Hensel lifting:
Newton iteration and relaxed algorithms™

BY ROMAIN LEBRETON

SCG Lab Meeting

October 11th, 2013

. This document has been written using the GNU TpXacs text editor (see www.texmacs.org).

http://www.texmacs.org

Setting

e \We want to solve the polynomial equation over Q|[[T]]:
P(Y)=Y?-Y +T e (Q[TY]
e Consider the regular modular root yo =0 of P(Y), i.e.
P(yo) =0mod T and P’(yp) #0modT.

e Since P’'(yo) #0mod T, Hensel's Lemma ensure that 3!y € Q[[T]] such that

P(y)=0, y=yomodT.

Example.

The lifted root y from 1y is

Y = L=y ;_4T =T+T?+2T3+5T*+ O(T?).

Our goal

Definition.

Hensel lifting is the process to compute y from yy and P.

This talk.

We will show how to perform Hensel lifting using
1. Newton's iteration

2. Relaxed algorithms

Newton’s iteration

Input:

e A polynomial equation P € (Q[[T]])[Y]
e A regular modular root yy€ Q of P

e A precision 2"V ¢ N

Output:

e The unique lifted root y € Q[[T]] at precision 2V, i.e. modulo 72"

Algorithm

=170
for i from 1 to NV

r= (7“ G)mod T2

P’(r)
return r

Newton’s iteration

Input:

e A polynomial equation P € (QI[[T]])]Y]
e A regular modular root yy€ Q) of P

e A precision 2"V € N

Output:

e The unique lifted root y € Q[[T7]] at precision 2V, i.e. modulo 72"

Algorithm

"= 1Yo
for i from 1 to NV

r= (r G)mod T2

P'(r)
return r
Step 0: r=0+4+O(T)
Step 1: r=0+T+ O(T?)

Step 2: r=04+T+T?+2T3+0O(T?)

Newton’s iteration

Input:

e A polynomial equation P € (Q[[T]])[Y]
e A regular modular root yy€ Q of P

e A precision 2"V ¢ N

Output:

e The unique lifted root y € Q[[T]] at precision 2V, i.e. modulo 72"

Algorithm

=170
for i from 1 to NV

r= (7“ G)mod T2

P’(r)
return r

Remark.

P’(r) is invertible since P'(r)= P'(yo)mod T, which is non-zero.

Relaxed algorithms

Definition. (on-line or relaxed algorithm) [HENNIE '66]

a = Z@() a;x"
b= Zi;O bziliz
|
c= f(a,b) = 3 ;50 i’

ap | aj | a2
bo | b1 | bs
Co

: reading allowed

Relaxed algorithms

Definition. (on-line or relaxed algorithm) [HENNIE '66]

a = Z@() a;x"
b= Zi;O bZCUZ
|
c= f(a,b) = 3 ;50 i’

ap | Ay | a2
bo | b1 | b2
Co | C1

: reading allowed

Relaxed algorithms

Definition. (on-line or relaxed algorithm) [HENNIE '66]

a = Z@() a;x"
b= Zi;O bZCUZ
|
c= f(a,b) = 3 ;50 i’

ap | a1 | a2
bo | b1 | b2
Co| C1| C2

: reading allowed

Relaxed algorithms

Definition. (on-line or relaxed algorithm) [HENNIE '66]

a=7) >0 a; v’ aop | a1 | a2
: reading allowed
Vf

c= f(a,b) =) ;>0 c;xt | Co| 1|2

Off-line or zealous algorithm : condition not met.

Example of relaxed algorithms

Relaxed Addition:

Algorithm Add Algorithm AddStep

Input: a,bc Q[[T]] and n€ N Input: a,b,ce Q|[T]] and i € N
Output: c € Q[[T]] such that ¢=(a+ b)mod T Output: c € Q[[T]]

1.c=0 l.c=c+ (a; +b;) T"
2. for i from0Oton—1 2. return ¢
a. c=AddStep(a, b, c,1)
3. return ¢
Remarks.

