
Hensel lifting:
Newton iteration and relaxed algorithms∗

by Romain Lebreton

SCG Lab Meeting

October 11th, 2013

∗. This document has been written using the GNU TEXMACS text editor (see www.texmacs.org).

http://www.texmacs.org


Setting

• We want to solve the polynomial equation over Q[[T ]]:

P (Y )=Y 2−Y +T ∈ (Q[[T ]])[Y ]

• Consider the regular modular root y0=0 of P (Y ), i.e.

P (y0)= 0modT and P ′(y0)=/ 0modT .

• Since P ′(y0)=/ 0modT , Hensel’s Lemma ensure that ∃!y ∈Q[[T ]] such that

P (y)= 0, y= y0 modT .

Example.

The lifted root y from y0 is

y=
1− 1− 4T

√

2
=T +T 2+2T 3+5T 4+O(T 5).



Our goal

Definition.

Hensel lifting is the process to compute y from y0 and P .

This talk.

We will show how to perform Hensel lifting using

1. Newton’s iteration

2. Relaxed algorithms



Newton’s iteration

Input:

• A polynomial equation P ∈ (Q[[T ]])[Y ]

• A regular modular root y0∈Q of P

• A precision 2N ∈N

Output:

• The unique lifted root y ∈Q[[T ]] at precision 2N, i.e. modulo T 2N

Algorithm

r= y0
for i from 1 to N

r=
(

r− P (r)

P ′(r)

)

modT 2i

return r



Newton’s iteration

Input:

• A polynomial equation P ∈ (Q[[T ]])[Y ]

• A regular modular root y0∈Q of P

• A precision 2N ∈N

Output:

• The unique lifted root y ∈Q[[T ]] at precision 2N, i.e. modulo T 2N

Algorithm

r= y0
for i from 1 to N

r=
(

r− P (r)

P ′(r)

)

modT 2i

return r

Step 0: r=0+O(T )

Step 1: r=0+T +O(T 2)

Step 2: r=0+T +T 2+2T 3+O(T 4)



Newton’s iteration

Input:

• A polynomial equation P ∈ (Q[[T ]])[Y ]

• A regular modular root y0∈Q of P

• A precision 2N ∈N

Output:

• The unique lifted root y ∈Q[[T ]] at precision 2N, i.e. modulo T 2N

Algorithm

r= y0
for i from 1 to N

r=
(

r− P (r)

P ′(r)

)

modT 2i

return r

Remark.

P ′(r) is invertible since P ′(r)=P ′(y0)modT , which is non-zero.



Relaxed algorithms

Definition. (on-line or relaxed algorithm) [Hennie ’66]

: reading allowed



Relaxed algorithms

Definition. (on-line or relaxed algorithm) [Hennie ’66]

: reading allowed



Relaxed algorithms

Definition. (on-line or relaxed algorithm) [Hennie ’66]

: reading allowed



Relaxed algorithms

Definition. (on-line or relaxed algorithm) [Hennie ’66]

: reading allowed

Off-line or zealous algorithm : condition not met.



Example of relaxed algorithms

Relaxed Addition:

Algorithm Add

Input: a, b∈Q[[T ]] and n∈N

Output: c∈Q[[T ]] such that c=(a+ b)modTn

1. c=0
2. for i from 0 to n− 1

a. c= AddStep(a, b, c, i)
3. return c

Algorithm AddStep

Input: a, b, c∈Q[[T ]] and i∈N

Output: c∈Q[[T ]]

1. c= c+(ai+ bi)T
i

2. return c

Remarks.

1. Computations at step i complete those of previous steps to get a result modulo T i.

2. This addition algorithm is online:

→ it outputs ci using ai and bi.



Example of relaxed algorithms

Naive Relaxed Multiplication:

Algorithm NaiveMulStep

Input: a, b, c∈Q[[T ]] and i∈N

Output: c∈Q[[T ]]

1. for j from 0 to i

a. c= c+ aj bi−jT
i

2. return c

Algorithm NaiveMul

Input: a, b∈Q[[T ]] and n∈N

Output: c∈Q[[T ]] such that c=(a+ b)modTn

1. c=0
2. for i from 0 to n− 1

a. c= NaiveMulStep(a, b, c, i)
3. return c

Remarks.

1. This multiplication algorithm is online:

→ it outputs ci using a0, ..., ai and b0, ..., bi.

2. Its complexity is quadratic !



Fast relaxed multiplications

Problem.

Karatsuba and FFT algorithms are offline.

Challenge.

Find a quasi-optimal on-line multiplication algorithm.

Theorem. [Fischer, Stockmeyer ’74], [Schröder ’97], [van der Hoeven ’97]

[Berthomieu, van der Hoeven, Lecerf ’11], [L., Schost ’13]

Let M(N ) be the cost of a× b in Q[[T ]] at precision N by an off-line algorithm.

