,
Springer LNCS, vol. 435, pp. 212–216 (1990)

6. S. Goldwasser, S. Micali and R. L. Rivest. A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks. SIAM J. Comput. 17(2), pp. 281–308
(1988)

7. T. Izu, N. Kanaya, M. Takenaka and T. Yoshioka. PIATS: A Partially Sanitizable
Signature Scheme. Proc. of ICICS’05, Springer LNCS Vol. 3783, pp. 72-83 (2005)

8. M. Jakobsson, K. Sako, and R. Impagliazzo, Designated Verifier Proofs and Their
Applications.. Proc. of Eurocrypt’96, Springer LNCS, vol. 1070, pp. 143–154 (1996)

9. M. Klonowski and A. Lauks. Extended Sanitizable Signatures. Proc. of ICISC’06,
Springer LNCS Vol. 4296, pp. 343–355 (2006)

10. H. Krawczyk and T. Rabin. Chameleon Signatures. Proc. NDSS 2000, The Internet
Society, pp. 143–154 (2000)

11. K. Miyazaki, M. Iwamura, T. Matsumoto, R. Sakai, H. Yoshiura, S. Tezuka and
H. Imai. Digitally Signed Document Sanitizing Scheme with Disclosure Condition
Control. IEICE Trans. on Fundamentals, E88-A(1), pp. 239–246 (2005)

12. K. Miyazaki, S. Susaki, M. Iwamura, T. Matsumoto, R. Sasaki and H. Yoshiura.
Digital Documents Sanitizing Problem. IEICE technical report, ISEC 2003-20 (2003)

13. D. Naccache and C. Whelan. 9/11: Who Alerted the CIA (And Other Secret Se-
crets). Eurocrypt’04’s rump session.

14. RSA Labs. RSA Cryptography Standard: EMSAPSS – PKCS#1 v2.1. 2002.
15. R. Steinfeld, L. Bull and Y. Zheng. Content Extraction Signatures. Proc. of

ICICS’01, SPringer LNCS Vol. 2288, pp. 286–304 (2002)
16. M. Suzuki, T. Isshiki and K. Tanaka. Sanitizable Signature with Secret Information.

Tokyo Institute of Technology Research Report, C-215, pp. 1–20 (2005)
17. F. Zhang, R. Safavi-Naini and W. Susilo. ID-Based Chameleon Hashes from Bilin-

ear Pairings. Cryptology ePrint Archive, Report 2003/208 (2003)


