Simultaneous Conversions with the Residue Number System using Linear Algebra

Javad Doliskani, Éric Schost
University of Waterloo

Pascal Giorgi, Romain Lebreton
Université de Montpellier

Journées Nationales du Calcul Formel – Luminy
January 25th 2018
How to perform arithmetic operations on ... ?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Multi-precision integer matrices $\mathcal{M}{n \times n}(\mathbb{Z})$ or $\mathcal{M}{n \times n}(\mathbb{Z}/N\mathbb{Z})$</td>
</tr>
<tr>
<td>2.</td>
<td>Multi-precision integer polynomials $\mathbb{Z}[X]$ or $\mathbb{Z}/N\mathbb{Z}$</td>
</tr>
</tbody>
</table>

Different approaches:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Direct algorithm:</td>
<td>matrix arithmetic then multi-precision integer arithmetic</td>
</tr>
<tr>
<td></td>
<td>\leadsto Best for matrix/polynomial size \ll integer bitsize</td>
</tr>
<tr>
<td>2. Modular approach:</td>
<td>Split the big integer matrix into many small integer matrices</td>
</tr>
<tr>
<td></td>
<td>\leadsto Best for matrix/polynomial size \gg integer bitsize</td>
</tr>
</tbody>
</table>

Change of representation of integers (RNS conversion) is frequently a bottleneck.
How to perform arithmetic operations on ... ?

1. **Multi-precision integer matrices**
 \[\mathcal{M}_{n \times n} (\mathbb{Z}) \text{ or } \mathcal{M}_{n \times n} (\mathbb{Z}/N\mathbb{Z}) \]

2. **Multi-precision integer polynomials**
 \[\mathbb{Z}[X] \text{ or } \mathbb{Z}/N\mathbb{Z} \]

Different approaches:

1. **Direct algorithm:**
 Matrix arithmetic then multi-precision integer arithmetic
 \[\rightsquigarrow \text{Best for matrix/polynomial size } \ll \text{ integer bitsize} \]

2. **Modular approach:**
 Split the big integer matrix into many small integer matrices
 \[\rightsquigarrow \text{Best for matrix/polynomial size } \gg \text{ integer bitsize} \]

Change of representation of integers (RNS conversion) is frequently a bottleneck.
1. Context

2. Preliminaries on the Residue Number System
 a. Euclidean division
 b. Conversion with the Residue Number System

3. Conversion with RNS using linear algebra
 a. Algorithm
 b. Implementation details
 c. Timings and comparison
 d. Extension for larger moduli
Problem: If \(a, m \in \mathbb{N} \), compute \(q = a \text{ quo } m \) and \(r = a \text{ rem } m \).

Note: \((n := \text{ bitsize}(a)) \geq (t := \text{ bitsize}(m))\)

Algorithms for Euclidean division:

1. \(n = 2t \) in time \(\mathcal{O}(I(t)) \) — **Balanced case**
 Idea: Newton iteration to approximate \(1/m \) then \(q = \lfloor a/m \rfloor \), finally \(r = a - qm \)
 \[\text{[Cook '66], [Barrett '86]}\]

2. \(n \geq 2t \) in time \(\mathcal{O}\left(n \frac{I(t)}{t}\right)\),
 Idea: Iterate base case reduction

3. \(n \leq 2t \) in time \(\mathcal{O}\left(t \frac{I(n-t)}{n-t}\right)\)
 Idea: Compute \(q \) only at precision \(n - t \)
 \[\text{[Giorgi et al, '13]}\]
Problem: If $a, m \in \mathbb{N}$, compute $q = a \div m$ and $r = a \mod m$.

Note: $(n := \text{bitsize}(a)) \geq (t := \text{bitsize}(m))$

<table>
<thead>
<tr>
<th>Algorithms for Euclidean division:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $n = 2t$ in time $\mathcal{O}(l(t))$ – Balanced case [Cook ’66], [Barrett ’86]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2. $n \geq 2t$ in time $\mathcal{O}\left(n \frac{l(t)}{t} \right)$,</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3. $n \leq 2t$ in time $\mathcal{O}\left(t \frac{l(n-t)}{n-t} \right)$ [Giorghi et al, ’13]</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Euclidean division

Problem: If \(a, m \in \mathbb{N} \), compute \(q = a \text{ quo} m \) and \(r = a \text{ rem} m \).

