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ABSTRACT
This paper focuses on the problem of reconstructing a vector of

rational functions given some evaluations, or more generally given

their remainders modulo different polynomials. The special case

of rational functions sharing the same denominator, a.k.a. Simulta-

neous Rational Function Reconstruction (SRFR), has many appli-

cations from linear system solving to coding theory, provided that

SRFR has a unique solution. The number of unknowns in SRFR is

smaller than for a general vector of rational function. This allows

one to reduce the number of evaluation points needed to guaran-

tee the existence of a solution, possibly losing its uniqueness. In

this work, we prove that uniqueness is guaranteed for a generic

instance.

CCS CONCEPTS
•Mathematics of computing→Coding theory; •Computing
methodologies → Algebraic algorithms; Linear algebra algo-
rithms.

ACM Reference Format:
Eleonora Guerrini, Romain Lebreton, Ilaria Zappatore. 2020. On the Unique-

ness of Simultaneous Rational Function Reconstruction. In International
Symposium on Symbolic and Algebraic Computation (ISSAC ’20), July 20–
23, 2020, Kalamata, Greece. ACM, New York, NY, USA, 8 pages. https:

//doi.org/10.1145/3373207.3404051

1 INTRODUCTION
Vector Rational Function Reconstruction (VRFR) is the problem

of reconstructing a vector 𝒗/𝒅 = (𝑣1/𝑑1, . . . , 𝑣𝑛/𝑑𝑛) of rational
functions given their remainders 𝑢𝑖 = 𝑣𝑖/𝑑𝑖 mod 𝑎𝑖 and bounds

on their degrees. VRFR generalizes interpolation problems by tak-

ing 𝑎1 = · · · = 𝑎𝑛 =
∏(𝑥 − 𝛼 𝑗 ) for some distinct 𝛼 𝑗 because the

modular equations become then equations on evaluations 𝑢𝑖 (𝛼 𝑗 ) =
(𝑣𝑖/𝑑𝑖 ) (𝛼 𝑗 ). Simultaneous Rational Function Reconstruction (SRFR)

is the particular case of VRFR where all the rational functions share

the same denominator (see Section 2.1). The common denominator

constraint of SRFR reduces the number of unknowns w.r.t. VRFR,

lowering the number of equations (or the number of evaluations in

the interpolation case) required to ensure existence of a non-trivial
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solution. This consideration has interesting consequences for sev-

eral applications: SRFR appears in polynomial linear system solving

via evaluation-interpolation which may be done with less evalu-

ation points. Also, SRFR is related to the decoding of interleaved

Reed-Solomon codes and previous consideration can improve the

error correction capability of this code (see Section 2.2). However,

having a unique solution is fundamental for these applications and

there are SRFR instances where the number of equations required

to ensure existence does not lead to a unique solution (see Exam-

ple 2.2). This work studies SRFR instances leading to uniqueness.

A uniqueness result for instances of SRFR coming from poly-

nomial linear system solving can be found in [OS07]. However,

this result requires the solution to have a specific degree. We have

reasons to believe that we can generalize this result: we conjecture

that for almost all (𝒗, 𝑑) the SRFR problem admits a unique solution

(see Conjecture 2.5).

We can learn more about conditions of uniqueness by looking

at results coming from error correcting codes. Interleaved Reed

Solomon codes (IRS) can be seen as the evaluation of a vector of

polynomials 𝒗. The problem of decoding IRS codes consists in the

reconstruction of the vector of polynomials 𝒗 given its evaluations,

some possibly erroneous. A classic approach to decode IRS codes is

the application of SRFR (in its interpolation version) for instances

𝒖 = 𝒗 + 𝒆 where 𝒆 are the errors. Results from coding theory show

that for all 𝒗 and almost all errors 𝒆, we get the uniqueness of SRFR
for the corresponding instance 𝒖 (provided that there are not too

many errors) [BKY03, BMS04, SSB09]. There is a natural extension

of SRFR when errors occur (SRFRwE, see Section 2.2), which can

be related to a fractional generalization of IRS [GLZ19, GLZ20]. We

conjecture that we can decode almost all codeword 𝒗/𝑑 and almost

all errors 𝒆 of this fractional code (Conjecture 2.9).
In this paper we present a result which is a step towards Con-

jectures 2.5 and 2.9. We prove that uniqueness is guaranteed for a

generic instance 𝒖 of SRFR (Theorem 2.4). Our result is valid not

only given evaluations, but also in the general context of any mod-

uli 𝑎. Our approach to prove Theorem 2.4 is to study the degrees of

a relation module. Solutions of SRFR are related to generators of a

particular basis of this K[𝑥]-module which have a negative shifted-

row degree. Shifts are necessary to integrate degree constraints. We

show that for generic instances, there is only one generator with

negative row degree, hence uniqueness of SRFR solutions.

Previous works studied generic degrees of different but related

modules: e.g. for the module of generating polynomials of a scalar

matrix sequence [Vil97], for the kernel of a polynomial matrix of

specific dimensions [JV05]. Both cases do not consider any shift.

The generic degrees also appear as dimensions of blocks of a shifted

Hessenberg form [PS07]. However, the link with the degrees of a
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module is unclear and no shift is discussed (shifted Hessenberg

is not related to our shift). We prove our result for any shift and

any matrix dimension by adapting some of their techniques to the

specific relation module related to SRFR.

In Section 2 we introduce the motivations of our work, starting

from the classic SRFR to the extended version with errors. We also

show their respective applications in polynomial linear system

solving and in error correcting algorithms. In Section 3, we define

the algebraic tools that we will use to prove our technical results of

the Section 4. In Section 5 we explain how these results are linked

to the uniqueness of the solution of SRFR and we finally prove

Theorem 2.4 about the generic uniqueness.

2 MOTIVATIONS
2.1 Rational Function Reconstruction
In this section we recall standard definitions and we state our

problem, starting from rational function reconstruction and its

application to linear algebra. Let K be a field, 𝑎,𝑢 ∈ K[𝑥] with
deg(𝑢) < deg(𝑎). The Rational Function Reconstruction (RFR) is the

problem of reconstructing rational functions 𝑣/𝑑 ∈ K(𝑥) verifying

gcd(𝑑, 𝑎) = 1,
𝑣

𝑑
= 𝑢 mod 𝑎, deg(𝑣) < 𝑁, deg(𝑑) < 𝐷. (1)

Since the 𝑔𝑐𝑑 equation is not linear, it is customary to focus on the

weaker homogeneous linear equation in the polynomial pair (𝑣, 𝑑)
𝑣 = 𝑑𝑢 mod 𝑎, deg(𝑣) < 𝑁, deg(𝑑) < 𝐷. (2)

RFR generalizes many problems including the Padé approximation if
𝑎 = 𝑥 𝑓 and the Cauchy interpolation if 𝑎 =

∏𝑓

𝑖=1
(𝑥 −𝛼𝑖 ), where the

𝛼𝑖 are pairwise distinct elements of the field K. The homogeneous

linear system related to (2) has deg(𝑎) equations and 𝑁 + 𝐷 un-

knowns. If deg(𝑎) = 𝑁 +𝐷 − 1, the dimension of the solution space

of (2) is at least 1 and it always admits a non-trivial solution. More-

over, such a solution is unique in the sense that all solutions are

polynomial multiples of a unique one, (𝑣min, 𝑑min) (see e.g. [GG13,
Theorem 5.16]). On the other hand, (1) does not always have a solu-

tion, but when a solution exists, it is unique and must be 𝑣min/𝑑min,

which can be computed using the Extended Euclidean Algorithm.

Throughout this paper, we will focus on (2).

RFR can be naturally extended to the vector case as follows. Let

𝑎1, . . . , 𝑎𝑛 ∈ K[𝑥] with degrees 𝑓𝑖 = deg(𝑎𝑖 ) and 𝒖 = (𝑢1, . . . , 𝑢𝑛) ∈
K[𝑥]𝑛 where deg(𝑢𝑖 ) < 𝑓𝑖 . Given 0 < 𝑁𝑖 , 𝐷𝑖 ≤ 𝑓𝑖 , the Vector Ratio-
nal Function Reconstruction (VRFR) is the problem of reconstruct-

ing (𝑣𝑖 , 𝑑𝑖 ) for 1 ≤ 𝑖 ≤ 𝑛 such that 𝑣𝑖 = 𝑑𝑖𝑢𝑖 mod 𝑎𝑖 , deg(𝑣𝑖 ) <

𝑁𝑖 , deg(𝑑𝑖 ) < 𝐷𝑖 . We can apply RFR componentwise and so, if

𝑓𝑖 = 𝑁𝑖 + 𝐷𝑖 − 1, we can uniquely reconstruct the solution.

SRFR is then the problem of reconstructing a vector of rational

functions with the same denominator.

Definition 2.1 (SRFR). Given 𝒖 = (𝑢1, . . . , 𝑢𝑛) ∈ K[𝑥]𝑛 where

deg(𝑢𝑖 ) < 𝑓𝑖 , and degree bounds 0 < 𝑁𝑖 < 𝑓𝑖 and 0 < 𝐷 < min 𝑓𝑖 ,

we want to reconstruct the tuple (𝒗, 𝑑) = (𝑣1, . . . , 𝑣𝑛, 𝑑) such that

𝑣𝑖 = 𝑑𝑢𝑖 mod 𝑎𝑖 , deg(𝑣𝑖 ) < 𝑁𝑖 , deg(𝑑) < 𝐷. (3)

We denote S𝒖 the set of solutions.

Since solutions of SRFR are solutions of VRFR, SRFR has a unique

solution (if it exists) whenever 𝑓𝑖 = 𝑁𝑖 +𝐷 − 1 for all 𝑖 . On the other

hand, if the number of equations of (3) is equal to the number of

unknowns minus one, that is if

𝑛∑
𝑖=1

𝑓𝑖 =

𝑛∑
𝑖=1

𝑁𝑖 + 𝐷 − 1 (4)

then (3) always admits a non-trivial solution. This number of equa-

tions is always smaller than before, possibly up to a factor 2. How-

ever, the uniqueness is not anymore guaranteed.

