Hensel lifting: Newton iteration and relaxed algorithms*

BY ROMAIN LEBRETON

SCG Lab Meeting

October 11th, 2013

^{*.} This document has been written using the GNU T_EX_{MACS} text editor (see www.texmacs.org).

Setting

• We want to solve the polynomial equation over $\mathbb{Q}[[T]]$:

 $P(Y)=Y^2-Y+T\in (\mathbb{Q}[[T]])[Y]$

• Consider the *regular* modular root $y_0 = 0$ of P(Y), *i.e.*

 $P(y_0) = 0 \mod T$ and $P'(y_0) \neq 0 \mod T$.

• Since $P'(y_0) \neq 0 \mod T$, Hensel's Lemma ensure that $\exists ! y \in \mathbb{Q}[[T]]$ such that

$$P(y) = 0, \quad y = y_0 \mod T.$$

Example.

The lifted root y from y_0 is

$$y = \frac{1 - \sqrt{1 - 4T}}{2} = T + T^2 + 2T^3 + 5T^4 + \mathcal{O}(T^5).$$

Our goal

Definition.

Hensel lifting is the process to compute y from y_0 and P.

This talk.

We will show how to perform Hensel lifting using

- 1. Newton's iteration
- 2. Relaxed algorithms

Input:

- A polynomial equation $P \in (\mathbb{Q}[[T]])[Y]$
- A regular modular root $y_0 \in \mathbb{Q}$ of P
- A precision $2^N \in \mathbb{N}$

Output:

• The unique lifted root $y \in \mathbb{Q}[[T]]$ at precision 2^N , *i.e.* modulo T^{2^N}

Algorithm
$r = y_0$ for <i>i</i> from 1 to N $r = \left(r - \frac{P(r)}{P'(r)}\right) \mod T^{2^i}$ return <i>r</i>

Input:

- A polynomial equation $P \in (\mathbb{Q}[[T]])[Y]$
- A regular modular root $y_0 \in \mathbb{Q}$ of P
- A precision $2^N \in \mathbb{N}$

Output:

• The unique lifted root $y \in \mathbb{Q}[[T]]$ at precision 2^N , *i.e.* modulo T^{2^N}

Algorithm
$ \begin{aligned} r &= y_0 \\ \text{for } i \text{ from } 1 \text{ to } N \\ r &= \left(r - \frac{P(r)}{P'(r)}\right) \text{mod } T^{2^i} \\ \text{return } r \end{aligned} $

 Step 0:

 Step 1:

 Step 2:

 $r = 0 + \mathcal{O}(T)$ $r = 0 + T + \mathcal{O}(T^2)$ $r = 0 + T + T^2 + 2T^3 + \mathcal{O}(T^4)$

Input:

- A polynomial equation $P \in (\mathbb{Q}[[T]])[Y]$
- A regular modular root $y_0 \in \mathbb{Q}$ of P
- A precision $2^N \in \mathbb{N}$

Output:

• The unique lifted root $y \in \mathbb{Q}[[T]]$ at precision 2^N , *i.e.* modulo T^{2^N}

Algorithm
$ \begin{aligned} r &= y_0 \\ \text{for } i \text{ from } 1 \text{ to } N \\ r &= \left(r - \frac{P(r)}{P'(r)}\right) \text{mod } T^{2^i} \\ \text{return } r \end{aligned} $

Remark.

P'(r) is invertible since $P'(r) = P'(y_0) \mod T$, which is non-zero.

Off-line or zealous algorithm : condition not met.

Example of relaxed algorithms

Relaxed Addition:

Algorithm Add

```
Input: a, b \in \mathbb{Q}[[T]] and n \in \mathbb{N}
Output: c \in \mathbb{Q}[[T]] such that c = (a+b) \mod T^n
```

```
1. c=0
2. for i from 0 to n-1
a. c=AddStep(a, b, c, i)
3. return c
```

```
Algorithm AddStep
```

Input: $a, b, c \in \mathbb{Q}[[T]]$ and $i \in \mathbb{N}$ Output: $c \in \mathbb{Q}[[T]]$ 1. $c = c + (a_i + b_i) T^i$ 2. return c

Remarks.

- 1. Computations at step i complete those of previous steps to get a result modulo T^i .
- 2. This addition algorithm is *online*:
 - \rightarrow it outputs c_i using a_i and b_i .