Note: \((n := \text{bitsize}(a)) \geq (t := \text{bitsize}(m)) \)

Algorithms for Euclidean division:

1. \(n = 2t \) in time \(\mathcal{O}(l(t)) \) – Balanced case

 Idea: Newton iteration to approximate \(1/m \) then \(q = \lfloor a/m \rfloor \), finally \(r = a - qm \)

2. \(n \geq 2t \) in time \(\mathcal{O}\left(n \frac{l(t)}{t} \right) \),

 Idea: Iterate base case reduction

3. \(n \leq 2t \) in time \(\mathcal{O}\left(t \frac{l(n-t)}{n-t} \right) \)

 Idea: Compute \(q \) only at precision \(n - t \)

[Cook ’66], [Barrett ’86], [Giorgi et al., ’13]
The Residue Number System

Residue Number System:

Represent integer $0 \leq a \leq m_1 \cdots m_s$ by its residues $(a \mod m_1, \ldots, a \mod m_s)$

Chinese remainder theorem:

$$\mathbb{Z} / (m_1 \cdots m_s)\mathbb{Z} \xrightarrow{\text{Reduction}} \prod_{i=1}^{s} \mathbb{Z} / m_i \mathbb{Z}$$

$$a \mod (m_1 \cdots m_s) \quad \mapsto \quad (a \mod m_1, \ldots, a \mod m_s)$$

From now on, assume that m_i are bounded (e.g. 64 bits machine-word) and pairwise coprime.

Let’s recall the algorithms for reduction and reconstruction
Problem: Compute \((a \mod m_i)_{i=1}^s\) where \(a < M\) and \(M = m_1 \cdots m_s\).

Naive Algorithm

Apply \(a \mod m_i\) in the case \((t = 1) \ll (n = s)\) \(\leadsto\) Quadratic time \(O(s^2)\)

Note: Small constant factor in the big \(O\), faster for small \(s\)

Divide-and-conquer algorithm

Sub-product tree followed by Divide-and-conquer reductions

Quasi-linear complexity: \(O(l(s) \log s)\)

Note: Similar to polynomial case of multi-point evaluation
Problem: Given the evaluations \(a_i = a(m_i) = a(X) \rem (X - m_i) \), reconstruct \(a(X) \) using

\[
a(X) = \sum_i a_i \prod_{j \neq i} \frac{(X - m_j)}{(m_i - m_j)} = \sum_i \frac{a_i}{M_i(m_i)} M_i(X) \quad \text{where} \quad M_i(X) = M(X) / (X - m_i)
\]

Divide-and-conquer algorithm

1. Compute \(M_i(m_i) \)'s using \(M_i(m_i) = M'(m_i) \) so multi-point evaluation of \(M'(X) \)

2. Let \(b_i = \frac{a_i}{M_i(m_i)} \) and recursively compute \(a(X) = \sum_i b_i M_i(X) \):

Idea: If \(M^0(X) = \prod_{j=1}^{s/2} (X - m_j) \) and \(M^1(X) = \prod_{j=s/2+1}^{s} (X - m_j) \), note that

\[
a(X) = \sum_{i=1}^{s} b_i \frac{M}{(X - m_i)} = \left[\sum_{i=1}^{s/2} b_i \frac{M^0}{(X - m_i)} \right] M^1 + \left[\sum_{i=s/2+1}^{s} b_i \frac{M^1}{(X - m_i)} \right] M^0
\]

Complexity: \(\mathcal{O}(M(s) \log s) \)
Problem: Given the reductions \(a_i = a \mod m_i \), reconstruct \(a \).

Integer equivalent of Lagrange interpolation

\[
\mathbb{Z}/M\mathbb{Z} \longrightarrow (\mathbb{Z}/m_1\mathbb{Z}) \times \cdots \times (\mathbb{Z}/m_s\mathbb{Z})
\]

- \(M_i \mapsto (0, \ldots, M_i \mod m_i, \ldots, 0) \)
- \(u_i M_i \mapsto (0, \ldots, 1, \ldots, 0) \)
- \(u_i a_i M_i \mapsto (0, \ldots, a_i, \ldots, 0) \)
- \(\sum_{i=1}^{s} u_i a_i M_i \mapsto (a_1, \ldots, a_i, \ldots, a_s) \)

So \(a \) given by

\[
a := \left(\sum_{i=1}^{s} u_i a_i M_i \right) \mod M = \left(\sum_{i=1}^{s} ((u_i a_i) \mod m_i) M_i \right) \mod M
\]

is the reconstruction of \((a_1, \ldots, a_s)\).