Example 2.2. Let K = F11, 𝑛 = 2, 𝑁1 = 𝑁2 = 4, 𝐷 = 5 and

𝑎1 = 𝑎2 =
∏

6

𝑖=1 (𝑥 − 2
𝑖 ) = 𝑥6 + 6𝑥5 + 5𝑥4 + 7𝑥3 + 2𝑥2 + 8𝑥 + 2.

Let 𝒖 =
(
5𝑥5 + 5𝑥3 + 𝑥2 + 4𝑥 + 4, 8𝑥5 + 9𝑥4 + 8𝑥3 + 8𝑥2 + 4𝑥 + 6

)
.

Then SRFR has two K[𝑥]-linearly independent solutions (𝒗, 𝑑):(
8𝑥3 + 5𝑥2 + 𝑥 + 6, 7𝑥3 + 9𝑥2 + 8𝑥 + 9, 7𝑥3 + 7𝑥2 + 8𝑥 + 9

)
and(

2𝑥3 + 2𝑥2 + 8𝑥, 10𝑥2 + 10𝑥 + 10, 6𝑥4 + 7𝑥3 + 8𝑥2 + 5𝑥 + 5

)
.

Uniqueness is a central property for the applications of SRFR:

unique decoding algorithms are essential in error correcting codes,

and it is also a widespread condition to use evaluation interpo-

lation techniques in computer algebra. The number of equations

which guarantees uniqueness of SRFR has also repercussion on

the complexity. Indeed, the complexity of decoding algorithms or

evaluation interpolation techniques depends on this number of

equations. Since SRFR decreases this number up to a factor 2, this

implies a constant factor speedup for applications, like in [OS07].

We denote by 𝑠 the rank of the K[𝑥]-module spanned by the

solutions S𝒖 . All solutions can be written as a linear combination∑𝑠
𝑖=1 𝑐𝑖𝑝𝑖 of 𝑠 polynomials 𝑝𝑖 with polynomial coefficients 𝑐𝑖 . The

case 𝑠 = 1 corresponds to what we call uniqueness of the solution.

In [OS07], the authors studied the particular case where 𝑎1 = . . . =

𝑎𝑛 = 𝑎 and 𝑁1 = . . . = 𝑁𝑛 = 𝑁 . They proved the following,

Theorem 2.3 ([OS07, Theorem 4.2]). Let 𝑘 be minimal such that
deg(𝑎) ≥ 𝑁 + (𝐷 − 1)/𝑘 , then the rank 𝑠 of the solution space S𝒖

satisfies 𝑠 ≤ 𝑘 .
Note that if 𝑘 = 1, the solution is always unique (𝑠 = 1). This

matches the uniqueness condition on deg(𝑎) of VRFR. On the other

hand, if 𝑘 = 𝑛 and deg(𝑎) ≥ 𝑁 + (𝐷 − 1)/𝑛 then 𝑠 ≤ 𝑛, which

does not provide any new information about the solution space.

Theorem 2.3 represents a connection between the classic bound

deg(𝑎) ≥ 𝑁 +𝐷 − 1 which guarantees the uniqueness and the ideal
one deg(𝑎) ≥ 𝑁 + (𝐷 − 1)/𝑛 (see (4)), which exploits the common

denominator property.

Our main contribution is the following

Theorem 2.4. If
∑𝑛
𝑖=1 𝑓𝑖 =

∑𝑛
𝑖=1 𝑁𝑖 + 𝐷 − 1 then for almost all

instances 𝒖, SRFR admits a unique solution, i.e. it has rank 𝑠 = 1.
Moreover, if K is a finite field of cardinality 𝑞, the proportion of

instances leading to non-uniqueness is ≤ (𝐷 − 1)/𝑞.
Note that when 𝐷 = 1, rational functions become polynomials

and𝑁𝑖 = 𝑓𝑖 so that SRFR has always a unique solution (𝒗, 𝑑) = (𝒖, 1).
Theorem 2.4 will be proved in Section 5. We say that a certain

property P is verified by a generic instance 𝒖 (or interchangeably

for almost all instances 𝒖) if and only if there exists a nonzero

polynomial 𝐶 such that 𝐶 does not vanish on 𝒖 implies that P
is true. In our case, the property is the uniqueness of SRFR and

the indeterminates of 𝐶 are the polynomial coefficients 𝑢 𝑗,𝑘 of the

components 𝑢 𝑗 =
∑𝑓𝑗−1
𝑘=0

𝑢 𝑗,𝑘𝑥
𝑘
of 𝒖.
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In terms of complexity, [OS07] computes a complete basis of the

solution space using O(𝑛𝑘𝜔−1𝐵(deg(𝑎))) operations in K where

2 ≤ 𝜔 ≤ 3 is the exponent of the matrix multiplication and 𝐵(𝑡) :=
𝑀 (𝑡) log 𝑡 where𝑀 is the classic polynomial multiplication arith-

metic complexity (see [GG13] for instance). In [RNS16] the complex-

ity was improved: they compute the solution space (in the general

case of different moduli 𝑎𝑖 ) in complexity O(𝑛𝜔−1𝐵(𝑓 ) log(𝑓 /𝑛)2)
where 𝑓 = max𝑖 deg(𝑎𝑖 ).

Application to polynomial linear system solving. SRFR has a nat-

ural application in linear algebra. Suppose that we want to com-

pute the solution 𝒚 = 𝐴−1𝒃 ∈ K(𝑥) of a full rank polynomial

linear system 𝐴 ∈ K[𝑥]𝑛×𝑛 , 𝒃 ∈ K[𝑥]𝑛×1, from its image mod-

ulo a polynomial 𝑎. We will refer to this problem as Polynomial
Linear System solving (PLS). We remark that, by Cramer’s rule, 𝒚
is vector of rational functions with the same denominator: PLS is

then a special case of SRFR. In [OS07, Theorem 5.1], the authors

proved that the solution space is uniquely generated (𝑠 = 1) when

deg(𝑎) ≥ 𝑁 + (𝐷 −1)/𝑛 in the special case of 𝐷 = 𝑁 = 𝑛 deg(𝐴) +1
and deg(𝐴) = deg(𝑏). For this purpose, they exploited another

bound on the degree of 𝑎 based on [Cab71].

In view of Theorem 2.4 and as our experiments suggest, we could

hope for the following,

Conjecture 2.5. If (4) is satisfied then for almost all (𝒗, 𝑑) with
gcd(𝑑, 𝑎𝑖 ) = 1, SRFR with 𝒖 = 𝒗

𝑑
as input admits a unique solution.

Since we have proved the uniqueness for generic instances 𝒖, it
would be sufficient to show the existence of an instance 𝒖 of the

form 𝒗/𝑑 for any 𝑁𝑖 , 𝐷, 𝑎𝑖 to prove the conjecture.

2.2 Reconstruction with Errors
In this section we introduce the problem of the Simultaneous Ratio-

nal Function with Errors, i.e. SRFR in a scenario where errors may

occur in some evaluations [BK14, KPSW17, GLZ19, Per14, GLZ20].

Throughout this section we suppose that K is a finite field of cardi-

nality 𝑞, we fix 𝜶 = {𝛼1, . . . , 𝛼 𝑓 } pairwise distinct evaluation points
in K and we consider the polynomial 𝑎 =

∏𝑓

𝑖=1
(𝑥 − 𝛼𝑖 ).

Definition 2.6 (SRFR with Errors). Fix 0 < 𝑁, 𝐷, 𝜀 < 𝑓 ≤ 𝑞. An

instance of SRFR with errors (SRFRwE) is a matrix 𝝎 ∈ K𝑛×𝑓
whose columns are 𝝎 𝑗 = 𝒗 (𝛼 𝑗 )/𝑑 (𝛼 𝑗 ) + 𝒆 𝑗 for some reduced 𝒗/𝑑 ∈
K(𝑥)𝑛×1 and some error matrix 𝒆. The reduced vector must satisfy

deg(𝒗) < 𝑁 , deg(𝑑) < 𝐷 and 𝑑 (𝛼𝑖 ) ≠ 0. The error matrix must

have its error support 𝐸 := {1 ≤ 𝑗 ≤ 𝑓 | 𝒆 𝑗 ≠ 0} which satisfies

|𝐸 | ≤ 𝜀. Then SRFRwE is the problem of finding a solution (𝒗, 𝑑)
given an instance 𝝎.

SRFRwE as Reed-Solomon decoding. Observe that if 𝑛 = 1 and

𝐷 = 1, 𝒗/𝑑 becomes a polynomial. Then SRFRwE is the problem

of recovering a polynomial 𝑣 given evaluations, some of which

possibly erroneous; that is decoding an instance of a Reed-Solomon
code. Its vector generalization, that is 𝑛 > 1 and 𝐷 = 1, coincides

with the decoding of an homogeneous Interleaved Reed-Solomon
(IRS) code. Indeed, an IRS codeword can be seen as the evaluation

of a vector of polynomials 𝒗 on 𝜶 . Thus decoding IRS codes is the

problem of recovering 𝒗 from 𝝎 𝑗 = 𝒗 (𝛼 𝑗 ) + 𝒆 𝑗 .
Let us now detail how we can solve SRFRwE using SRFR. We use

the same technique of decoding RS and IRS codes [BW86, BKY03,

PRN17]. We introduce the Error Locator Polynomial Λ =
∏

𝑗 ∈𝐸 (𝑥 −
𝛼 𝑗 ). Its roots are the erroneous evaluations so deg(Λ) = |𝐸 | ≤
𝜀. We consider the Lagrangian polynomials 𝑢𝑖 ∈ K[𝑥] such that

𝑢𝑖 (𝛼 𝑗 ) = 𝜔𝑖 𝑗 for any 1 ≤ 𝑖 ≤ 𝑛. The classic approach is to remark

that (𝝋,𝜓 ) = (Λ𝒗,Λ𝑑) is a solution of 𝝋 = 𝜓𝒖 mod

∏𝑓

𝑖=1
(𝑥 −

𝛼𝑖 ) such that deg(𝝋) < 𝑁 + 𝜀 and deg(𝜓 ) < 𝐷 + 𝜀. In this way

we reduce SRFRwE to SRFR. If the unique (𝝋,𝜓 ) satisfying latter

conditions is (Λ𝒗,Λ𝑑), then we can reconstruct (𝒗, 𝑑) and solve

SRFRwE. Uniqueness can be obtained by taking VRFR constraints

𝑓 = (𝑁 + 𝜀) + (𝐷 + 𝜀) − 1 = 𝑁 + 𝐷 + 2𝜀 − 1 [BK14, KPSW17].

