
Cooperation control in Parallel SAT Solving: a
Multi-armed Bandit Approach

Nadjib Lazaar
INRIA-Microsoft Research Joint Centre

rue d’Estienne d’Orves, Palaiseau, France
nadjib.lazaar@inria.fr

Youssef Hamadi
Microsoft Research

7 J J Thomson Avenue, Cambridge, UK
youssefh@microsoft.com

Said Jabbour
CRIL-CNRS, Université d’Artois
Rue Jean Souvraz, Lens, France

jabbour@cril.fr

Michèle Sebag
TAO, CNRS − INRIA − LRI

Université Paris-Sud, Orsay, France
sebag@lri.fr

Abstract

In recent years, parallel SAT solvers have leveraged with the so-called parallel
portfolio architecture, where a set of independent conflict-directed clause learn-
ing algorithms compete and cooperate through clause sharing. This architecture
however hardly scales up with the number of cores. In this paper, a dynamic multi-
armed bandit approach is used to control the communication network (which cores
are allowed to send clauses to a given core). The presented approach, referred to
as Bandit Ensemble for parallel SAT Solving (BESS), is empirically validated on
the recent 2012 SAT challenge benchmark.

1 Introduction

The widespread adoption of modern SAT solvers based on conflict-directed clause learning (CDCL)
is the result of the efficiency gains made during the last decade. However, many new application
domains with instances of increasing size and complexity are coming to challenge modern solvers.
Fortunately for the domain, multi-core based parallel processing capabilities are now on every desk-
top. It then becomes legitimate to consider parallelization as a way to leverage existing CDCLs in
order to efficiently meet the requirements of new application domains. This technological shift has
restarted research into parallel SAT solving, and many solvers have been presented since the early
2000, particularly based on the divide-and-conquer methodology. However, the most successful
ones exploit the parallel portfolio architecture where a set of independent CDCLs solver compete
and cooperate through clause sharing [7, 2]. Systematic clause sharing among the CDCLs however
hardly scales up with the number n of cores, as the O(n2) communications slow down the search
performance of the whole system. Previous work has shown how the efficiency of the approach can
be improved through controlling dynamically the maximum length of the shared clauses [6].

The present paper is concerned with controlling the communication network, that is, selecting the
cores (referred to as emitter cores) that are allowed to send clauses to any given core (called re-
ceiver core). The presented approach is based on a Multi-Armed Bandit (MAB) formalization of
the network control. The challenge is twofold. The first issue is to design the appropriate reward,
estimating the relevance of an emitter core w.r.t. the receiver core. The second issue is to adapt the
MAB setting and the Upper Confidence Bound algorithm (UCB) [1] to a non-stationary framework.
Indeed every core independently explores the search landscape; its production of clauses (and the
worthiness thereof w.r.t. the receiver) are bound to vary along the search. The UCB criterion is
accordingly extended to accommodate non-stationary distributions. The proposed approach, called

1

Bandit Ensemble for parallel SAT Solving (BESS), is validated on the 2012 SAT challenge bench-
mark, and comparatively assessed w.r.t. ManySAT.

The paper is organized as follows. Section 2 briefly reviews related work and introduces formal
background on modern parallel SAT solvers and Multi-Arm Bandits. Section 3 describes the BESS
algorithm. Section 4 reports on the experimental setting and discusses the validation results. The
paper concludes with some perspectives for further research.

2 Related work and formal background
This section briefly discusses the state of the art in parallel SAT solving, focussing on portfolio-
based parallel approaches. For the sake of containedness, the multi-armed bandit framework is also
presented together with the UCB algorithm [1].

Modern Parallel SAT Solvers. Modern SAT solvers extend the original Davis, Putnam, Logemann
and Loveland procedure (DPLL) [3] with important components such as CDCL for conflict directed
clause learning, restart policy, activity based heuristics, and pruning of the database of learnt clauses
[9]. Unlike the divide and conquer approach, ManySAT [7] and Plingeling [2] solvers use a portfolio
approach which lets several sequential CDCLs compete and cooperate to solve the original instance.
These CDCLs can differ from each other through complementary and/or different restart strategies,
activity and polarity variables heuristics, clause-learning schemes, etc. In ManySAT, all cores share
and exchange learned clauses up to some size limit [6]. This approach however hardly scales up
when the number of cores increases, due to the communication costs. In such cases, it becomes
necessary to control which cores are allowed to send information to any other core.

Multi-armed bandit framework. How to control the communication and clause sharing among
cores is formalized as an exploration vs exploitation (EvE) dilemma. A formal setting for EvE is the
Multi-Armed Bandit problem (MAB), pertaining to the field of Game Theory [8].