Remark: \(((u_i a_i) \mod m_i) M_i\) corresponds to \(\frac{a_i \prod_{j \neq i} (X - m_j)}{\prod_{j \neq i} (m_i - m_j)}\) in Lagrange formula.
Problem: Given the reductions \(a_i = a \mod m_i \), reconstruct \(a \).

Integer equivalent of Lagrange interpolation

<table>
<thead>
<tr>
<th>Operation</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{Z} / M \mathbb{Z})</td>
<td>(\mathbb{Z} / m_1 \mathbb{Z} \times \cdots \times (\mathbb{Z} / m_i \mathbb{Z}) \times \cdots \times (\mathbb{Z} / m_s \mathbb{Z}))</td>
</tr>
<tr>
<td>(M_i)</td>
<td>((0, \ldots, M_i \mod m_i, \ldots, 0))</td>
</tr>
<tr>
<td>(u_i M_i)</td>
<td>((0, \ldots, 1, \ldots, 0))</td>
</tr>
<tr>
<td>(u_i a_i M_i)</td>
<td>((0, \ldots, a_i, \ldots, 0))</td>
</tr>
<tr>
<td>(\sum_{i=1}^{s} u_i a_i M_i)</td>
<td>((a_1, \ldots, a_i, \ldots, a_s))</td>
</tr>
</tbody>
</table>

So \(a \) given by

\[
a := \left(\sum_{i=1}^{s} u_i a_i M_i \right) \mod M = \left(\sum_{i=1}^{s} \left((u_i a_i) \mod m_i \right) M_i \right) \mod M
\]

is the reconstruction of \((a_1, \ldots, a_s)\).

Remark: \((u_i a_i) \mod m_i \) \(M_i \) corresponds to \(a_i \prod_{j \neq i} \frac{X - m_j}{m_i - m_j} \) in Lagrange formula.
Problem: Given the reductions \(a_i = a \text{ rem } m_i \), reconstruct \(a \).

Integer equivalent of Lagrange interpolation

<table>
<thead>
<tr>
<th>Expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{Z} / M \mathbb{Z})</td>
<td>(\times \cdots \times \mathbb{Z} / m_i \mathbb{Z} \times \cdots \times \mathbb{Z} / m_s \mathbb{Z})</td>
</tr>
<tr>
<td>(?)</td>
<td>((a_1, \ldots, a_i, \ldots, a_s))</td>
</tr>
<tr>
<td>(M_i)</td>
<td>((0, \ldots, M_i \text{ rem } m_i, \ldots, 0))</td>
</tr>
<tr>
<td>(u_i M_i)</td>
<td>((0, \ldots, 1, \ldots, 0))</td>
</tr>
<tr>
<td>(u_i a_i M_i)</td>
<td>((0, \ldots, a_i, \ldots, 0))</td>
</tr>
<tr>
<td>(\sum_{i=1}^s u_i a_i M_i)</td>
<td>((a_1, \ldots, a_i, \ldots, a_s))</td>
</tr>
</tbody>
</table>

So \(a \) given by

\[
a := \left(\sum_{i=1}^s u_i a_i M_i \right) \text{ rem } M = \left(\sum_{i=1}^s \left((u_i a_i) \text{ rem } m_i \right) M_i \right) \text{ rem } M
\]

is the reconstruction of \((a_1, \ldots, a_s) \).

Remark: \(((u_i a_i) \text{ rem } m_i) \) \(M_i \) corresponds to \(\frac{a_i \prod_{j \neq i} (X - m_j)}{\prod_{j \neq i} (m_i - m_j)} \) in Lagrange formula.
Problem: Given the reductions $a_i = a \mod m_i$, reconstruct a.