It is possible to reduce the number of evaluations w.r.t. the maxi-

mal number of errors 𝜀 in the setting of IRS decoding (𝐷 = 1).

Theorem 2.7 ([BKY03, BMS04, SSB09]). Fix 0 < 𝑁, 𝜀 < 𝑓 ≤ 𝑞

and 𝐸 such that |𝐸 | ≤ 𝜀. If 𝑓 = 𝑁 + 𝜀 + 𝜀/𝑛, then for all (𝒗, 1) and
almost all error matrices 𝒆 of support 𝐸, SRFRwE admits a unique
solution on the instance 𝝎 where 𝝎 𝑗 = 𝒗 (𝛼 𝑗 )/𝑑 (𝛼 𝑗 ) + 𝒆 𝑗 .

We proved a similar result in the rational function case,

Theorem 2.8 ([GLZ19, GLZ20]). Fix 0 < 𝑁, 𝐷, 𝜀 < 𝑓 ≤ 𝑞 and 𝐸
such that |𝐸 | ≤ 𝜀. If 𝑓 = 𝑁 + 𝐷 − 1 + 𝜀 + 𝜀/𝑛, then for all (𝒗, 𝑑) and
almost all error matrices 𝒆 of support 𝐸, SRFRwE admits a unique
solution on the instance 𝝎 where 𝝎 𝑗 = 𝒗 (𝛼 𝑗 )/𝑑 (𝛼 𝑗 ) + 𝒆 𝑗 .

Since the problem of SRFRwE reduces to SRFR, there always

exists a non-trivial (𝝋,𝜓 ) whenever 𝑓 = 𝑁 + 𝜀 + (𝐷 + 𝜀 − 1)/𝑛. Our
ideal result would be to prove a uniqueness result also in this case.

Our experiments suggest the following,

Conjecture 2.9. Fix 0 < 𝑁, 𝐷, 𝜀 < 𝑓 ≤ 𝑞 and 𝐸 such that |𝐸 | ≤ 𝜀.
If 𝑓 = 𝑁 + 𝜀 + (𝐷 + 𝜀 − 1)/𝑛, then for almost all (𝒗, 𝑑) and almost all
error matrices 𝒆 of support 𝐸, SRFRwE admits a unique solution on
the instance 𝝎 where 𝝎 𝑗 = 𝒗 (𝛼 𝑗 )/𝑑 (𝛼 𝑗 ) + 𝒆 𝑗 .

Note that Conjecture 2.9 is for almost all fractions (𝒗, 𝑑) whereas
Theorems 2.7 and 2.8 are for all fractions. This difference is due to

Example 2.2, which shows that we can not have uniqueness for all

instances 𝒖 of the form 𝒖 = 𝒗/𝑑 when 𝑓 = 𝑁 + (𝐷−1)/𝑛. This latter
number of evaluations matches the one of Conjecture 2.9 in the

situation without errors 𝜀 = 0. Remark that this obstruction does

not affect Theorems 2.7 and 2.8 because their number of evaluations

𝑓 becomes 𝑁 + 𝐷 − 1 when 𝜀 = 0.

Our result Theorem 2.4 is a first step towards Conjecture 2.9:

Since uniqueness of SRFR is true for generic instance𝝎, it remains to

prove the existence of an instance of the form𝝎 𝑗 = 𝒗 (𝛼 𝑗 )/𝑑 (𝛼 𝑗 )+𝒆 𝑗
for any 𝑁, 𝐷, 𝜀, 𝐸 to prove the conjecture.

Polynomial linear system solving with errors. SRFRwE was first

introduced by [BK14] as a special case of Polynomial Linear Sys-

tem Solving with Errors (PLSwE), that we now introduce. Sup-

pose that we want to compute the unique solution 𝒚 = 𝒗/𝑑 =

𝐴−1𝒃 ∈ K[𝑥]𝑛×𝑛 of a PLS in a scenario where some errors occur

[BK14, KPSW17, GLZ19]. Suppose a black box gives us solutions

𝒚𝑖 = 𝐴(𝛼𝑖 )−1𝒃 (𝛼𝑖 ) of evaluated systems, where 𝛼𝑖 are 𝑓 distinct

evaluations points such that 𝑑 (𝛼𝑖 ) ≠ 0. This black box could make

some errors in the computations; an evaluation 𝛼 𝑗 is erroneous if
𝒚 𝑗 ≠ 𝒗 (𝛼 𝑗 )/𝑑 (𝛼 𝑗 ) and we denote by 𝐸 := { 𝑗 | 𝒚 𝑗 ≠ 𝒗 (𝛼 𝑗 )/𝑑 (𝛼 𝑗 )}
the set of erroneous positions. We observe that if 𝑗 ∈ 𝐸, then

there exists a nonzero 𝒆 𝑗 ∈ K𝑛×𝑓 such that 𝒚 𝑗 = 𝒗 (𝛼 𝑗 )/𝑑 (𝛼 𝑗 ) + 𝒆 𝑗 .
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Hence, this problem is a special case of SRFRwE. Here we want to

reconstruct a vector of rational functions which is a solution of a

polynomial linear system. Therefore, all the results about unique-

ness of the previous sections hold. Finally, we mention that there

exists another bound on 𝑓 which guarantees the uniqueness in

the context of PLSwE; this bound depends on the degree of the

polynomial matrix 𝐴 and the vector 𝒃 [KPSW17].

3 PRELIMINARIES
In this section we will give some definitions and set out the notation

that we will use throughout this paper. We refer to [Nei16] for

proofs of lemmas, examples and historical references.

3.1 Row degrees of a K[𝑥]-module
Let K be a field and K[𝑥] its ring of polynomials. We start by

defining the row degree of a vector, then of a matrix. Let 𝒑 =

(𝑝1, . . . , 𝑝𝜈 ) ∈ K[𝑥]𝜈 = K[𝑥]1×𝜈 and 𝒔 = (𝑠1, . . . , 𝑠𝜈 ) ∈ Z𝜈 a shift.

Definition 3.1 (Shifted row degree). Let 𝑟𝑖 = deg(𝑝𝑖 ) + 𝑠𝑖 for 1 ≤
𝑖 ≤ 𝜈 . The 𝒔-row degree of 𝒑 is rdeg𝒔 (𝒑) = max 𝑟𝑖 . We also denote

𝒑 = ( [𝑟1]𝑠1 , . . . , [𝑟𝜈 ]𝑠𝜈 ) a vector of polynomials with these degrees.

We can extend this definition to polynomial matrices. In fact, let

𝑃 ∈ K[𝑥]𝜌×𝜈 be a polynomial matrix, with 𝜌 ≤ 𝜈 . Let 𝑃𝑖,∗ be the
𝑖-th row of 𝑃 for 1 ≤ 𝑖 ≤ 𝜌 . We can define the 𝒔-row degrees of the
matrix 𝑃 as rdeg𝒔 (𝑃) := (𝑟1, . . . , 𝑟𝜌 ) where 𝑟𝑖 := rdeg𝒔 (𝑃𝑖,∗).

Let N be a K[𝑥]-submodule of K[𝑥]𝜈 = K[𝑥]1×𝜈 . Since K[𝑥]
is a principal ideal domain, N is free of rank 𝜌 := rank(N) less
than 𝜈 [DF03, Section 12.1, Theorem 4]. Hence, we can consider

a basis 𝑃 ∈ K[𝑥]𝜌×𝜈 , i.e. a full rank polynomial matrix, such that

N = K[𝑥]1×𝜌𝑃 = {𝝀𝑃 | 𝝀 ∈ K[𝑥]1×𝜌 }.
Our goal is to define a notion of row degrees of N in order to

study later the K-vector space N<𝑟 :=
{
𝒑 ∈ N

��
rdeg𝒔 (𝒑) < 𝑟

}
for

some 𝑟 ∈ Z. Different bases 𝑃 of N have different 𝒔-row degrees so

we need more definitions. We start with row reduced bases.

Let 𝒕 = (𝑡1, . . . , 𝑡𝜈 ) ∈ Z𝜈 . We denote by 𝑋 𝒕
the diagonal matrix

whose entries are 𝑥𝑡1 , . . . , 𝑥𝑡𝜈 . The 𝒔-leading matrix 𝐿𝑀𝒔 (𝑃) of 𝑃 is

a matrix inK𝜌×𝜈 , whose entries are the coefficient of degree zero of

𝑋−rdeg𝒔 (𝑃 )𝑃𝑋 𝒔
. A basis 𝑃 ∈ K[𝑥]𝜌×𝜈 ofN is 𝒔-row reduced (shortly

𝒔-reduced) if 𝐿𝑀𝒔 (𝑃) has full rank. This definition is equivalent to

[Nei16, Definition 1.10], which implies that all 𝒔-reduced basis of

N have the same row degrees, up to permutation. We now focus

on the following crucial property.

Lemma 3.2 (Predictable degree property). 𝑃 is 𝒔-reduced if
and only if for all 𝝀 = (𝜆1, . . . , 𝜆𝜌 ) ∈ K[𝑥]1×𝜌 ,

rdeg𝒔 (𝝀𝑃) = max

1≤𝑖≤𝜌
(deg(𝜆𝑖 ) + rdeg𝒔 (𝑃𝑖,∗)) = rdegrdeg𝒔 (𝑃 ) (𝝀) .

The proof of this classic proposition can be found for instance

in [Nei16, Theorem 1.11]. This latter proposition is useful because

it implies that dimKN<𝑟 =
∑

{𝑖 |𝑟𝑖<𝑟 } (𝑟 − 𝑟𝑖 ) where (𝑟1, . . . , 𝑟𝜌 ) are
the 𝒔-row degrees of any 𝒔-reduced basis of N .