The MAB problem involves K independent arms a.k.a. options. The i-th arm is characterized by
its fixed reward probability pi in [0, 1]. In each time step t, the arm selection strategy selects some
arm j; with probability pj it gets reward rt = 1, otherwise rt = 0. The quality of an arm selection
strategy is measured after its regret, defined as its loss compared to the optimal strategy, playing the
arm with maximal reward p∗ in each time step. Formally, the regret after N time steps is defined as:

L(N) = Np∗ −
∑N

t=1 rt

The Upper Confidence Bound algorithm devised by Auer et al. [1] maintains two indicators for
each i-th arm: the number of times it has been played up to time t, noted ni,t and the average
corresponding reward noted p̂i,t. The UCB strategy selects in each time step the arm maximizing

the quantity p̂j,t +
√

2 log
∑

k nk,t

nj,t
where the left term p̂j,t enforces the exploitation (favoring the

arm with best empirical reward) and the right term
√

2 log
∑

k nk,t

nj,t
takes care of the exploration: each

arm is selected infinitely many times as t goes to infinity; however the lapse of time between two
selections of some under-optimal arm increases exponentially. The UCB algorithm provides optimal
regret guarantees, logarithmically decreasing with the numberN of time steps (to be contrasted with
the linear regret achieved by ε-greedy approaches).

Interestingly, the exploration vs exploitation dilemma is at the core of many portfolio-based ap-
proaches. For instance, [5] handle the algorithm selection problem as a MAB problem, where the
goal is to select the algorithm most able to solve a given sequence of problem instances. Like-
wise, [4] address the adaptive operator selection (AOS) issue in stochastic optimization as a MAB
problem, where the goal is to select the operator which maximizes the expectation of the objective
improvement. Interestingly, the AOS problem also raises the non-stationary distribution issue: the
worthiness of a stochastic perturbation operator varies along search. A related issue is to design the
operator reward.

3 BESS: Bandit Ensemble for parallel SAT Solving

The goal of the presented work is to adaptively control the core communication in a large-scale
parallel architecture. Specifically, the point is to select for each receiver core, the emitter cores

2

which are allowed to share the learnt clauses with the receiver, in a decentralized and adaptive
manner. In the remainder of the paper, the maximum length L of the shared clauses is fixed. Let N
denote the overall number of cores, and let n denote the fixed number of emitter cores allowed to
share clauses (with a size up to L) with any receiver core. How to adaptively adjust L and n along
time is left for further work.

The BESS approach attaches a multi-armed bandit, referred to as individual MAB, to each receiver
core. In the perspective of a given receiver, an emitter is alive in a time period iff it is allowed to
send clauses to the receiver during this period; otherwise an emitter is sleeping. At the beginning of
each time period (see below), the individual MAB decides whether an alive emitter will stay alive;
otherwise, it becomes a sleeping emitter, and the oldest sleeping emitter is turned into an alive one.

In each time period, the individual MAB:
∗ Computes the instant reward and updates the cumulative reward associated to each alive emitter;
∗ Updates the aliveness threshold;
∗ Turns every alive emitter into a sleeping one if its cumulative reward is lower than the threshold; in
such a case, the sleeping emitter which has been sleeping for the longest time interval is awakened
and set alive.

Time period. The length of a time period is measured in number K of conflicts (inconsistencies
met by the SAT solver on the receiver core). A time-length of K = 5, 000 conflicts was considered
in [6]. In BESS, the time-length was set after a few trials, ensuring a sufficient correlation of the
instant emitter rewards (see below) from one time period to the next time period (K = 25).

Instant Reward. The instant reward of an alive emitter with respect to a receiver is defined accord-
ing to the continuous activity quality rCA, inspired from the Variable State Independent Decaying
Sum (VSIDS) heuristics [9]. Formally, for each literal x of a shared clause c, let Ai(x) measure
its VSIDS with respect to the i-th receiver, with Amax

i the maximum VSIDS. The instant reward of
each clause c is defined as:

rCA(c) =
1

|c|
∑
x∈c

f

(
Ai(x)

Amax
i

)
with f a non-linear bounded function, meant to discount the impact of clauses with low average
VSIDS (the sigmoid is used in all experimental results). Eventually, the instant reward of each
emitter core is computed by likewise averaging the instant reward of the emitted clauses: letting
Rt

i←j denote the set of clauses emitted by core i toward core j in time period t, we define:

rti←j =
∑

c∈Rt
i←j

f (rCA(c))

Cumulative reward. The cumulative reward ri←j is updated by relaxation from the instant reward;
parameter λ is the relaxation rate accounting for the dynamic distribution of rewards.

ri←j = (1− λ)ri←j + λrti←j

Aliveness threshold. This threshold is used to reject the emitters which are no longer worth for
the receiver: it estimates the average contribution of an emitter with respect to the current receiver.
It is also updated by relaxation from the contribution of the youngest alive emitters (set Anew):
τ ti = (1− λ)τ t−1i + (λ× 1

|Anew|
∑

j∈Anew
rti←j)

Every alive emitter is sent to sleep iff its cumulative reward is less than the aliveness threshold, and
the emitter that was sleeping for the longest period of time is awakened.