<table>
<thead>
<tr>
<th>Integer equivalent of Lagrange interpolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{Z} / M \mathbb{Z} \longrightarrow (\mathbb{Z} / m_1 \mathbb{Z}) \times \cdots \times (\mathbb{Z} / m_i \mathbb{Z}) \times \cdots \times (\mathbb{Z} / m_s \mathbb{Z})$</td>
</tr>
</tbody>
</table>

| $? \longrightarrow (a_1, \ldots, a_i, \ldots, a_s)$ |
| $M_i \longrightarrow (0, \ldots, M_i \mod m_i, \ldots, 0)$ |
| $u_i M_i \longrightarrow (0, \ldots, 1, \ldots, 0)$ |
| $u_i a_i M_i \longrightarrow (0, \ldots, a_i, \ldots, 0)$ |
|
| $\sum_{i=1}^{s} u_i a_i M_i \longrightarrow (a_1, \ldots, a_i, \ldots, a_s)$ |

So a given by

$$a := \left(\sum_{i=1}^{s} u_i a_i M_i \right) \mod M = \left(\sum_{i=1}^{s} ((u_i a_i) \mod m_i) M_i \right) \mod M$$

is the reconstruction of (a_1, \ldots, a_s).

Remark: $((u_i a_i) \mod m_i) M_i$ corresponds to $\frac{a_i \prod_{j \neq i} (X - m_j)}{\prod_{j \neq i} (m_i - m_j)}$ in Lagrange formula.
Problem: Given the reductions \(a_i = a \) \(\text{rem} \) \(m_i \), reconstruct \(a \).

<table>
<thead>
<tr>
<th>Integer equivalent of Lagrange interpolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{Z} / M \mathbb{Z} \rightarrow (\mathbb{Z} / m_1 \mathbb{Z}) \times \cdots \times (\mathbb{Z} / m_i \mathbb{Z}) \times \cdots \times (\mathbb{Z} / m_s \mathbb{Z}))</td>
</tr>
<tr>
<td>(?) (\rightarrow) ((a_1, \ldots, a_i, \ldots, a_s))</td>
</tr>
<tr>
<td>(M_i) (\rightarrow) (0, \ldots, (M_i) (\text{rem}) (m_i), \ldots, 0)</td>
</tr>
<tr>
<td>(u_i) (M_i) (\rightarrow) (0, \ldots, 1, \ldots, 0)</td>
</tr>
<tr>
<td>(u_i) (a_i) (M_i) (\rightarrow) (0, \ldots, (a_i), \ldots, 0)</td>
</tr>
<tr>
<td>(\sum_{i=1}^{s} u_i) (a_i) (M_i) (\rightarrow) ((a_1, \ldots, a_i, \ldots, a_s))</td>
</tr>
</tbody>
</table>

So \(a \) given by

\[
a := \left(\sum_{i=1}^{s} u_i \ a_i \ M_i \right) \ \text{rem} \ M = \left(\sum_{i=1}^{s} \ ((u_i \ a_i) \ \text{rem} \ m_i) \ M_i \right) \ \text{rem} \ M
\]

is the reconstruction of \((a_1, \ldots, a_s) \).

Remark: \(((u_i \ a_i) \ \text{rem} \ m_i) \ M_i \) corresponds to \(\frac{a_i \ \prod_{j \neq i} (X - m_j)}{\prod_{j \neq i} (m_i - m_j)} \) in Lagrange formula.
Problem: Given the reductions $a_i = a \mod m_i$, reconstruct a.

Integer equivalent of Lagrange interpolation

\[
\mathbb{Z}/M\mathbb{Z} \rightarrow (\mathbb{Z}/m_1\mathbb{Z}) \times \cdots \times (\mathbb{Z}/m_i\mathbb{Z}) \times \cdots \times (\mathbb{Z}/m_s\mathbb{Z})
\]

- $? \mapsto (a_1, \ldots, a_i, \ldots, a_s)$
- $M_i \mapsto (0, \ldots, M_i \mod m_i, \ldots, 0)$
- $u_i M_i \mapsto (0, \ldots, 1, \ldots, 0)$
- $u_i a_i M_i \mapsto (0, \ldots, a_i, \ldots, 0)$
- $\sum_{i=1}^{s} u_i a_i M_i \mapsto (a_1, \ldots, a_i, \ldots, a_s)$

So a given by

\[
a := \left(\sum_{i=1}^{s} u_i a_i M_i \right) \mod M = \left(\sum_{i=1}^{s} (u_i a_i \mod m_i) M_i \right) \mod M
\]

is the reconstruction of (a_1, \ldots, a_s).