Since we will need to define the 𝒔-row degrees of N uniquely,

not just up to permutation, we need to introduce ordered weak

Popov form, which relies on the notion of pivot. The 𝒔-pivot index
of 𝒑 ∈ K[𝑥]1×𝜈 is max{ 𝑗 | rdeg𝒔 (𝒑) = deg(𝑝 𝑗 ) + 𝑠 𝑗 }. Moreover

the corresponding 𝑝 𝑗 is the 𝒔-pivot entry and deg(𝑝 𝑗 ) is the 𝒔-pivot
degree of 𝒑. We naturally extend the notion of pivot to polynomial

matrices. A basis 𝑃 of N is in 𝒔-weak Popov form if the 𝒔-pivot
indices of its rows are pairwise distinct. On the other hand, it is in

𝒔-ordered weak Popov form if the sequence of the 𝒔-pivot indices of
its rows is strictly increasing. A basis in 𝒔-weak Popov form is 𝒔-
reduced. Indeed, 𝐿𝑀𝒔 (𝑃) becomes, up to row permutation, a lower

triangular matrix with non-zero entries on the diagonal. Hence it

is full-rank.

Assume from now on that N is a submodule of K[𝑥]𝜈 of rank 𝜈

and that 𝑃 is a basis of N in 𝒔-ordered weak Popov form. Then its

pivot indices must be {1, . . . , 𝜈}. Weak Popov bases have a strong

degree minimality property, stated in the following lemma.

Lemma 3.3 ([Nei16, Lemma 1.17]). Let 𝒔 ∈ Z𝜈 , 𝑃 be a basis of N
in 𝒔-weak Popov form with 𝒔-pivot degrees (𝑑1, . . . , 𝑑𝜈 ). Let 𝒑 ∈ N
whose pivot index is 1 ≤ 𝑖 ≤ 𝜈 . Then the 𝒔-pivot degree of 𝒑 is ≥ 𝑑𝑖
or equivalently rdeg𝒔 (𝒑) ≥ rdeg𝒔 (𝑃𝑖,∗).

As it turns out, ordered weak Popov bases are reduced bases

for which the 𝒔-row degrees is unique. The following lemma is a

consequence of Lemma 3.3.

Lemma 3.4 ([Nei16, Lemma 1.25]). Let 𝒔 ∈ Z𝜈 and assume N
is a submodule of K[𝑥]𝜈 of rank 𝜈 . Let 𝑃 and 𝑄 be two bases of N
in 𝒔-ordered weak Popov form. Then 𝑃 and 𝑄 have the same 𝒔-row
degrees and 𝒔-pivot degrees.

3.2 Link between pivot and leading term
In this section, we will focus on the relation between pivots of weak

Popov bases and leading terms w.r.t. a specific monomial order, as

in Gröbner basis theory (see for instance [CLO98]).

Let K[𝒙] := K[𝑥1, . . . , 𝑥𝑛] be the ring of multivariate polynomi-

als. Recall that a monomial in K[𝒙] is a product of powers of the
indeterminates 𝒙 𝒊 := 𝑥𝑖1

1
· · · 𝑥𝑖𝑛𝑛 for some 𝒊 := (𝑖1, . . . , 𝑖𝑛) ∈ N𝑛 . On

the other hand, a monomial in K[𝒙]𝑛 is 𝒙 𝒊𝜺 𝑗 , where 𝜺1, . . . , 𝜺𝑛 is

the canonical basis of the K[𝒙]-module K[𝒙]𝑛 .
A monomial order on K[𝒙]𝑛 is a total order ≺ on the monomials

of K[𝒙]𝑛 such that, for any monomials 𝜑𝜺𝑖 ,𝜓𝜺 𝑗 ∈ K[𝒙]𝑛 and any

monomial 𝜏 ≠ 1, 𝜏 ∈ K[𝒙], 𝜑𝜺𝑖 ≺ 𝜓𝜺 𝑗 =⇒ 𝜑𝜺𝑖 ≺ 𝜏𝜑𝜺𝑖 ≺ 𝜏𝜓𝜺 𝑗 .
Given a monomial order ≺ on K[𝒙]𝑛 and 𝑓 ∈ K[𝒙]𝑛 , the ≺-initial
term 𝑖𝑛≺ (𝑓 ) of 𝑓 is the term of 𝑓 whose monomial is the greatest

with respect to the order ≺. We remark that in the case of K[𝑥], the
only monomial order is the natural degree order 𝑥𝑎 < 𝑥𝑏 ⇔ 𝑎 < 𝑏.

We now define the shifted 𝒔-TOP order (Term Over Position)

on K[𝒙]𝑛 related to a monomial order ≺ on K[𝒙] and a choice of

shifting monomials 𝛾1, . . . , 𝛾𝑛 in K[𝒙]:

𝜑𝜺𝑖 ≺𝒔−𝑇𝑂𝑃 𝜓𝜺 𝑗 ⇐⇒ (𝜑𝛾𝑖 ≺ 𝜓𝛾 𝑗 ) or (𝜑𝛾𝑖 = 𝜓𝛾 𝑗 and 𝑖 < 𝑗)

for any pairs of monomials 𝜑𝜺𝑖 and𝜓𝜺 𝑗 of K[𝒙]𝑛 . In the univariate

case K[𝑥]𝑛 , the only monomial order ≺ on K[𝑥] is the natural one
and the shifting monomials are 𝛾𝑖 = 𝑥

𝑠𝑖
for 𝒔 = (𝑠1, . . . , 𝑠𝑛) ∈ N𝑛 ,

so that the 𝒔-TOP order on K[𝑥]𝑛 is

𝑥𝑎𝜺𝑖 <𝒔-TOP 𝑥
𝑏𝜺 𝑗 ⇐⇒ (𝑎 + 𝑠𝑖 , 𝑖) ≺𝑙𝑒𝑥 (𝑏 + 𝑠 𝑗 , 𝑗) . (5)

We can now state the link between this monomial order and the

pivot’s definition: let 𝒑 ∈ K[𝑥]1×𝑛 and write 𝑖𝑛≺𝒔-TOP (𝒑) = 𝛼𝑥𝑑 𝜺𝑖 ,
then the 𝒔-pivot index, entry, and degree are respectively 𝑖 , 𝑝𝑖 and

𝑑 . This will be useful later on, in e.g. Proposition 4.3.
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4 ROW DEGREE OF THE RELATION MODULE
Fix𝑚 ≥ 𝑛 ≥ 0, and𝑀 ∈ K[𝑥]𝑚×𝑛

. We consider a K[𝑥]-submodule

M of K[𝑥]𝑛 . We define the K[𝑥]−module homomorphism

ˆ𝜑𝑀 : K[𝑥]𝑚 −→ K[𝑥]𝑛/M
𝒑 ↦−→ 𝒑𝑀

.

Set AM,𝑀 := ker( ˆ𝜑𝑀 ) to get the injection

𝜑𝑀 : K[𝑥]𝑚/AM,𝑀 ↩→ K[𝑥]𝑛/M .

We callAM,𝑀 the relationmodule because 𝑝 ∈ AM,𝑀 ⇔ 𝜑𝑀 (𝒑) =
𝒑𝑀 = 0 mod M, i.e. 𝒑 is a relation between rows of𝑀 .

Let 𝜺1, . . . , 𝜺𝑚 be the canonical basis of K[𝑥]𝑚 , 𝜺 ′
1
, . . . , 𝜺 ′𝑛 the

canonical basis of K[𝑥]𝑛 and 𝒆𝑖 = 𝜺𝑖 mod K[𝑥]𝑚/𝐴M,𝑀 for 1 ≤
𝑖 ≤ 𝑚.

Remark 4.1. Weobserve that by the Invariant Factor Form ofmodules
over Principal Ideal Domains (cf. [DF03, Theorem 4, Chapter 12]),

K := K[𝑥]𝑛/M ≃ K[𝑥]𝑛/
〈
𝑎𝑖𝜺 ′𝑖

〉
1≤𝑖≤𝑛 for nonzero 𝑎𝑖 ∈ K[𝑥]

such that 𝑎𝑛 |𝑎𝑛−1 | . . . |𝑎1. The polynomials 𝑎𝑖 are the invariants of
the moduleM. We also denote 𝑓𝑖 := deg(𝑎𝑖 ) and we observe that

𝑓1 ≥ 𝑓2 ≥ . . . ≥ 𝑓𝑛 .

From now on we will assume that M =
〈
𝑎𝑖𝜺 ′𝑖

〉
1≤𝑖≤𝑛 . It means

that any 𝒒 ∈ K can be seen as (𝑞1 mod 𝑎1, . . . , 𝑞𝑛 mod 𝑎𝑛). Using
the result of Lemma 3.4, we can define the row and pivot degrees

of the relation module AM,𝑀 .

Definition 4.2 (Row and pivot degrees of the relation module). Let
𝒔 ∈ Z𝑚 be a shift and 𝑃 be any basis of AM,𝑀 in ordered weak

Popov form. The 𝒔-row degrees of the relation module AM,𝑀 are

𝝆 := rdeg𝒔 (𝑃) = (𝜌1, . . . , 𝜌𝑚) and the 𝒔-pivot degrees are 𝜹 :=

(𝛿1, . . . , 𝛿𝑚) where 𝛿𝑖 = 𝜌𝑖 − 𝑠𝑖 .

Throughout this paper we will also denote 𝝆𝑀 and 𝜹𝑀 when

we want to stress out the matrix dependency.

4.1 Row degrees as row rank profile
In this section, we will see that the row degrees of the relation mod-

ule can be deduced from the row rank profile of a matrix associated

to ˆ𝜑𝑀 . We start by associating the pivot degree of 𝒑 ∈ AM,𝑀 to

linear dependency relation.

Proposition 4.3. There exists 𝒑 ∈ AM,𝑀 with 𝒔-pivot index 𝑖

and 𝒔-pivot degree 𝑑 if and only if 𝑥𝑑 𝒆𝑖 ∈ 𝐵≺𝑥𝑑 𝜺𝑖
𝑀

where 𝐵≺𝑥𝑑 𝜺𝑖
𝑀

:=

⟨𝑥𝑛𝒆 𝑗 | 𝑥𝑛𝜺 𝑗 ≺𝒔−𝑇𝑂𝑃 𝑥
𝑑 𝜺𝑖 ⟩.