1. Computations at step i complete those of previous steps to get a result modulo 77
2. This addition algorithm is online:

— it outputs ¢; using a; and b;.

Example of relaxed algorithms

Naive Relaxed Multiplication:

Algorithm NaiveMulStep Algorithm NaiveMul

Input: a,b,cc Q||T]] and i€ N Input: a,b € Q|[T]] and neN

Output: cc Q[[T]] Output: c € Q[[T]] such that c¢=(a+b)mod T™

1. for j from O to ¢ l.c=0
a.c=c+a;b_;T" 2. for i from O ton —1
2. return ¢ a. c=NaiveMulStep(a,b,c,1)
3. return c
Remarks.

1. This multiplication algorithm is online:
— it outputs ¢; using ag, ..., a; and bg, ..., b;.

2. Its complexity is quadratic |

Fast relaxed multiplications

Problem.

Karatsuba and FFT algorithms are offline.

Challenge.

Find a quasi-optimal on-line multiplication algorithm.

Theorem. [F1SCHER, STOCKMEYER '74], [SCHRODER '97], [VAN DER HOEVEN '97]
[BERTHOMIEU, VAN DER HOEVEN, LECERF '11], [L., ScHosT "13]

Let M(IN) be the cost of a x b in Q[[T]] at precision N by an off-line algorithm.
Let R(IN') be the cost of a x b in Q||T]] at precision N by an on-line algorithm.

Then

R(N)=O(M(N)log N)=O(N).

Fast relaxed multiplications

Problem.

Karatsuba and FFT algorithms are offline.

Challenge.

Find a quasi-optimal on-line multiplication algorithm.

Theorem. [F1SCHER, STOCKMEYER '74], [SCHRODER '97], [VAN DER HOEVEN '97]
[BERTHOMIEU, VAN DER HOEVEN, LECERF '11], [L., ScHosT "13]

Let M(IN) be the cost of a x b in Q[[T]] at precision N by an off-line algorithm.
Let R(IN') be the cost of a x b in Q||T]] at precision N by an on-line algorithm.

Then

R(N)=O(M(N)log N)=O(N).

Theorem. [vAN DER HOEVEN '07, '12]

Seems not to be used yet in practice.

Recursive power series

Definition. A power series y € Q|[T]| is recursive if there exists ® such that

o y=o(y)

o D(y), only depends on yo, ..., Yn 1

~> It is possible to compute y from ® and 1yy. But how fast?

Example.

The solution y of P(Y)=Y?—-Y + T s.t. yo=0 is recursive (the other is too).

Proof. Let ®(Y)=Y?+T then y=o(y).

Moreover,

P(Y)rn=(¥)n+ D) = YoUn+t V1 Yn—1+ -+ Yno+din
— ylyn—1+"'+yn—lyl‘|‘51,n

since yo=0. It does not depend on v,,.

Shifted Algorithms

Definition of shifted algorithms.

— { .
a = Z@o a; X g | @1 | A2 |- - : reading allowed

c= f(a) = i>0 c;xt [co

Shifted Algorithms

Definition of shifted algorithms.

— { .
a = Z@o a; X g | a1 | Az |--- : reading allowed

c=fla) =Y 50z’ [c]c

Shifted Algorithms

Definition of shifted algorithms.

— { .
a = Z@o a; X Qg | @1 | a2 |- -- : reading allowed

c= f(a) = Zi>0 c; colcr] e

Shifted Algorithms

Definition of shifted algorithms.

_ { .
a = Zi;o ;T ap |y | az|--- : reading allowed

c= f(a) = Zi>0 c; colcr] e

Example.

If s> 0, then the Algorithm ShiftStep: a+—T"° X a is a shifted algorithm.

Algorithm ShiftStep

Input: a,cc R, s€’Z and i €N
Output: c € Q[[7T]]
l.c=c+a;_sT"

2. return ¢

Example of shifted algorithm

Example.