Naive Relaxed Multiplication:

Algorithm NaiveMulStep
Input: $a, b, c \in \mathbb{Q}[[T]]$ and $i \in \mathbb{N}$ Output: $c \in \mathbb{Q}[[T]]$
1. for j from 0 to i
a. $c = c + a_j b_{i-j} T^i$
2. return <i>c</i>

Algorithm NaiveMul Input: $a, b \in \mathbb{Q}[[T]]$ and $n \in \mathbb{N}$ Output: $c \in \mathbb{Q}[[T]]$ such that $c = (a+b) \mod T^n$ 1. c = 02. for i from 0 to n - 1a. c = NaiveMulStep(a, b, c, i)3. return c

Remarks.

- 1. This multiplication algorithm is online:
 - \rightarrow it outputs c_i using $a_0, ..., a_i$ and $b_0, ..., b_i$.
- 2. Its complexity is quadratic !

Fast relaxed multiplications

Problem.

Karatsuba and FFT algorithms are offline.

Challenge.

Find a *quasi-optimal on-line* multiplication algorithm.

Theorem.	[Fischer, Stockmeyer '74], [Schröder '97], [van der Hoeven '97]
	[Berthomieu, van der Hoeven, Lecerf '11], [L., Schost '13]
Let $M(N)$ be the cost of	f $a \times b$ in $\mathbb{Q}[[T]]$ at precision N by an off-line algorithm.
Let $R(N)$ be the cost of	$f a imes b$ in $\mathbb{Q}[[T]]$ at precision N by an on-line algorithm.
Then	

 $\mathsf{R}(N) = \mathcal{O}(\mathsf{M}(N) \log N) = \tilde{\mathcal{O}}(N).$

Fast relaxed multiplications

Problem.

Karatsuba and FFT algorithms are offline.

Challenge.

Find a *quasi-optimal on-line* multiplication algorithm.

Theorem.	[Fischer, Stockmeyer '74], [Schröder '97], [van der Hoeven '97]
	[Berthomieu, van der Hoeven, Lecerf '11], [L., Schost '13]
Let $M(N)$ be the cost	t of $a imes b$ in $\mathbb{Q}[[T]]$ at precision N by an off-line algorithm.
Let $R(N)$ be the cost	of $a imes b$ in $\mathbb{Q}[[T]]$ at precision N by an on-line algorithm.
Then	

$$\mathsf{R}(N) = \mathcal{O}(\mathsf{M}(N)\log N) = \tilde{\mathcal{O}}(N).$$

Theorem.		[van der Hoeven '07, '12]
	$R(N) = M(N) \log{(N)^{o(1)}}.$	

Seems not to be used yet in practice.

Definition. A power series $y \in \mathbb{Q}[[T]]$ is recursive if there exists Φ such that

- $y = \Phi(y)$
- $\Phi(y)_n$ only depends on $y_0, ..., y_{n-1}$

 \rightsquigarrow It is possible to compute y from Φ and y_0 . But how fast?

Example.

The solution y of $P(Y) = Y^2 - Y + T$ s.t. $y_0 = 0$ is recursive (the other is too).

Proof. Let
$$\Phi(Y) = Y^2 + T$$
 then $y = \Phi(y)$.

Moreover,

$$\Phi(y)_n = (y^2)_n + (T)_n = y_0 y_n + y_1 y_{n-1} + \dots + y_n y_0 + \delta_{1,n}$$

= $y_1 y_{n-1} + \dots + y_{n-1} y_1 + \delta_{1,n}$

since $y_0 = 0$. It does not depend on y_n .

Example.

If s > 0, then the Algorithm ShiftStep: $a \mapsto T^s \times a$ is a shifted algorithm.

```
Algorithm ShiftStep

Input: a, c \in R_p, s \in \mathbb{Z} and i \in \mathbb{N}

Output: c \in \mathbb{Q}[[T]]

1. c = c + a_{i-s}T^i

2. return c
```

Example.