Proof. Fix 𝑖, 𝑑 ∈ N and let 𝒑 ∈ K[𝑥]𝑛 with 𝒔-pivot index 𝑖 and 𝒔-
pivot degree 𝑑 , so 𝑟 := rdeg𝒔 (𝒑) = 𝑑 +𝑠𝑖 . Then 𝒑 = ( [≤ 𝑟 ]𝑠1 , . . . , [≤
𝑟 ]𝑠𝑖−1 , [𝑟 ]𝑠𝑖 , [< 𝑟 ]𝑠𝑖+1 , . . . , [< 𝑟 ]𝑠𝑚 ) (see Definition 3.1) and we can

write 𝒑 = 𝑐𝑥𝑑 𝜺𝑖 + 𝒑′
where 𝑐 ∈ K∗ and 𝒑′ = ( [≤ 𝑟 ]𝑠1 , . . . , [≤

𝑟 ]𝑠𝑖−1 , [< 𝑟 ]𝑠𝑖 , [< 𝑟 ]𝑠𝑖+1 , . . . , [< 𝑟 ]𝑠𝑚 ). So 𝒑 ∈ AM,𝑀 has 𝑠-pivot

index 𝑖 and degree 𝑑 ⇔ 𝑥𝑑 𝜺𝑖 = −1/𝑐 𝒑′
mod AM,𝑀 ⇔

𝑥𝑑 𝒆𝑖 ∈
〈
𝑥𝑛𝒆 𝑗

���� 𝑛 + 𝑠 𝑗 ≤ 𝑑 + 𝑠𝑖 , for 1 ≤ 𝑗 ≤ 𝑖 − 1

𝑛 + 𝑠 𝑗 < 𝑑 + 𝑠𝑖 , for 𝑖 ≤ 𝑗 ≤ 𝑚

〉
= 𝐵

≺𝑥𝑑 𝜺𝑖
𝑀

. □

Theorem 4.4. Let 𝜹 be the 𝒔-pivot degrees of the relation module

AM,𝑀 . Then 𝛿 𝑗 =𝑚𝑖𝑛{𝑑 | 𝑥𝑑 𝒆 𝑗 ∈ 𝐵
≺𝑥𝑑 𝜺 𝑗
𝑀

} for any 1 ≤ 𝑗 ≤ 𝑚.

Proof. Fix 1 ≤ 𝑗 ≤ 𝑚. During this proof we denote 𝛿 𝑗 :=

𝑚𝑖𝑛{𝑑 | 𝑥𝑑 𝒆 𝑗 ∈ 𝐵
≺𝑥𝑑 𝜺 𝑗
𝑀

}. We want to prove that 𝛿 𝑗 = 𝛿 𝑗 . Recall that

by Proposition 4.3, 𝑥𝛿 𝑗 𝒆 𝑗 ∈ 𝐵
≺𝑥𝛿𝑗 𝜺 𝑗
𝑀

. Hence, by the minimality of 𝛿 𝑗 ,

𝛿 𝑗 ≥ 𝛿 𝑗 . On the other hand, 𝑥𝛿 𝑗 𝒆 𝑗 ∈ 𝐵
≺𝑥𝛿 𝑗 𝜺 𝑗
𝑀

so by Proposition 4.3

there exists 𝒑 ∈ AM,𝑀 of 𝒔-pivot index 𝑗 and degree 𝛿 𝑗 . Finally,

by Lemma 3.3 we can conclude that 𝛿 𝑗 ≥ 𝛿 𝑗 . □

We now define the ordered matrix 𝑂𝑀 as the matrix of 𝜑𝑀
w.r.t. particular K-vector space bases: the rows of 𝑂𝑀 from top

to bottom are the monomials of K[𝑥]𝑚 sorted increasingly for

the ≺𝒔−𝑇𝑂𝑃 order (see (5)). The columns of 𝑂𝑀 are written w.r.t.
the basis {𝑥𝑖𝜺 ′

𝑗
}1≤ 𝑗≤𝑛
0≤𝑖<𝑓𝑗

of K[𝑥]𝑛/M. Therefore, 𝑂𝑀 has finite rank

rank(𝑂𝑀 ) = rank(𝜑𝑀 ) = rank(𝜑𝑀 ), infinite number of rows and

(∑𝑛
𝑖=1 𝑓𝑖 ) = dimK (K[𝑥]𝑛/M) columns.

Monomial row rank profile. Our goal is to relate the row rank

profile of𝑂𝑀 to the row degrees of the relation module. The classic

definition of row rank profile of a rank 𝑟 polynomial matrix is

the lexicographically smallest sequence of 𝑟 indices of linearly

independent rows (cf. [DPS15] for instance). Since the rows of our
ordered matrix 𝑂𝑀 correspond to monomials, we will transpose

the previous definition to monomials instead of indices.

Let Mon𝑟 be the sets of 𝑟 monomials of K[𝑥]𝑚 . We define the

lexicographical ordering on Mon𝑟 by comparing lexicographically

the sorted monomials for ≺𝒔−𝑇𝑂𝑃 . In detail, F <𝑙𝑒𝑥 F ′
iff there

exists 1 ≤ 𝑡 ≤ 𝑟 s.t. 𝑥𝑖𝑙 𝜺 𝑗𝑙 = 𝑥𝑢𝑙 𝜺𝑣𝑙 for 𝑙 < 𝑡 and 𝑥𝑖𝑡 𝜺 𝑗𝑡 ≺𝒔−𝑇𝑂𝑃

𝑥𝑢𝑡 𝜺𝑣𝑡 where F = {𝑥𝑖𝑙 𝜺 𝑗𝑙 }1≤𝑙≤𝑟 and F ′ = {𝑥𝑢𝑙 𝜺𝑣𝑙 }1≤𝑙≤𝑟 and both
{𝑥𝑖𝑙 𝜺 𝑗𝑙 } and {𝑥𝑢𝑙 𝜺𝑣𝑙 } are increasing for the ≺𝒔−𝑇𝑂𝑃 order.

We will use this lexicographic order on monomials to define the

row rank profile of 𝑂𝑀 . Let 𝑟 = rank(𝑂𝑀 ).

Definition 4.5 (Row rank profile). For any matrix𝑀 ∈ K[𝑥]𝑚×𝑛
,

we define the row rank profile of 𝑂𝑀 (shortly 𝑅𝑅𝑃𝑀 ) as the family

of monomials of K[𝑥]𝑚 defined by 𝑅𝑅𝑃𝑀 :=𝑚𝑖𝑛<𝑙𝑒𝑥
P𝑀 where

P𝑀 :=
{
F ∈ Mon𝑟

�� {𝑚𝑀}𝑚∈F are linearly independent in K
}
.

We now introduce a particular family of monomials, that we

will frequently use: we will denote F𝒅 := {𝑥𝑖𝜺 𝑗 } 𝑖<𝑑 𝑗

1≤ 𝑗≤𝑚
for any

𝒅 = (𝑑1, . . . , 𝑑𝑚) ∈ N𝑚 .

This family allows us to finally relate the row rank profile of𝑂𝑀

to the row degrees of the relation module.

Proposition 4.6. The row rank profile of the ordered matrix 𝑂𝑀

is given by the pivot degrees 𝜹𝑀 of the relation module AM,𝑀 , i.e.
𝑅𝑅𝑃𝑀 = F𝜹𝑀

.

Proof. We fix the matrix𝑀 in order to simplify notations. We

define 𝛿 ′
𝑗
= 𝑚𝑖𝑛

{
𝛿 | 𝑥𝛿 𝜺 𝑗 ∉ 𝑅𝑅𝑃

}
and 𝜹 ′ = (𝛿 ′

1
, . . . , 𝛿 ′𝑚). By prop-

erties of row rank profile, we have that 𝑥𝛿 𝑗 𝒆 𝑗 ∈ 𝐵≺𝑥𝛿𝑗 𝜺 𝑗
(otherwise

we could create a smaller family of linearly independent monomial

with 𝑥𝛿 𝑗 𝒆 𝑗 ). Using Theorem 4.4, we deduce that 𝛿 ′
𝑗
≥ 𝛿 𝑗 . There-

fore F𝜹 ⊂ F𝜹′ ⊂ 𝑅𝑅𝑃 . Since the families of monomials F𝜹 and

𝑅𝑅𝑃 have the same cardinality 𝑟 = rank(𝑂𝑀 ), they are equal so

F𝜹 = 𝑅𝑅𝑃 . □
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4.2 Constraints on relation’s row degrees
We will now focus on integer tuples 𝜹𝑀 which can be achieved. For

this matter, in the light of Proposition 4.6, we need to understand

which families F𝒅 of monomials can be linearly independent in the

ordered matrix, i.e. belong to P𝑀 (see Definition 4.5).

Recall that K = K[𝑥]𝑛/M = K[𝑥]𝑛/
〈
𝑎𝑖𝜺 ′𝑖

〉
1≤𝑖≤𝑛 and 𝑓𝑖 =

deg(𝑎𝑖 ) are non-increasing as in Remark 4.1. Recall also from Defi-

nition 4.5 that P𝑀 is the set of families F of 𝑟 monomials in K[𝑥]𝑚
such that {𝑚𝑀}𝑚∈F are linearly independent in K[𝑥]𝑛/M.

Theorem 4.7. Let 𝒅 ∈ N𝑚 be non-increasing. We can extend
𝒇 ∈ N𝑚 by 𝑓𝑛+1 = . . . = 𝑓𝑚 = 0. Then ∃𝑀 ∈ K[𝑥]𝑚×𝑛 such that
F𝒅 ∈ P𝑀 if and only if

∑𝑙
𝑖=1 𝑑𝑖 ≤

∑𝑙
𝑖=1 𝑓𝑖 for all 1 ≤ 𝑙 ≤ 𝑚.

The non-increasing property of 𝒅 can be lifted: let 𝒅 be non-

increasing and 𝒅 ′ be any permutation of 𝒅. Then ∃𝑀 ∈ K[𝑥]𝑚×𝑛

such that F𝒅 ∈ P𝑀 if and only if ∃𝑀 ′ ∈ K[𝑥]𝑚×𝑛
such that F𝒅′ ∈

P𝑀′ . Indeed, permuting 𝒅 amounts to permuting the components

of 𝒑, i.e. permuting the rows of𝑀 . This does not affect the existence

property.