The online evaluation of U(Y)=T2x (Y /T)*+ T is shifted w.r.t. Y.

requires
requires
requires Yo,....Yi 1

(v
requires (T

(

(

Y/T)oy ..., (Y /T)i—2 using online multiplication

Relaxed recursive power series

Fundamental Theorem. [WaTT '88], [vAN DER HOEVEN '02], [BERTHOMIEU, L. ISSAC '12]

Let y € Q[[T]] such that y=®(y). Given yy and ®, we can compute y at precision N in
the time necessary to evaluate ®(y) by a shifted algorithm.

Proof. y=®(y) = wo=1o

Y= z@;o yiﬂfi yo| 72 | 7 |- : reading allowed

|®

D(y) =2 i>0 iz’ 0o | 1 e]

Relaxed recursive power series

Fundamental Theorem. [WaTT '88], [vAN DER HOEVEN '02], [BERTHOMIEU, L. ISSAC '12]

Let y € Q[[T]] such that y=®(y). Given yy and ®, we can compute y at precision N in
the time necessary to evaluate ®(y) by a shifted algorithm.

Proof. y=®(y) = wo=1o

Y= z@;o yiﬂfi Yo | Y1 | ? |--- : reading allowed
E: T
D(y) = D_i>0 P’ po | P1

Relaxed recursive power series

Fundamental Theorem. [WaTT '88], [vAN DER HOEVEN '02], [BERTHOMIEU, L. ISSAC '12]

Let y € Q[[T]] such that y=®(y). Given yy and ®, we can compute y at precision N in
the time necessary to evaluate ®(y) by a shifted algorithm.

Proof. y=®(y) = wo=1o

Y= 2120 yiﬂfi Y| Y| ? |--- : reading allowed
|®
®(y) = Z@o iz’ Yo |P1|P2

Relaxed recursive power series

Fundamental Theorem.

[WaTT '88], [vAN DER HOEVEN '02], [BERTHOMIEU, L. ISSAC '12]

Let y € Q[[T]] such that y=®(y). Given yy and ®, we can compute y at precision N in
the time necessary to evaluate ®(y) by a shifted algorithm.

Proof. y=®(y) = wo=1o

y= z@;o yix’ Yo

U1

Y2

|®

T

Q(y) = Xiso i’ Y0

P1

P2

: reading allowed

Relaxed recursive power series

Algorithm OnlineRecursivePadic

Input: a shifted algorithm W, a modular root yg and a precision n € N
Output: the lifted root y at precision n
1. a=1yo, [c1,..-,cL] =]0, ..., 0]
2. for i from 1 ton
a. Perform the ith step of the evaluation of W on input a
b. Put the output in a
3. return a

Relaxed recursive power series

Algorithm OnlineRecursivePadic

Input: a shifted algorithm W, a modular root vy and a precision n € N
Output: the lifted root y at precision n
1. a=1yo, [c1,..-,cL] =]0, ..., 0]
2. for i from 1 ton
a. Perform the ith step of the evaluation of W on input a

b. Put the output in a
3. return a

Computations of the lifting of the root y of P(Y)=Y?—-Y + T from 1,=0:

Co c1:=co/T Co = CF cs:=T? X c3 ca:=c3+T Step

(1 — 2)th step (1 — 2)th step ith step ith step ith

1st

2nd

3rd

4Ath

5th

Relaxed recursive power series

Algorithm OnlineRecursivePadic

Input: a shifted algorithm ¥, a modular root yg and a precision n € N
Output: the lifted root y at precision n
1. a=1yo, [c1,..-,cL] =]0, ..., 0]
2. for i from 1 ton
a. Perform the ith step of the evaluation of W on input a

b. Put the output in a
3. return a

Computations of the lifting of the root y of P(Y)=Y?—-Y + T from 1= 0:

Co c1:=co/T Co = CF cs:=T? X c3 ca:=c3+T Step

(1 — 2)th step (1 — 2)th step ith step ith step ith

0 0 0 0 0 st

2nd

3rd

4Ath

5th

Relaxed recursive power series

Algorithm OnlineRecursivePadic

Input: a shifted algorithm ¥, a modular root yg and a precision n € N
Output: the lifted root y at precision n
1. a=1yo, [c1,..-,cL] =]0, ..., 0]
2. for i from 1 ton
a. Perform the ith step of the evaluation of W on input a

b. Put the output in a
3. return a

Computations of the lifting of the root y of P(Y)=Y?—-Y + T from 1= 0:

Co c1:=co/T Co = CF cs:=T? X c3 ca:=c3+T Step

(1 — 2)th step (1 — 2)th step ith step ith step ith

0 0 0 0 0 st

2nd

3rd

4Ath

5th

Relaxed recursive power series

Algorithm OnlineRecursivePadic

Input: a shifted algorithm ¥, a modular root yg and a precision n € N
Output: the lifted root y at precision n
1. a=1yo, [c1,..-,cL] =]0, ..., 0]
2. for i from 1 ton
a. Perform the ith step of the evaluation of W on input a

b. Put the output in a

3. return a

Computations of the lifting of the root y of P(Y)=Y?—-Y + T from 1= 0:

Co c1:=co/T CQZ:C% cs:=T? X c3 ca:=c3+T Step
(1 — 2)th step (1 — 2)th step ith step ith step ith

0 0 0 0 0 1st
0 0 0 0 T 2nd
3rd

4th

5th

Relaxed recursive power series

Algorithm OnlineRecursivePadic

Input: a shifted algorithm W, a modular root vy and a precision n € N
Output: the lifted root y at precision n
1. a=1yo, [c1,..-,cL] =]0, ..., 0]
2. for i from 1 ton
a. Perform the ith step of the evaluation of W on input a

b. Put the output in a

3. return a

Computations of the lifting of the root y of P(Y)=Y?—-Y + T from 1,=0:

Co c1:=co/T czzzc% cs:=T? X c3 cg:=c3+T Step
(1 — 2)th step (1 — 2)th step ith step ith step ith
0 0 0 0 0 1st
0 0 0 0 T 2nd
T 3rd
4th
5th

Relaxed recursive power series

Algorithm OnlineRecursivePadic

Input: a shifted algorithm W, a modular root vy and a precision n € N
Output: the lifted root y at precision n
1. a=1yo, [c1,..-,cL] =]0, ..., 0]
2. for i from 1 ton
a. Perform the ith step of the evaluation of W on input a

b. Put the output in a

3. return a

Computations of the lifting of the root y of P(Y)=Y?—-Y + T from 1,=0:

Co c1:=co/T czzzc% cs:=T? X c3 cg:=c3+T Step
(1 — 2)th step (1 — 2)th step ith step ith step ith
0 0 0 0 0 1st
0 0 0 0 T 2nd
T 1 1 T? T+ T2 3rd
4th
5th

Relaxed recursive power series

Algorithm OnlineRecursivePadic

Input: a shifted algorithm W, a modular root yg and a precision n € N
Output: the lifted root y at precision n
1. a=1yo, [c1,..-,cL] =]0, ..., 0]
2. for i from 1 ton
a. Perform the ith step of the evaluation of W on input a

b. Put the output in a
3. return a

Computations of the lifting of the root y of P(Y)=Y?—-Y + T from 1,=0:

Co c1:=co/T czzzc% cs:=T? X ¢y cy:=c3+T Step
(1 — 2)th step (1 — 2)th step ith step ith step ith
0 0 0 0 0 1st
0 0 0 T 2nd
T 1 1 T? T+ T2 3rd
T4 T2 Ath
5th

Relaxed recursive power series

Algorithm OnlineRecursivePadic

Input: a shifted algorithm ¥, a modular root yg and a precision n € N
Output: the lifted root y at precision n