The online evaluation of $\Psi(Y) = T^2 \times (Y/T)^2 + T$ is shifted w.r.t. Y.

requires requires requires requires

$(\Psi(Y))_i$
$(T^2 \times ((Y/T)^2))_i$
$((Y/T)^2)_{i-2}$
$(Y/T)_0,, (Y/T)_{i-2}$
$Y_0,, Y_{i-1}$

using online multiplication

Proof. $y = \Phi(y) \Rightarrow \varphi_0 = y_0$ $y = \sum_{i \ge 0} y_i x^i$ $\downarrow \Phi$ $\Phi(y) = \sum_{i \ge 0} \varphi_i x^i$ $\varphi_0 = \sum_{i \ge 0} \varphi_i x^i$ $y_0 = y_1 = \cdots$ $\varphi_0 = y_1 = \cdots$ $\varphi_0 = y_1 = \cdots$ $\varphi_0 = y_1 = \cdots$

Proof. $y = \Phi(y) \Rightarrow \varphi_0 = y_0$ $y = \sum_{i \ge 0} y_i x^i$ $\downarrow \Phi$ Φ $\Phi(y) = \sum_{i \ge 0} \varphi_i x^i$ $y_0 y_1 y_2 \cdots$ $\downarrow z_1$ $\downarrow z_2$ $\downarrow \varphi_0 \varphi_1 \varphi_2 \cdots$ $\downarrow z_2$ $\downarrow z_2$ \downarrow

Algorithm OnlineRecursivePadic

Input: a shifted algorithm Ψ, a modular root y₀ and a precision n ∈ N
Output: the lifted root y at precision n
1. a = y₀, [c₁,...,c_L] = [0,...,0]
2. for i from 1 to n

a. Perform the ith step of the evaluation of Ψ on input a
b. Put the output in a

3. return a

Computations of the lifting of the root y of $P(Y) = Y^2 - Y + T$ from $y_0 = 0$:

<i>c</i> ₀	$c_1 := c_0/T$	$c_2 := c_1^2$	$c_3 := T^2 \times c_2$	$c_4 := c_3 + T$	Step
	(i-2)th step	(i-2)th step	<i>i</i> th step	<i>i</i> th step	<i>i</i> th
0					1st
					2nd
					3rd
					4th
					5th

Computations of the lifting of the root y of $P(Y) = Y^2 - Y + T$ from $y_0 = 0$:

c_0	$c_1 := c_0/T$	$c_2 := c_1^2$	$c_3 := T^2 \times c_2$	$c_4 := c_3 + T$	Step
	(i-2)th step	(i-2)th step	<i>i</i> th step	<i>i</i> th step	<i>i</i> th
0	0	0	0	0	1st
					2nd
					3rd
					4th
					5th

Computations of the lifting of the root y of $P(Y) = Y^2 - Y + T$ from $y_0 = 0$:

c_0	$c_1 := c_0/T$	$c_2 := c_1^2$	$c_3 := T^2 \times c_2$	$c_4 := c_3 + T$	Step
	(i-2)th step	(i-2)th step	<i>i</i> th step	<i>i</i> th step	<i>i</i> th
0	0	0	0	0	1st
0					2 nd
					3rd
					4th
					5th

Computations of the lifting of the root y of $P(Y) = Y^2 - Y + T$ from $y_0 = 0$:

<i>c</i> ₀	$c_1 := c_0/T$	$c_2 := c_1^2$	$c_3 := T^2 \times c_2$	$c_4 := c_3 + T$	Step
	(i-2)th step	(i-2)th step	<i>i</i> th step	<i>i</i> th step	<i>i</i> th
0	0	0	0	0	1st
0	0	0	0	T	2nd
					3rd
					4th
					5th

Computations of the lifting of the root y of $P(Y) = Y^2 - Y + T$ from $y_0 = 0$:

<i>c</i> ₀	$c_1 := c_0/T$	$c_2 := c_1^2$	$c_3 := T^2 \times c_2$	$c_4 := c_3 + T$	Step
	(i-2)th step	(i-2)th step	<i>i</i> th step	<i>i</i> th step	<i>i</i> th
0	0	0	0	0	1st
0	0	0	0	T	2nd
T					3rd
					4th
					5th

Computations of the lifting of the root y of $P(Y) = Y^2 - Y + T$ from $y_0 = 0$:

c_0	$c_1 := c_0/T$	$c_2 := c_1^2$	$c_3 := T^2 \times c_2$	$c_4 := c_3 + T$	Step
	(i-2)th step	(i-2)th step	<i>i</i> th step	<i>i</i> th step	<i>i</i> th
0	0	0	0	0	1st
0	0	0	0	T	2 nd
T	1	1	T^2	$T + T^2$	3rd
					4th
					5th