Let R(N) be the cost of a× b in Q[[T ]] at precision N by an on-line algorithm.

Then

R(N)=O(M(N) logN)= Õ(N).



Fast relaxed multiplications

Problem.

Karatsuba and FFT algorithms are offline.

Challenge.

Find a quasi-optimal on-line multiplication algorithm.

Theorem. [Fischer, Stockmeyer ’74], [Schröder ’97], [van der Hoeven ’97]

[Berthomieu, van der Hoeven, Lecerf ’11], [L., Schost ’13]

Let M(N ) be the cost of a× b in Q[[T ]] at precision N by an off-line algorithm.

Let R(N) be the cost of a× b in Q[[T ]] at precision N by an on-line algorithm.

Then

R(N)=O(M(N) logN)= Õ(N).

Theorem. [van der Hoeven ’07, ’12]

R(N)=M(N) log (N )o(1).

Seems not to be used yet in practice.



Recursive power series

Definition. A power series y ∈Q[[T ]] is recursive if there exists Φ such that

• y=Φ(y)

• Φ(y)n only depends on y0, ..., yn−1

 It is possible to compute y from Φ and y0. But how fast?

Example.

The solution y of P (Y )=Y 2−Y +T s.t. y0=0 is recursive (the other is too).

Proof. Let Φ(Y )=Y 2+T then y=Φ(y).

Moreover,

Φ(y)n=(y2)n+(T )n = y0 yn+ y1 yn−1+ ···+ yn y0+ δ1,n
= y1 yn−1+ ···+ yn−1 y1+ δ1,n

since y0=0. It does not depend on yn. �



Shifted Algorithms

Definition of shifted algorithms.

: reading allowed



Shifted Algorithms

Definition of shifted algorithms.

: reading allowed



Shifted Algorithms

Definition of shifted algorithms.

: reading allowed



Shifted Algorithms

Definition of shifted algorithms.

: reading allowed

Example.

If s> 0, then the Algorithm ShiftStep: a 7→T s× a is a shifted algorithm.

Algorithm ShiftStep

Input: a, c∈Rp, s∈Z and i∈N

Output: c∈Q[[T ]]

1. c= c+ ai−sT
i

2. return c



Example of shifted algorithm

Example.

The online evaluation of Ψ(Y )=T 2× (Y /T )2+T is shifted w.r.t. Y .

(Ψ(Y ))i
requires (T 2× ((Y /T )2))i
requires ((Y /T )2)i−2

requires (Y /T )0, ..., (Y /T )i−2 using online multiplication
requires Y0, ..., Yi−1



Relaxed recursive power series

Fundamental Theorem. [Watt ’88], [van der Hoeven ’02], [Berthomieu, L. ISSAC ’12]

Let y∈Q[[T ]] such that y=Φ(y). Given y0 and Φ, we can compute y at precision N in

the time necessary to evaluate Φ(y) by a shifted algorithm.

Proof. y=Φ(y)⇒ ϕ0= y0

: reading allowed??

�



Relaxed recursive power series

Fundamental Theorem. [Watt ’88], [van der Hoeven ’02], [Berthomieu, L. ISSAC ’12]

Let y∈Q[[T ]] such that y=Φ(y). Given y0 and Φ, we can compute y at precision N in

the time necessary to evaluate Φ(y) by a shifted algorithm.

Proof. y=Φ(y)⇒ ϕ0= y0

: reading allowed?

�



Relaxed recursive power series

Fundamental Theorem. [Watt ’88], [van der Hoeven ’02], [Berthomieu, L. ISSAC ’12]

Let y∈Q[[T ]] such that y=Φ(y). Given y0 and Φ, we can compute y at precision N in

the time necessary to evaluate Φ(y) by a shifted algorithm.

Proof. y=Φ(y)⇒ ϕ0= y0

: reading allowed?

�



Relaxed recursive power series

Fundamental Theorem. [Watt ’88], [van der Hoeven ’02], [Berthomieu, L. ISSAC ’12]

Let y∈Q[[T ]] such that y=Φ(y). Given y0 and Φ, we can compute y at precision N in

the time necessary to evaluate Φ(y) by a shifted algorithm.