1. a=1yo, [c1,..-,cL] =]0, ..., 0]

2. for i from 1 ton

a. Perform the ith step of the evaluation of W on input a
b. Put the output in a

3. return a

Computations of the lifting of the root y of P(Y)=Y?—-Y + T from 1= 0:

Co c1:=co/T Co =Y cs:=T7% X ¢y cy:=c3+ T Step

(1 —2)th step | (i —2)th step ith step ith step ith

0 0 0 0 0 1st

0 0 0 0 T 2nd

T 1 1 T? T+ T2 3rd
T+T? 1+T 14+2T T?+2T3 T+T?+2T3 4th
5th

Relaxed recursive power series

Algorithm OnlineRecursivePadic

Input: a shifted algorithm ¥, a modular root yg and a precision n € N
Output: the lifted root y at precision n
1. a=1yo, [c1,..-,cL] =]0, ..., 0]
2. for i from 1 ton
a. Perform the ith step of the evaluation of W on input a

b. Put the output in a
3. return a

Computations of the lifting of the root y of P(Y)=Y?—-Y + T from 1= 0:

Co c1:=co/T Coi=CH cs:=T7 X ¢y cy:=c3+T Step

(2 —2)th step | (i —2)th step ith step ith step ith

0 0 0 0 0 1st

0 0 0 0 T 2nd

T 1 1 i T+ T2 3rd

T+ T2 1+T 14+2T T?+2T3 | T+T?+2T3 | 4th
T+T?+2T3 5th

Relaxed recursive power series

Algorithm OnlineRecursivePadic

b. Put the output in a

3. return a

Input: a shifted algorithm W, a modular root yg and a precision n € N

Output: the lifted root y at precision n
1. a=1yo, [c1,..-,cL] =]0, ..., 0]
2. for i from 1 ton

a. Perform the ith step of the evaluation of W on input a

Computations of the lifting of the root y of P(Y)=Y?—-Y + T from 1,=0:

2

Co c1:=co/T Coi=cy cs:=T7 X ¢y cai=c3+T Step

(2 —2)th step | (¢ — 2)th step ith step ith step ith

0 0 0 0 0 1st

0 0 0 0 T 2nd

T 1 1 T? T+ T2 3rd

T + T2 1+T 14+2T T?+27T3 T+T?+2T3 4th
T+T?4+2T3| 14+T+2T? |14+2T+5T?|T?+2T3+5T*|T+T?>+2T3+5T*| 5th

Conclusion

Two general paradigms:

Newton operator Relaxed algorithms

Solve implicit equations P(y) =0 Solve recursive equations y = ®(y)

Faster for higher precision
Less on-line multiplications

Implementations:
Relaxed power series (and T-adics) in MATHEMAGIX

Beginning of a C++ package based on NTL

Thank you for your attention ;-)

Example of shifted algorithm

Example.

The evaluation Algorithm of U(Y) =12 x ((Y /T)?) + T is shifted.
Slp I'hy= (_/T7 O)7F2: (*7 L 1)7F3: (T2 X3 2)7F4: (+7 37T>

Output sequence [co, ..., c4] on input co = vy is [y, y/T, (y/T)% T? x (Y /T)?),
T?x ((Y/T)?) +T]

Algorithm EvaluationStep

Input: a € Q[[T]], [g>,...,cg)>] e (Q[[T]))* and i €N
Output: [c1, ..., c4] € (Q[[T]))*
l.co=a, |[c1,...,cq4]= [01 e CELO)}
2. Evaluation of W:
a.c; =ShiftStep(a,cy,—1,7—2)
b. Co = MulStep(cl, C1,C2,1 — 2)
C.C3—= ShiftStep(Cg, c3, 2, Z)

d. c4=AddStep(cs, T, cq,1)
3. return [cy, ..., c4

EvaluationStep increase the precision by one of the evaluation of ¥ on y.