Computations of the lifting of the root y of $P(Y) = Y^2 - Y + T$ from $y_0 = 0$:

c_0	$c_1 := c_0/T$	$c_2 := c_1^2$	$c_3 := T^2 \times c_2$	$c_4 := c_3 + T$	Step
	(i-2)th step	(i-2)th step	<i>i</i> th step	<i>i</i> th step	<i>i</i> th
0	0	0	0	0	1st
0	0	0	0	T	2nd
T	1	1	T^2	$T + T^2$	3rd
$T + T^2$					4th
					5th

Computations of the lifting of the root y of $P(Y) = Y^2 - Y + T$ from $y_0 = 0$:

c_0	$c_1 := c_0/T$	$c_2 := c_1^2$	$c_3 := T^2 \times c_2$	$c_4 := c_3 + T$	Step
	(i-2)th step	(i-2)th step	<i>i</i> th step	<i>i</i> th step	<i>i</i> th
0	0	0	0	0	1st
0	0	0	0	T	2 nd
T	1	1	T^2	$T + T^2$	3rd
$T + T^2$	1+T	1+2T	$T^2 + 2 T^3$	$T + T^2 + 2 T^3$	4th
					5th

Computations of the lifting of the root y of $P(Y) = Y^2 - Y + T$ from $y_0 = 0$:

c_0	$c_1 := c_0/T$	$c_2 := c_1^2$	$c_3 := T^2 \times c_2$	$c_4 := c_3 + T$	Step
	(i-2)th step	(i-2)th step	<i>i</i> th step	<i>i</i> th step	<i>i</i> th
0	0	0	0	0	1st
0	0	0	0	T	2nd
T	1	1	T^2	$T + T^2$	3rd
$T + T^2$	1+T	1+2T	$T^2 + 2 T^3$	$T + T^2 + 2 T^3$	4th
$T + T^2 + 2 T^3$					5th

Computations of the lifting of the root y of $P(Y) = Y^2 - Y + T$ from $y_0 = 0$:

c_0	$c_1 := c_0/T$	$c_2 := c_1^2$	$c_3 := T^2 \times c_2$	$c_4 := c_3 + T$	Step
	(i-2)th step	(i-2)th step	<i>i</i> th step	<i>i</i> th step	<i>i</i> th
0	0	0	0	0	1st
0	0	0	0	T	2nd
T	1	1	T^2	$T + T^2$	3rd
$T + T^2$	1+T	1 + 2 T	$T^2 + 2 T^3$	$T + T^2 + 2 T^3$	4th
$T + T^2 + 2T^3$	$1 + T + 2T^2$	$1 + 2T + 5T^2$	$T^2 + 2T^3 + 5T^4$	$T + T^2 + 2T^3 + 5T^4$	5th

Conclusion

Two general paradigms:

Newton operator	Relaxed algorithms	
Solve implicit equations $P(y) = 0$	Solve recursive equations $y = \Phi(y)$	
Faster for higher precision	Less on-line multiplications	

Implementations:

- Relaxed power series (and T-adics) in MATHEMAGIX
- Beginning of a C++ package based on NTL

Thank you for your attention ;-)

Example of shifted algorithm

Example.

The evaluation Algorithm of $\Psi(Y) = T^2 \times ((Y/T)^2) + T$ is shifted.

S.l.p. $\Gamma_1 = (-/T; 0), \Gamma_2 = (*; 1, 1), \Gamma_3 = (T^2 \times; 2), \Gamma_4 = (+; 3, T)$

Output sequence $[c_0, ..., c_4]$ on input $c_0 = y$ is $[y, y/T, (y/T)^2, T^2 \times ((Y/T)^2), T^2 \times ((Y/T)^2) + T]$

 Algorithm EvaluationStep

 Input: $a \in \mathbb{Q}[[T]], [c_1^{(0)}, ..., c_4^{(0)}] \in (\mathbb{Q}[[T]])^4$ and $i \in \mathbb{N}$

 Output: $[c_1, ..., c_4] \in (\mathbb{Q}[[T]])^4$

 1. $c_0 = a, [c_1, ..., c_4] = [c_1^{(0)}, ..., c_4^{(0)}]$

 2. Evaluation of Ψ :

 a. $c_1 = \text{ShiftStep}(a, c_1, -1, i - 2)$

 b. $c_2 = \text{MulStep}(c_1, c_1, c_2, i - 2)$

 c. $c_3 = \text{ShiftStep}(c_2, c_3, 2, i)$

 d. $c_4 = \text{AddStep}(c_3, T, c_4, i)$

 3. return $[c_1, ..., c_4]$

EvaluationStep increase the precision by one of the evaluation of Ψ on y.