Remark: $(u_i a_i \mod m_i) M_i$ corresponds to $\frac{a_i \prod_{j \neq i} (X - m_j)}{\prod_{j \neq i} (m_i - m_j)}$ in Lagrange formula.
Divide-and-conquer algorithm

1. Compute $M_i \rem m_i$

2. Compute $u_i = 1 / M_i \mod m_i$

3. Compute $b_i := (u_i a_i) \rem m_i$

4. Compute $P = \sum_i b_i M_i$

Total complexity: $\mathcal{O}(I(s) \log s)$

Trick for $M_i \rem m_i$

- Multireduce M modulo m_i^2 instead of $M / m_i \mod m_i$
RNS reconstruction – Algorithm

Divide-and-conquer algorithm

1. Compute $M_i \text{ rem } m_i$
2. Compute $u_i = 1 / M_i \mod m_i$
3. Compute $b_i := (u_i a_i) \text{ rem } m_i$
4. Compute $P = \sum_i b_i M_i$

$\sim M_i(m_i) = M'(m_i)$? No derivative M'!

\sim Same recursion $P = P^0 M^1 + P^1 M^0$

Trick for $M_i \text{ rem } m_i$

Multireduce M modulo m_i^2 instead of $M / m_i \mod m_i$

Total complexity: $\mathcal{O}(l(s)\log s)$
Divide-and-conquer algorithm

1. Compute $M_i \text{ rem } m_i$
 $\leadsto M_i(m_i) = M'(m_i)$? No derivative M'!

2. Compute $u_i = 1 / M_i \mod m_i$

3. Compute $b_i := (u_i a_i) \text{ rem } m_i$

4. Compute $P = \sum_i b_i M_i$
 \leadsto Same recursion $P = P^0 M^1 + P^1 M^0$

Trick for $M_i \text{ rem } m_i$

Multireduce M modulo m_i^2 instead of M / m_i modulo m_i

Total complexity: $O(I(s) \log s)$
RNS reconstruction – Algorithm

<table>
<thead>
<tr>
<th>Divide-and-conquer algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Compute $M_i \text{ rem } m_i$</td>
</tr>
<tr>
<td>2. Compute $u_i = 1 / M_i \text{ mod } m_i$</td>
</tr>
<tr>
<td>3. Compute $b_i := (u_i a_i) \text{ rem } m_i$</td>
</tr>
<tr>
<td>4. Compute $P = \sum_i b_i M_i$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trick for $M_i \text{ rem } m_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multireduce M modulo m_i^2 instead of M / m_i modulo m_i</td>
</tr>
</tbody>
</table>

Total complexity: $\mathcal{O}(l(s)\log s)$
Fact: We don’t know how to improve one RNS conversion!

End of the talk? No!
Fact: We don’t know how to improve one RNS conversion!

End of the talk? No!

Motivation: Integer matrix multiplication needs many simultaneous RNS conversions

Problem: Given $a_1, \ldots, a_r < (M = m_1 \cdots m_s)$, compute $(a_i \text{ rem } m_j)_{i=1\ldots r, j=1\ldots s}$

State-of-the-art complexities for simultaneous RNS conversions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Naive algorithms:</td>
<td>$O(rs^2)$</td>
</tr>
<tr>
<td>2. DAC algorithms:</td>
<td>$O(r \log s)$</td>
</tr>
</tbody>
</table>

Our contribution

[DOLISKANI, GIORGI, LEBRETON, SCHOST ’17]

Simultaneous conversions from/to RNS in time $O(r s^\omega - 1)$

(using precomputation of time $O(s^2)$)
1. Context

2. Preliminaries on the Residue Number System
 a. Euclidean division
 b. Conversion with the Residue Number System

3. Conversion with RNS using linear algebra
 a. Algorithm
 b. Implementation details
 c. Timings and comparison
 d. Extension for larger moduli
Problem: Given \(a = (a_1, ..., a_r) \in \mathbb{Z}^r \), compute \((a_i \text{ rem } m_j)_{i=1...r, j=1...s}\)

Note: \([_]_\ell = _ \mod m_\ell \) and \(t \) such that \(m_i \leq 2^t \)

Idea:

1. Decompose \(a_i \) in base \(2^t \): \(a_i = \sum_{j=0}^{s-1} a_{i,j} 2^{jt} \)

2. If \(d_{i,\ell} := (\sum_{j=0}^{s-1} a_{i,j} [2^{jt}]_\ell) \) then

\(d_{i,\ell} \) is a pseudo-reduction of \(a_i \) modulo \(m_\ell \), i.e. \(a_i = d_{i,\ell} \mod m_\ell \) and \(d_{i,\ell} \leq 2^t \)
Algorithm

1. **Precompute** \([2^{j_t}]_i \leq i, j \leq s\) \(O(s^2)\)

2. **Matrix multiplication with small integer entries** \(O(\text{MM}(s, s, r))\)

\[
\begin{bmatrix}
 d_{1,1} & \cdots & d_{r,1} \\
 \vdots & \ddots & \vdots \\
 d_{1,s} & \cdots & d_{r,s}
\end{bmatrix}
= \begin{bmatrix}
 1 & [2^t]_1 & [2^{2t}]_1 & \cdots & [2^{(s-1)t}]_1 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 1 & [2^t]_s & [2^{2t}]_s & \cdots & [2^{(s-1)t}]_s
\end{bmatrix}
\times
\begin{bmatrix}
a_{1,0} & \cdots & a_{r,0} \\
\vdots & \ddots & \vdots \\
a_{1,s-1} & \cdots & a_{r,s-1}
\end{bmatrix}
\]

3. **Final reduction** \(a_i = d_{i,\ell} \text{ rem } m_\ell\) with \(d_{i,\ell}\) small \(O(rs)\)

Complexity:
\(O(rs^{\omega-1})\) when \(r \geq s\).

Speed-up: \(s^{3-\omega}\) compared to naive algorithm

Slower than DAC algorithm (asymptotically)
Problem: Given residues $a_{i,j} = (a_i \text{ rem } m_j)_{1 \leq i \leq r}$, reconstruct $(a_1, \ldots, a_r) \in [0; M]^r$

Formula:

$$a_i = \left(\sum_{j=1}^{s} \left(\left(u_j a_{i,j} \right) \text{ rem } m_i \right) M_i \right) \text{ rem } M$$

Idea:

1. If $\ell_i := \sum_{j=1}^{s} \gamma_{i,j} M_j$, then

 ℓ_i is a pseudo-reconstruction of $(a_{i,j})_{1 \leq j \leq s}$, i.e. $\ell_i = a_{i,j} \text{ mod } m_j$ and $\ell_i < s M$.
Problem: Given residues $a_{i,j} = (a_i \text{ rem } m_j)_{1 \leq i \leq r}$, reconstruct $(a_1, \ldots, a_r) \in [0; M]^r$ with $1 \leq j \leq s$

Formula: $a_i = \left(\sum_{j=1}^{s} \left((u_j a_{i,j} \text{ rem } m_j) M_i \right) \text{ rem } M \right) \gamma_{i,j}$

Idea:

1. If $\ell_i := \sum_{j=1}^{s} \gamma_{i,j} M_j$, then

 ℓ_i is a *pseudo-reconstruction* of $(a_{i,j})_{1 \leq j \leq s}$, i.e. $\ell_i = a_{i,j} \text{ mod } m_j$ and $\ell_i < s \times M$.

2. Decompose in linear operation with small entries:
 a. Write $M_j = \sum_{k=0}^{s-1} \mu_{j,k} \times 2^{kt}$ in base 2^t
 b. Compute $\ell_i = \sum_{k=0}^{s-1} \left(\sum_{j=1}^{s} \gamma_{i,j} \mu_{j,k} \right) 2^{kt}$ \sim decomposition of ℓ_i in base 2^t
Algorithm

1. Precompute $M_j = M / m_j$ and $u_j = (1 / M_j \text{rem } m_j)$ \(\mathcal{O}(s^2)\)

2. Compute all $\gamma_{i,j} = (u_j a_{i,j}) \text{rem } m_i$ \(\mathcal{O}(rs)\)

3. Compute base 2^t pseudo-decomposition $(d_{i,j})$ of ℓ_i:

 \[
 \begin{bmatrix}
 d_{1,0} & \cdots & d_{1,s-1} \\
 \vdots & \ddots & \vdots \\
 d_{r,0} & \cdots & d_{r,s-1}
 \end{bmatrix}
 =
 \begin{bmatrix}
 \gamma_{1,1} & \cdots & \gamma_{1,s} \\
 \vdots & \ddots & \vdots \\
 \gamma_{r,1} & \cdots & \gamma_{r,s}
 \end{bmatrix}
 \begin{bmatrix}
 \mu_{1,0} & \cdots & \mu_{1,s-1} \\
 \vdots & \ddots & \vdots \\
 \mu_{s,0} & \cdots & \mu_{s,s-1}
 \end{bmatrix}
 \]