Theorem 4.7 is an adaptation of [Vil97, Proposition 6.1] and its

derivation [PS07, Theorem 3]. Even if the statements of these two

papers are in a different but related context, their proof can be

applied almost straightforwardly. We will still provide the main

steps of the proof, for the sake of clarity and also because we will

have to adapt it later in the proof of Theorem 2.4. Note also that

we complete the ‘if’ part of the proof because it was not detailed in

earlier references. For this purpose, we introduce the following

Lemma 4.8. Let N be a K[𝑥]-submodule of K of rank 𝑙 . Then the
dimension of N as K-vector space is at most 𝑓1 + · · · + 𝑓𝑙 .

Proof. First, remark that if 𝒒 ∈ N has its first non-zero element

at index 𝑝 then 𝑎𝑝𝒒 = 0. Now since N has rank 𝑙 , we can consider

the matrix 𝐵 whose rows are the 𝑙 elements of a basis of N . We

operate on the rows of 𝐵 to obtain the Hermite normal form 𝐵′

of 𝐵. The rows (𝒃 ′𝑖 )1≤𝑖≤𝑙 of 𝐵
′
have first non-zero elements at

distinct indices 𝑘1, . . . , 𝑘𝑙 . Therefore 𝑎𝑘 𝑗
𝒃 ′𝑗 = 0 and {𝑥𝑖𝒃 ′𝑗 }0≤𝑖<𝑓𝑘𝑗

1≤ 𝑗≤𝑙
is a generating set ofN and so dimKN ≤ 𝑓𝑘1 +· · ·+ 𝑓𝑘𝑙 ≤ 𝑓1+· · ·+ 𝑓𝑙
since (𝑓𝑖 ) are non increasing and (𝑘 𝑗 ) pairwise distinct. □

Corollary 4.9. Let 𝑟 ≥ 0, 𝒅 ∈ N𝑙 and 𝑣1, . . . , 𝑣𝑙 ∈ K such that
{𝑥 𝑗𝒗𝑖 }0≤ 𝑗<𝑑𝑖

1≤𝑖≤𝑙
are linearly independent then

∑𝑙
𝑖=1 𝑑𝑖 ≤

∑𝑙
𝑖=1 𝑓𝑖 .

Proof. We considerN theK[𝑥]-module spanned by {𝑣1, . . . , 𝑣𝑙 },
and we observe that 𝑑1 + · · · + 𝑑𝑙 ≤ dimN ≤ 𝑓1 + · · · + 𝑓𝑙 by

Lemma 4.8. □

Proof of Theorem 4.7. We observe that if𝑚 > 𝑛, we can write

K = K[𝑥]𝑛/
〈
𝑎𝑖𝜺 ′𝑖

〉
1≤𝑖≤𝑛 = K[𝑥]𝑚/⟨𝑎𝑖𝜺𝑖 ⟩1≤𝑖≤𝑚 where 𝑎 𝑗 = 1 for

𝑛 + 1 ≤ 𝑗 ≤ 𝑚. Hence, we can suppose w.l.o.g. that𝑚 = 𝑛.

⇒) By the hypotheses, there exists a matrix𝑀 ∈ K[𝑥]𝑚×𝑛
such

that {𝑥𝑖𝜺 𝑗𝑀}𝑥𝑖𝜺 𝑗 ∈F𝒅 = {𝑥𝑖𝒗 𝑗 }0<𝑖<𝑑 𝑗
are linearly independent in

K where 𝒗 𝑗 := 𝜺 𝑗𝑀 . Hence, for all 1 ≤ 𝑙 ≤ 𝑚, 𝒗1, . . . , 𝒗𝑙 satisfy the

conditions of the Corollary 4.9 and so

∑𝑙
𝑖=1 𝑑𝑖 ≤

∑𝑙
𝑖=1 𝑓𝑖 .

⇐) Set 𝒖𝑖 = 𝜺𝑖 for 1 ≤ 𝑖 ≤ 𝑚 so that {𝑥𝑖𝒖 𝑗 } 𝑖<𝑓𝑗
1≤ 𝑗≤𝑚

are linearly

independent in M. We now consider the matrix 𝐾 := [𝐾1 | . . . |𝐾𝑚]

where 𝐾𝑗 ∈ K[𝑥]𝑚×𝑓𝑗
is in Krylov form, that is 𝐾𝑗 = 𝐾 (𝒖 𝑗 , 𝑓𝑗 ) :=

[𝒖 𝑗 |𝑥𝒖 𝑗 | . . . |𝑥 𝑓𝑗−1𝒖 𝑗 ] by considering 𝒖 𝑗 as a column vector. Note

that𝐾 is full column rank by construction. Our goal is to find vectors

𝒗1, . . . , 𝒗𝑚 such that [𝐾 (𝒗1, 𝑑1) | . . . |𝐾 (𝒗𝑚, 𝑑𝑚)] is full column rank

(see 𝐾 later).

For this purpose, we first need to consider the matrix 𝐾 made

of columns of 𝐾 so that it remains full column rank. It is defined

as 𝐾 := [𝐾1 | . . . |𝐾𝑚] where for 1 ≤ 𝑗 ≤ 𝑚, 𝐾 𝑗 ∈ K[𝑥]𝑚×𝑑 𝑗
are

defined iteratively by

𝐾 𝑗 := [𝐾 (𝒖 𝑗 ,min(𝑓𝑗 , 𝑑 𝑗 )) |𝐾 (𝑥𝑠1𝒖 𝑗1 , 𝑡1) | . . . |𝐾 (𝑥𝑠𝑘 𝒖 𝑗𝑘 , 𝑡𝑘 )]
and 𝐾 (𝑥𝑠𝑙 𝒖 𝑗𝑙 , 𝑡𝑙 ) derives from previously unused columns in 𝐾 ,

which we add from left to right, i.e. ( 𝑗𝑙 ) are increasing. Since∑𝑗

𝑖=1
𝑑𝑖 ≤

∑𝑗

𝑖=1
𝑓𝑖 , wewill only pick from previous blocks, i.e. 𝑗𝑘 < 𝑗 .

Since we must have depleted a block 𝐾𝑖𝑙 before going to another

one, we can observe that 𝑠𝑙 + 𝑡𝑙 = 𝑓𝑙 for 𝑙 < 𝑘 . The last block 𝐾𝑖𝑘 is

the only one that may not be exhausted, i.e. 𝑠𝑘 +𝑡𝑘 ≤ 𝑓𝑘 . Conversely,

𝑠𝑙 = 𝑑𝑙 for 𝑙 > 1 because no columns have been picked yet from the

blocks 𝑗𝑙 , except maybe the first block 𝑗1 where 𝑠1 ≥ 𝑑1.
We want to transform𝐾 𝑗 into a Krylov matrix𝐾𝑗 , working block

by block. First we extend [𝐾 (𝒖 𝑗 ,min(𝑓𝑗 , 𝑑 𝑗 )) |0| . . . |0] to the right to
𝐾 (𝒖 𝑗 , 𝑑 𝑗 ). Then we extend all blocks [0| . . . |0|𝐾 (𝑥𝑠𝑙 𝒖 𝑗𝑙 , 𝑡𝑙 ) |0| . . . |0]
to the left and the right to𝐾 (𝑥𝑠

′
𝑙 𝒖 𝑗𝑙 , 𝑑𝑙 ) where 𝑠 ′𝑙 equals 𝑠𝑙 minus the

number of columns of the left extension. In this way, the extension

matches the original matrix on its non-zero columns. Now we

can define 𝐾 := [𝐾1 | . . . |𝐾𝑚], where 𝐾𝑗 := 𝐾 (𝒗 𝑗 , 𝑑 𝑗 ) with 𝒗 𝑗 :=

𝒖 𝑗 +
∑𝑘
𝑙=1

𝑥𝑠
′
𝑙 𝒖 𝑗𝑙 .

A crucial point of the proof is to show that 𝑠 ′
𝑘
≥ 0. But since 𝑑𝑖

are-non increasing, 𝑗𝑙 are increasing and 𝑗𝑘 < 𝑗 , we get 𝑠𝑙 ≥ 𝑑 𝑗𝑙 ≥
𝑑 𝑗𝑘 ≥ 𝑑 𝑗 . As the number of columns of the left extension is at most

𝑑 𝑗 , we can conclude 𝑠 ′
𝑘
≥ 0.

In [Vil97] and [PS07] it is proved that there exist an upper tri-

angular matrices 𝑇 such that 𝐾 = 𝐾𝑇 . So we can conclude that 𝐾 ,

which is in the desired block Krylov form, is full column rank as is

𝐾 , which concludes the proof. □

Example 4.10. We illustrate the construction of the proof of The-

orem 4.7 with example. Let 𝑚 = 4, 𝑛 = 3, 𝒇 = (8, 4, 4) extended
to 𝑓4 = 0 and 𝒅 = (5, 5, 3, 3). Remark that

∑𝑙
𝑖=1 𝑑𝑖 ≤

∑𝑙
𝑖=1 𝑓𝑖 for all

1 ≤ 𝑙 ≤ 𝑚. Then 𝐾1 = 𝐾 (𝒖1, 𝑑1), 𝐾2 = [𝐾 (𝒖2, 𝑓2) |𝐾 (𝑥𝑑1𝒖1, 𝑑2 −
𝑓2)] picks its missing column from the first unused column of 𝐾1,

𝐾3 = 𝐾 (𝒖3, 𝑑3), and 𝐾4 = [𝐾 (𝒖4, 𝑓4) = ∅|𝐾 (𝑥𝑑1+1𝒖1, 𝑓1 − (𝑑1 +
1) |𝐾 (𝑥𝑑3𝒖3, 𝑓3 − 𝑑3)] picks its 3 missing columns first from the 2

unused of 𝐾1, then from the remaining one of 𝐾3. Then the con-

struction extends 𝐾 to 𝐾 = 𝐾 (𝒗𝑖 , 𝑑𝑖 ) where 𝒗1 = 𝒖1 = [1, 0, 0],
𝒗2 = 𝒖2 + 𝑥𝑑2−(𝑑1−1)𝒖1 = [𝑥, 1, 0], 𝒗3 = 𝒖3 = [0, 0, 1] and 𝒗4 =

𝑥𝑑1+1𝒖1 +𝑥𝑑3−(𝑓1−(𝑑1+1))𝒖3 = [𝑥6, 0, 𝑥]. Finally the matrix𝑀 of the

statement of Theorem 4.7 has its 𝑗-th row𝑀𝑗,∗ equal to 𝒗 𝑗 . ^

We now have all the cards in our hand to state the principal con-

straint on the pivot degrees 𝜹𝑀 of the relation moduleAM,𝑀 when

𝑀 varies in the set of matrices K[𝑥]𝑚×𝑛
such that rank(𝑂𝑀 ) =

rank(𝜑𝑀 ) is fixed. We will denote by d𝑟 the pivot degrees corre-

sponding to the constraint.