Proof. y=Φ(y)⇒ ϕ0= y0

: reading allowed

�



Relaxed recursive power series

Algorithm OnlineRecursivePadic

Input: a shifted algorithm Ψ, a modular root y0 and a precision n∈N

Output: the lifted root y at precision n

1. a= y0, [c1, ..., cL] = [0, ..., 0]
2. for i from 1 to n

a. Perform the ith step of the evaluation of Ψ on input a
b. Put the output in a

3. return a



Relaxed recursive power series

Algorithm OnlineRecursivePadic

Input: a shifted algorithm Ψ, a modular root y0 and a precision n∈N

Output: the lifted root y at precision n

1. a= y0, [c1, ..., cL] = [0, ..., 0]
2. for i from 1 to n

a. Perform the ith step of the evaluation of Ψ on input a
b. Put the output in a

3. return a

Computations of the lifting of the root y of P (Y )=Y 2−Y +T from y0=0:

c0 c1 := c0/T c2 := c1
2 c3 :=T 2× c2 c4 := c3+T Step

(i− 2)th step (i− 2)th step ith step ith step ith

0 1st

2nd

3rd

4th

5th



Relaxed recursive power series

Algorithm OnlineRecursivePadic

Input: a shifted algorithm Ψ, a modular root y0 and a precision n∈N

Output: the lifted root y at precision n

1. a= y0, [c1, ..., cL] = [0, ..., 0]
2. for i from 1 to n

a. Perform the ith step of the evaluation of Ψ on input a
b. Put the output in a

3. return a

Computations of the lifting of the root y of P (Y )=Y 2−Y +T from y0=0:

c0 c1 := c0/T c2 := c1
2 c3 :=T 2× c2 c4 := c3+T Step

(i− 2)th step (i− 2)th step ith step ith step ith

0 0 0 0 0 1st

2nd

3rd

4th

5th



Relaxed recursive power series

Algorithm OnlineRecursivePadic

Input: a shifted algorithm Ψ, a modular root y0 and a precision n∈N

Output: the lifted root y at precision n

1. a= y0, [c1, ..., cL] = [0, ..., 0]
2. for i from 1 to n

a. Perform the ith step of the evaluation of Ψ on input a
b. Put the output in a

3. return a

Computations of the lifting of the root y of P (Y )=Y 2−Y +T from y0=0:

c0 c1 := c0/T c2 := c1
2 c3 :=T 2× c2 c4 := c3+T Step

(i− 2)th step (i− 2)th step ith step ith step ith

0 0 0 0 0 1st

0 2nd

3rd

4th

5th



Relaxed recursive power series

Algorithm OnlineRecursivePadic

Input: a shifted algorithm Ψ, a modular root y0 and a precision n∈N

Output: the lifted root y at precision n

1. a= y0, [c1, ..., cL] = [0, ..., 0]
2. for i from 1 to n

a. Perform the ith step of the evaluation of Ψ on input a
b. Put the output in a

3. return a

Computations of the lifting of the root y of P (Y )=Y 2−Y +T from y0=0:

c0 c1 := c0/T c2 := c1
2 c3 :=T 2× c2 c4 := c3+T Step

(i− 2)th step (i− 2)th step ith step ith step ith

0 0 0 0 0 1st

0 0 0 0 T 2nd

3rd

4th

5th



Relaxed recursive power series

Algorithm OnlineRecursivePadic

Input: a shifted algorithm Ψ, a modular root y0 and a precision n∈N

Output: the lifted root y at precision n

1. a= y0, [c1, ..., cL] = [0, ..., 0]
2. for i from 1 to n

a. Perform the ith step of the evaluation of Ψ on input a
b. Put the output in a

3. return a

Computations of the lifting of the root y of P (Y )=Y 2−Y +T from y0=0:

c0 c1 := c0/T c2 := c1
2 c3 :=T 2× c2 c4 := c3+T Step

(i− 2)th step (i− 2)th step ith step ith step ith

0 0 0 0 0 1st

0 0 0 0 T 2nd

T 3rd

4th

5th



Relaxed recursive power series

Algorithm OnlineRecursivePadic

Input: a shifted algorithm Ψ, a modular root y0 and a precision n∈N

Output: the lifted root y at precision n

1. a= y0, [c1, ..., cL] = [0, ..., 0]
2. for i from 1 to n

a. Perform the ith step of the evaluation of Ψ on input a
b. Put the output in a

3. return a

Computations of the lifting of the root y of P (Y )=Y 2−Y +T from y0=0:

c0 c1 := c0/T c2 := c1
2 c3 :=T 2× c2 c4 := c3+T Step

(i− 2)th step (i− 2)th step ith step ith step ith

0 0 0 0 0 1st

0 0 0 0 T 2nd

T 1 1 T 2 T +T 2 3rd

4th

5th



Relaxed recursive power series

Algorithm OnlineRecursivePadic

Input: a shifted algorithm Ψ, a modular root y0 and a precision n∈N

Output: the lifted root y at precision n

1. a= y0, [c1, ..., cL] = [0, ..., 0]
2. for i from 1 to n

a. Perform the ith step of the evaluation of Ψ on input a
b. Put the output in a

3. return a

Computations of the lifting of the root y of P (Y )=Y 2−Y +T from y0=0:

c0 c1 := c0/T c2 := c1
2 c3 :=T 2× c2 c4 := c3+T Step

(i− 2)th step (i− 2)th step ith step ith step ith

0 0 0 0 0 1st

0 0 0 0 T 2nd

T 1 1 T 2 T +T 2 3rd

T +T 2 4th

5th



Relaxed recursive power series

Algorithm OnlineRecursivePadic

Input: a shifted algorithm Ψ, a modular root y0 and a precision n∈N

Output: the lifted root y at precision n

1. a= y0, [c1, ..., cL] = [0, ..., 0]
2. for i from 1 to n

a. Perform the ith step of the evaluation of Ψ on input a
b. Put the output in a

3. return a

Computations of the lifting of the root y of P (Y )=Y 2−Y +T from y0=0:

c0 c1 := c0/T c2 := c1
2 c3 :=T 2× c2 c4 := c3+T Step

(i− 2)th step (i− 2)th step ith step ith step ith

0 0 0 0 0 1st

0 0 0 0 T 2nd

T 1 1 T 2 T +T 2 3rd

T +T 2 1+T 1+ 2T T 2+2T 3 T +T 2+2T 3 4th

5th



Relaxed recursive power series

Algorithm OnlineRecursivePadic

Input: a shifted algorithm Ψ, a modular root y0 and a precision n∈N

Output: the lifted root y at precision n

1. a= y0, [c1, ..., cL] = [0, ..., 0]
2. for i from 1 to n

a. Perform the ith step of the evaluation of Ψ on input a
b. Put the output in a

3. return a

Computations of the lifting of the root y of P (Y )=Y 2−Y +T from y0=0:

c0 c1 := c0/T c2 := c1
2 c3 :=T 2× c2 c4 := c3+T Step

(i− 2)th step (i− 2)th step ith step ith step ith

0 0 0 0 0 1st

0 0 0 0 T 2nd

T 1 1 T 2 T +T 2 3rd

T +T 2 1+T 1+ 2T T 2+2T 3 T +T 2+2T 3 4th

T +T 2+2T 3 5th



Relaxed recursive power series

Algorithm OnlineRecursivePadic

Input: a shifted algorithm Ψ, a modular root y0 and a precision n∈N

Output: the lifted root y at precision n

1. a= y0, [c1, ..., cL] = [0, ..., 0]
2. for i from 1 to n

a. Perform the ith step of the evaluation of Ψ on input a
b. Put the output in a

3. return a

Computations of the lifting of the root y of P (Y )=Y 2−Y +T from y0=0:

c0 c1 := c0/T c2 := c1
2 c3 :=T 2× c2 c4 := c3+T Step

(i− 2)th step (i− 2)th step ith step ith step ith

0 0 0 0 0 1st

0 0 0 0 T 2nd

T 1 1 T 2 T +T 2 3rd

T +T 2 1+T 1+2T T 2+2T 3 T +T 2+2T 3 4th

T +T 2+2T 3 1+T +2T 2 1+ 2T +5T 2 T 2+2T 3+5T 4 T +T 2+2T 3+5T 4 5th



Conclusion

Two general paradigms:

Newton operator Relaxed algorithms

Solve implicit equations P (y)= 0 Solve recursive equations y=Φ(y)

Faster for higher precision
Less on-line multiplications

Implementations:

Relaxed power series (and T -adics) in Mathemagix

Beginning of a C++ package based on NTL



Thank you for your attention ;-)





Example of shifted algorithm



Example.

The evaluation Algorithm of Ψ(Y )=T 2× ((Y /T )2)+T is shifted.

S.l.p. Γ1=(_/T ; 0),Γ2=(∗; 1, 1),Γ3=(T 2×; 2),Γ4=(+; 3, T )

Output sequence [c0, ..., c4] on input c0 = y is [y, y/T , (y/T )2, T 2 × ((Y /T )2),
T 2× ((Y /T )2)+T ]

Algorithm EvaluationStep

Input: a∈Q[[T ]],
[

c1
(0)

, ..., c4
(0)

]

∈ (Q[[T ]])4 and i∈N

Output: [c1, ..., c4]∈ (Q[[T ]])4

1. c0= a, [c1, ..., c4] =
[

c1
(0)

, ..., c4
(0)

]

2. Evaluation of Ψ:
a. c1= ShiftStep(a, c1,−1, i− 2)
b. c2= MulStep(c1, c1, c2, i− 2)
c. c3= ShiftStep(c2, c3, 2, i)
d. c4= AddStep(c3, T , c4, i)

3. return [c1, ..., c4]

EvaluationStep increase the precision by one of the evaluation of Ψ on y.