In its present state, BESS only test the performance of each alive emitter comparatively to the alive-
ness threshold. The use of the overall Multi-Armed Bandit framework will be considered in further
work (section 5).

4 Evaluation

This section reports on the empirical evaluation of the BESS algorithm, which is implemented on
the top of the ManySAT parallel SAT solver.

3

Our tests were conducted on two platforms, 8-core Intel Xeon machines with 16GB of RAM run-
ning at 2.33GHz, and 32-core AMD Opteron Proc. 6136 machines with 64GB of RAM running at
2.4GHz. We used the 588 ”Application” SAT+UNSAT instances of the latest SAT-Challenge 2012.
The CPU time limit was set to 30mn CPU per core, hence a total of 4 hours on the first (resp. 16
hours on the second) platform. The number n of alive emitters is set to 4 (resp. 16) for the 8-cores
(resp. 32-cores) architecture with a shared clause limit size L = 8. As mentioned, the time period
K was set to 25 after a few preliminary tests.

Figure 1: BESS: Number of instances solved vs computational cost on a 8 and 32-cores architecture,
compared to ManySAT (full communication) and Random (random selection of n emitters for each
receiver in each period time).

Fig. 1 displays the comparative performance of BESS and ManySAT, that is the time in seconds
needed to solve a given number of instances, on the 8-core (Fig. 1.a) and 32-core (Fig. 1.b) settings.
ManySAT uses a complete communication topology, every core sharing its clauses with every other
core. The number n of alive emitter cores is set to 4 (resp. 16) in the 8-core (resp. 32-core)
setting, selected by BESS. As a sanity check, the performance obtained when the alive emitters are
uniformly selected in each time period (legend Random) is also reported.

On the 8-core architecture, both ManySAT and BESS significantly outperform Random. ManySAT
and BESS coincide at the beginning of the curve, that is for the “easy” problems; for more difficult
problems (resolution time > 4,000 sec.), BESS moderately but significantly outperforms ManySAT
(solving 7 more problem instances).

A much clearer picture is obtained on the 32-core architecture. In this case, Random moderately but
significantly outperforms ManySAT, which confirms that the communication overload is detrimental
to the resolution efficiency. The accuracy of the BESS process is demonstrated as BESS significantly
outperforms ManySAT and Random, solving 30 more instances than ManySAT in the imparted time.
In the meanwhile, BESS is also faster than ManySAT 2.0 (requiring less than 20,000 s. versus more
than 50,000 s to solve 300 problems).

5 Conclusion

This paper, aimed at the scalability of parallel portfolio-based SAT, presents an ensemble Bandit-
based approach which outperforms the state of the art ManySAT 2.0 parallel algorithm, by replacing
a complete communication topology with an adaptively adjusted one.

More generally, this paper shows how a Multi-Armed Bandit approach can be used to adaptively
control a communication topology in a decentralized way, yielding an efficient trade-off between i)
the cooperation of a massive number of cores; ii) an affordable overall communication load among
the cores; iii) an efficient communication topology adjustment. The main lesson learned concerns
the interaction between the reward definition and the periodicity of the selection decisions.

As mentioned, a much simplified MAB framework has been considered in BESS insofar. The MAB
framework however offers room to extend the BESS scope to adaptively determining i) the appro-
priate number of emitters for a given receiver; ii) the maximum length of the shared clauses, again
for a given receiver.

4

References

[1] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic
multiarmed bandit problem. SIAM J. Comput., 32(1):48–77, 2002.

[2] Armin Biere. Lingeling, plingeling, picosat and precosat. solver description, SAT-Race 2010.
Technical report, 2010.

[3] Martin Davis, George Logemann, and Donald W. Loveland. A machine program for theorem-
proving. Commun. ACM, 5(7):394–397, 1962.

[4] Álvaro Fialho, Luis Da Costa, Marc Schoenauer, and Michèle Sebag. Analyzing bandit-based
adaptive operator selection mechanisms. Annals of Mathematics and Artificial Intelligence,
60(1-2):25–64, October 2010.

[5] Matteo Gagliolo and Jürgen Schmidhuber. Algorithm portfolio selection as a bandit problem
with unbounded losses. Ann. Math. Artif. Intell., 61(2):49–86, 2011.

[6] Youssef Hamadi, Saı̈d Jabbour, and Lakhdar Sais. Control-based clause sharing in parallel sat
solving. In IJCAI, pages 499–504, 2009.

[7] Youssef Hamadi, Saı̈d Jabbour, and Lakhdar Sais. Manysat: a parallel sat solver. JSAT,
6(4):245–262, 2009.

[8] T. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in applied
mathematics, 6:4–22, 1985.

[9] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient sat solver. In DAC, pages 530–535, 2001.

5

	Introduction
	Related work and formal background
	BESS: Bandit Ensemble for parallel SAT Solving
	Evaluation
	Conclusion