Theorem 4.11. Recall that 𝒇 = (𝑓1, . . . , 𝑓𝑚) are the degrees of the
invariants ofM where 𝑓𝑖 = 0 for𝑛+1 ≤ 𝑖 ≤ 𝑚, and let 𝑟 = rank(𝑂𝑀 ).
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Then F𝜹𝑀
≥𝑙𝑒𝑥 Fd𝑟 where

Fd𝑟 =𝑚𝑖𝑛<𝑙𝑒𝑥

{
F𝒅 ∈ Mon𝑟

����� ∀1 ≤ 𝑙 ≤ 𝑚,
𝑙∑

𝑖=1

𝑑𝑖 ≤
𝑙∑

𝑖=1

𝑓𝑖

}
(6)

Proof. We know from Proposition 4.6 that 𝑅𝑅𝑃𝑀 = F𝜹𝑀
so

{𝑥𝑖𝜺 𝑗𝑀} 𝑖<𝛿 𝑗,𝑀

1≤ 𝑗≤𝑚
are linearly independent and

∑𝑚
𝑖=1 𝛿𝑖,𝑀 = 𝑟 . Using

Theorem 4.7, we get that

∑𝑙
𝑖=1 𝛿𝑖,𝑀 ≤ ∑𝑙

𝑖=1 𝑓𝑖 for all 1 ≤ 𝑙 ≤ 𝑚.

This means that F𝜹𝑀
belongs to the set whose minimum is Fd𝑟 ,

which implies our result. □

We observe that 𝑟 = rank(𝑂𝑀 ) must satisfy 0 ≤ 𝑟 ≤ Σ :=∑𝑚
𝑖=1 𝑓𝑖 = dimK K[𝑥]𝑛/M and that 𝑟 = Σ is reachable since𝑚 ≥ 𝑛.

Note also that d𝑟 is well-defined in Theorem 4.11 as long as 0 ≤ 𝑟 ≤
Σ :=

∑𝑚
𝑖=1 𝑓𝑖 because it is related to the minimum of a non-empty

set.

4.3 Generic row degrees of relation module
We will now show that this pivot degrees constraint dΣ is attain-

able by 𝜹𝑀 for matrices 𝑀 such that rank(𝑂𝑀 ) = rank(𝜑𝑀 ) =

dimK K[𝑥]𝑛/M in which case𝜑𝑀 becomes a bijection. More specif-

ically, we will show that this is the case for almost all matrices

𝑀 ∈ K[𝑥]𝑚×𝑛
.

Corollary 4.12. For a generic matrix 𝑀 ∈ K[𝑥]𝑚×𝑛 , the pivot
degrees 𝜹𝑀 of the relation module 𝐴M,𝑀 satisfy 𝜹𝑀 = dΣ where
Σ =

∑𝑛
𝑖=1 𝑓𝑖 .

Proof. Our goal is to prove that there exists a non-zero polyno-

mial𝐶 in the coefficients𝑚𝑖, 𝑗,𝑘 of the polynomial entries𝑚𝑖, 𝑗 of𝑀

such that 𝐶 (𝑚𝑖, 𝑗,𝑘 ) ≠ 0 implies that 𝜹𝑀 = dΣ.
Since

∑𝑙
𝑖=1 dΣ,𝑖 ≤ ∑𝑙

𝑖=1 𝑓𝑖 for all 1 ≤ 𝑙 ≤ 𝑚, we deduce from

Theorem 4.7 that there exists𝑀 ∈ K[𝑥]𝑚×𝑛
such that {𝑚𝑀}𝑚∈FdΣ

are linearly independent. So the Σ-minor of the ordered matrix

𝑂𝑀 of 𝑀 corresponding to those lines is non-zero. We now con-

sider this Σ-minor as a function 𝐶 in the coefficients 𝑚𝑖, 𝑗,𝑘 of

the polynomial entries 𝑚𝑖, 𝑗 of 𝑀 . Note that 𝐶 ∈ K[𝑚𝑖, 𝑗,𝑘 ] since
the entries of 𝑂𝑀 are linear combinations of 𝑚𝑖, 𝑗,𝑘 . Indeed, we

can write 𝑚𝑖, 𝑗 =
∑𝑓𝑗−1
𝑘=0

𝑚𝑖, 𝑗,𝑘𝑥
𝑘
because 𝑚𝑖, 𝑗 is only considered

modulo 𝑎 𝑗 , and the coefficient of 𝑂𝑀 w.r.t. line 𝑥𝑢𝜺𝑖 and column

𝑥𝑣𝜺 ′
𝑗
is

∑𝑓𝑗−1
𝑘=0

𝑚𝑖, 𝑗,𝑘𝑐 𝑗,𝑘,𝑢,𝑣 where 𝑐 𝑗,𝑘,𝑢,𝑣 ∈ K is the coefficient of

(𝑥𝑘+𝑢 mod 𝑎 𝑗 ) in 𝑥𝑣 . We have seen that 𝐶 admits a nonzero evalu-

ation so is a non-zero polynomial.

Now for any matrix 𝑀 such that 𝐶 (𝑚𝑖, 𝑗,𝑘 ) ≠ 0, the vectors

{𝑚𝑀}𝑚∈FdΣ must be linearly independent, so rank(𝑂𝑀 ) = Σ. We

have 𝑅𝑅𝑃𝑀 ≤𝑙𝑒𝑥 FdΣ
because FdΣ

∈ P𝑀 (see Definition 4.5). The-

orem 4.11 gives the other inequality, so FdΣ
= 𝑅𝑅𝑃𝑀 = F𝜹𝑀

and

𝜹𝑀 = dΣ. □

4.3.1 Special cases. In this section, we will see that our definition

of the generic pivot degrees dΣ in (6) has a simplified expression in

a wide range of settings. Set the notation 𝑠 = max(𝒔). We will see

that under some assumptions the expected row degrees pΣ := dΣ+𝒔
has a nice form. Define 𝑝 and 𝑢 be the quotient and remainder of

the Euclidean division

∑𝑚
𝑖=1 (𝑓𝑖 + 𝑠𝑖 ) = 𝑝 ·𝑚 + 𝑢. The expected nice

form of the row degrees will be

𝒑 := (𝑝 + 1, . . . , 𝑝 + 1︸            ︷︷            ︸
𝑢 times

, 𝑝, . . . , 𝑝︸  ︷︷  ︸
𝑚−𝑢 times

). (7)

This nice form will appear if the following conditions on 𝒇 and 𝒔
hold:

𝑝 ≥ 𝑠 (8)

∀1 ≤ 𝑙 ≤ 𝑚 − 1,

𝑙∑
𝑖=1

𝑝𝑖 ≤
𝑙∑

𝑖=1

(𝑓𝑖 + 𝑠𝑖 ) (9)

Theorem 4.13. Let 𝒑 as in (7), and let 𝒇 be non-increasing such
that (8) and (9) hold. Then pΣ = 𝒑.

This nice form of row degree was already observed in different

but related settings. To the best of our knowledge, it can be found

in [Vil97, Proposition 6.1] for row degrees of minimal generating

matrix polynomial but with no shift, in [PS07, Corollary 1] for

dimensions of blocks in a shifted Hessenberg form but the link to

row degree is unclear and no shift is discussed (shifted Hessenberg

is not related to our shift 𝒔), and in [JV05, after (2)] for kernel basis

were𝑚 = 2𝑛 with no shifts.

Proof. Denote again Σ =
∑𝑛
𝑖=1 𝑓𝑖 . LetF be the first Σmonomials

ofK[𝑥]𝑚 for the ≺𝒔−𝑇𝑂𝑃 ordering. Let𝒑 = (𝑝+1, . . . , 𝑝+1, 𝑝, . . . , 𝑝)
be the candidate row degrees as in the theorem statement and

𝒅 = 𝒑 − 𝒔 be the corresponding pivot degrees. Note that (8) implies

that 𝑝 ≥ 𝑠 so 𝒅 ∈ N𝑚 .

First we show that (8) implies F = F𝒅 . For the first part, in order

to prove F = F𝒅 , we need to show that 𝑑𝑖 = min{𝑑 ∈ N | 𝑥𝑑 𝜺𝑖 ∉
F }. We already know that 𝑑𝑖 ∈ N. We will need to study the

row degrees of the first monomials to conclude. The monomials

of K[𝑥]𝑚 of 𝒔-row degree 𝑟 ordered increasingly for ≺𝒔−𝑇𝑂𝑃 are

[𝑥𝑟−𝑠𝑖 𝜺𝑖 ] for increasing 1 ≤ 𝑖 ≤ 𝑚 such that 𝑠𝑖 ≤ 𝑟 . There are𝑚

such monomials when 𝑟 ≥ 𝑠 . The monomials of 𝒔-row degree less

than 𝑠 are {𝑥𝑖𝜺 𝑗 }𝑖+𝑠 𝑗<𝑠 and their number is

∑𝑚
𝑖=1 (𝑠 − 𝑠𝑖 ). From this

we can deduce that the row degree of the 𝑛-th smallest monomial is⌊
(𝑛 − 1 −∑𝑚

𝑖=1 (𝑠 − 𝑠𝑖 ))/𝑚
⌋
+ 𝑠 =

⌊
(𝑛 − 1 +∑𝑚

𝑖=1 𝑠𝑖 )/𝑚
⌋
provided

that 𝑛 ≥ ∑𝑚
𝑖=1 (𝑠 − 𝑠𝑖 ) + 1. We can now remark that the (Σ + 1)-th

smallest monomial has 𝒔-row degree 𝑝 . More precisely, the (Σ + 1)-
th smallest monomial is the (𝑢 +1)-th monomial of row-degree 𝑟 , so

F is equal to all monomials of row degree less than 𝑝 and the first

𝑢 monomials of row degree 𝑝 . This proves 𝑑𝑖 = min{𝑑 ∈ N | 𝑥𝑑 𝜺𝑖 ∉
F } and F = F𝒅 .

Second we deduce from (9) that for all 1 ≤ 𝑙 ≤ 𝑚,

∑𝑙
𝑖=1 𝑑𝑖 =∑𝑙

𝑖=1 (𝑝𝑖 − 𝑠𝑖 ) ≤ ∑𝑙
𝑖=1 𝑓𝑖 , so Fd𝑟 ≤𝑙𝑒𝑥 F𝒅 by Theorem 4.11 and

finally Fd𝑟 = F𝒅 because F is the smallest set of Σ monomials. □

Example 4.14. Here we provide 3 examples of generic pivot de-

grees dΣ and row degrees pΣ: Corollary 4.12 applies only to the first
situation because the second and third situations are constructed

so that (8) and respectively (9) are not satisfied. Let𝑚 = 𝑛 = 3 and

𝒔 = (0, 2, 4) so that 𝑠 = 4 and

∑(𝑠 − 𝑠𝑖 ) = 6.

In the first situation 𝒇 = (6, 1, 0), so ∑(𝑓𝑖 + 𝑠𝑖 ) = 4𝑚 + 1 and

using Corollary 4.12 we get pΣ = (5, 4, 4) from (7) and dΣ = (5, 2, 0).
In the second situation, 𝒇 = (3, 0, 0) and (8) is not satisfied. We

use Theorem 4.13 to get dΣ = (3, 0, 0) from (6) and pΣ = (3, 2, 4).
Finally in the third situation, 𝒇 = (3, 3, 1) and (9) is not satisfied. We
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use Theorem 4.13 to get dΣ = (3, 3, 1) from (6) and pΣ = (3, 5, 5).
Let F1, F2, F3 be the respective families of monomial of the three

situations. We picture these families in the following table, where

𝑀𝑜𝑛 are the first monomials for ≺𝒔−𝑇𝑂𝑃

𝑀𝑜𝑛 𝜺1 𝑥𝜺1 𝑥2𝜺1 𝜺2 𝑥3𝜺1 𝑥𝜺2 𝑥4𝜺1 𝑥2𝜺2 𝜺3
rdeg𝒔 0 1 2 3 4

F1 • • • • • • •
F2 • • •
F3 • • • • • • •

5 UNIQUENESS RESULTS ON SRFR
Let’s recall SRFR defined in Section 2.1: let 𝑎1, . . . , 𝑎𝑛 ∈ K[𝑥] with
degrees 𝑓𝑖 := deg(𝑎𝑖 ) and 𝒖 := (𝑢1, . . . , 𝑢𝑛) ∈ K[𝑥]𝑛 such that

deg(𝑢𝑖 ) < 𝑓𝑖 and 0 < 𝑁𝑖 ≤ 𝑓𝑖 for 1 ≤ 𝑖 ≤ 𝑛, 0 < 𝐷 ≤ min1≤𝑖≤𝑛{𝑓𝑖 }.
We want to reconstruct (𝒗, 𝑑) = (𝑣1, . . . , 𝑣𝑛, 𝑑) ∈ K[𝑥]1×(𝑛+1) such
that 𝑣𝑖 = 𝑑𝑢𝑖 mod 𝑎𝑖 , deg(𝑣𝑖 ) < 𝑁𝑖 , deg(𝑑) < 𝐷.We consider M =

⟨𝑎𝑖𝜺 ′𝑖 ⟩ and we denote by 𝑆𝒖 the set of tuples which verify (3).

Lemma 5.1. For the shift 𝒔 = (−𝑁1, . . . ,−𝑁𝑛,−𝐷) ∈ Z𝑛+1, we
have (𝒗, 𝑑) ∈ 𝑆𝒖 ⇔ (𝒗, 𝑑) ∈ AM,𝑅𝒖

with rdeg𝒔 ((𝒗, 𝑑)) < 0, where

𝑅𝒖 :=

[
Id𝑛
−𝒖

]
∈ K[𝑥] (𝑛+1)×𝑛 (10)

Proof. Observe that (𝒗, 𝑑) ∈ 𝑆𝒖 if and only if it satisfies the

equation 𝒗 − 𝑑𝒖 = (𝒗, 𝑑)𝑅𝒖 = 0 mod M, that is (𝒗, 𝑑) ∈ AM,𝑅𝒖
,

and if it satisfies the degree conditions equivalent to rdeg𝒔 ((𝒗, 𝑑)) =
max{deg(𝑣1) −𝑁1, . . . , deg(𝑣𝑛) −𝑁𝑛, deg(𝑑) −𝐷} < 0 (see Def. 3.1).

□

So in order to study the solutions of SRFR we introduce the 𝒔-row
degrees 𝝆𝒖 := 𝝆𝑅𝒖

and the 𝒔-pivot indices 𝜹𝒖 := 𝜹𝑅𝒖 of 𝐴M,𝑅𝒖

(see Definition 4.2). As remarked just after the predictable degree
property (Lemma 3.2),

dimK 𝑆𝒖 = dimK (𝐴M,𝑅𝒖
)<0 = −

∑
𝜌𝒖,𝑖<0

𝜌𝒖,𝑖 . (11)

We can now prove our main Theorem 2.4 about uniqueness in SRFR.

Recall the theorem’s statement: assuming

∑𝑛
𝑖=1 𝑓𝑖 =

∑𝑛
𝑖=1 𝑁𝑖 +𝐷 −1

then the solution space 𝑆𝒖 has dimension 1 as K-vector space for
generic 𝒖 = (𝑢1, . . . , 𝑢𝑛) ∈ K[𝑥]1×𝑛 .

Proof of Theorem 2.4. By the previous considerations (see (11))

it is sufficient to prove that for generic 𝒖 ∈ K[𝑥]𝑛+1, 𝝆𝒖 = (0, . . . , 0,−1).
First, we need to show that the generic 𝒔-row degrees pΣ have

the expected nice form 𝒑 = (0, . . . , 0,−1) (𝑝 = −1 and𝑢 = 𝑛 =𝑚−1

because

∑(𝑓𝑗 + 𝑠 𝑗 ) = −1 ·𝑚 + (𝑚 − 1), see (7)). It remains to check

that we verify the hypotheses of Theorem 4.13. By (8), 𝑠 ≤ −1 = 𝑝 .
By (9),

∑𝑙
𝑖=1 𝑝𝑖 ≤ 0 ≤ ∑𝑙

𝑖=1 (𝑓𝑖 + 𝑠𝑖 ) for all 0 ≤ 𝑙 ≤ 𝑚 − 1 since

𝑓𝑖 + 𝑠𝑖 ≥ 0 ≥ 𝑝𝑖 for all 𝑖 .

We now show that there exists 𝒖 such that 𝑅𝒖 satisfies the gener-

icity condition 𝐶 of Corollary 4.12. This will prove that our new

genericity condition 𝐶 ′(𝑢 𝑗,𝑘 ) is not the zero polynomial, where

𝐶 ′
is 𝐶 (𝑚𝑖, 𝑗,𝑘 ) evaluated on matrices 𝑅𝒖 , and 𝑢 𝑗,𝑘 are the poly-

nomial coefficients of 𝑢 𝑗 . Let’s show that the construction of the

proof of Theorem 4.7 provides a matrix of the form 𝑅𝒖 in our case

(𝑑1, . . . , 𝑑𝑛+1) = (𝑁1, . . . , 𝑁𝑛, 𝐷 − 1) and𝑚 = 𝑛 + 1. In particular, by

SRFR assumptions, for any 1 ≤ 𝑖 ≤ 𝑛, 𝑑𝑖 ≤ 𝑓𝑖 and so the matrices

𝐾𝑖 = [𝐾 (𝒖𝑖 , 𝑑𝑖 )] are already in Krylov form. On the other hand,

the last matrix is in the form 𝐾𝑛+1 = [𝐾 (𝑥𝑑 𝑗 𝒖 𝑗 , 𝑡 𝑗 )]1≤ 𝑗≤𝑛 where

𝑑 𝑗 + 𝑡 𝑗 = 𝑓𝑗 (here 𝑓𝑛+1 = 0). Then 𝐾𝑛+1 = [𝐾 (∑𝑛
𝑗=1 𝑥

𝑠′𝑗 𝒖 𝑗 , 𝑑 𝑗 )] and
we need to prove that 𝑠 ′

𝑗
≥ 0 differently because we don’t have the

assumption about the non-increasing 𝒅. Recall that 𝑠 ′
𝑗
is 𝑠 𝑗 minus

the number of columns added to extend the matrix to the left. This

number of columns is at most 𝑑𝑛+1 minus the size 𝑡𝑙 of the current

block. So 𝑠 ′
𝑙
≥ 𝑑𝑙 −(𝑑𝑛+1−𝑡𝑙 ) = 𝑑𝑙 −(𝑑𝑛+1−(𝑓𝑙 −𝑑𝑙 )) = 𝑓𝑙 −𝑑𝑛+1 ≥ 0

because𝑑𝑛+1 = 𝐷−1 ≤ 𝐷 ≤ min(𝑓𝑖 ) and so the construction works.
When K is a finite field of cardinality 𝑞, we want to bound the

number of 𝒖 such that 𝐶 ′(𝑢 𝑗,𝑘 ) = 0. Recall that 𝑢 𝑗 =
∑𝑓𝑗−1
𝑘=0

𝑢 𝑗,𝑘𝑥
𝑘

and that 𝐶 ′ ∈ K[𝑢 𝑗,𝑘 ] is a constructed as a Σ-minor of the ordered

matrix 𝑂𝑅𝒖 where Σ =
∑𝑛
𝑖=1 𝑓𝑖 . The coefficients of 𝑂𝑅𝒖 are in K,

except for the𝐷−1 lines corresponding to (𝑥𝑢𝜺𝑛+1)0≤𝑢<𝐷−1 which
are linear combinations of 𝑢 𝑗,𝑘 as mentioned in the proof of Corol-

lary 4.12. Therefore the total degree of 𝐶 ′
is ≤ 𝐷 − 1 and we can

conclude using Schwartz-Zippel Lemma that the proportion of in-

stances leading to non-uniqueness among all possible instances is

≤ (𝐷 − 1)/𝑞. □
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