4. Recover base 2^t exact decomposition of $\ell_i = \sum d_{i,k} 2^{kt}$ \(\mathcal{O}(rs)\)

5. Final reconstruction: $a_i = \ell_i \text{rem } M$ \(\mathcal{O}(rs)\)

Complexity:
\(\mathcal{O}(rs^{s^{-1}})\) when $r \geq s$.

Speed-up:
$s^{3-\omega}$ compared to naive algorithm
Question: How to choose modulus bitsize t ?

Constraints:

1. Matrix entries bitsize:

 Use BLAS so all matrices integer entries should fit in double, i.e.

 $$s m_i 2^t < 2^{53}$$ \hspace{1cm} (1)

2. Limited number of primes of at most t bits

 $$s \leq 2^t / (t \ln(2))$$ \hspace{1cm} (2)
Goal 1: Maximize reachable bitsize of M

Since $\log_2(M) \sim s t$, constraints give

1. $\log_2(M) \leq 2^{53-2t} t$
2. $\log_2(M) \leq 2^t / \ln(2)$

Todo: Find t to maximize M

So take $t = 19$ and maximum M has 76 KBytes

(2^{15}$ moduli of bitsize ≤ 19)
Now if M is less than 76 KBytes,

Goal 2: Maximize moduli bitsize t

Since $\log_2(M) \sim s\ t$, constraints give

1. $\log_2(M) \leq 2^{53-2t} t$
2. $\log_2(M) \leq 2^t / \ln(2)$

Todo: Maximize t given M

Example: If M is 128 Bytes, take 45 moduli of bitsize 23

(instead of 54 moduli of bitsize 19 \Rightarrow speedup $(54/45)^{\omega-1} \approx 1.44$)
Timings – RNS reduction

<table>
<thead>
<tr>
<th>RNS bitsize – $\log_2(M)$</th>
<th>Naive - MMX</th>
<th>DAC - FLINT</th>
<th>LinAlg - FFLAS [speedup]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^8</td>
<td>0.34</td>
<td>0.17</td>
<td>0.06 [x 2.8]</td>
</tr>
<tr>
<td>2^9</td>
<td>0.75</td>
<td>0.35</td>
<td>0.13 [x 2.7]</td>
</tr>
<tr>
<td>2^{10}</td>
<td>1.77</td>
<td>0.84</td>
<td>0.27 [x 3.1]</td>
</tr>
<tr>
<td>2^{11}</td>
<td>4.26</td>
<td>2.73</td>
<td>0.75 [x 3.6]</td>
</tr>
<tr>
<td>2^{12}</td>
<td>11.01</td>
<td>7.03</td>
<td>1.92 [x 3.7]</td>
</tr>
<tr>
<td>2^{13}</td>
<td>29.86</td>
<td>17.75</td>
<td>5.94 [x 3.0]</td>
</tr>
<tr>
<td>2^{14}</td>
<td>88.95</td>
<td>50.90</td>
<td>21.09 [x 2.4]</td>
</tr>
<tr>
<td>2^{15}</td>
<td>301.69</td>
<td>165.80</td>
<td>80.82 [x 2.0]</td>
</tr>
<tr>
<td>2^{16}</td>
<td>1055.84</td>
<td>506.91</td>
<td>298.86 [x 1.7]</td>
</tr>
<tr>
<td>2^{17}</td>
<td>3973.46</td>
<td>1530.05</td>
<td>1107.23 [x 1.4]</td>
</tr>
<tr>
<td>2^{18}</td>
<td>15376.40</td>
<td>4820.63</td>
<td>4114.98 [x 1.2]</td>
</tr>
<tr>
<td>2^{19}</td>
<td>59693.64</td>
<td>13326.13</td>
<td>15491.90 [none]</td>
</tr>
</tbody>
</table>

Figure. Simultaneous RNS reductions (time per integer in μs)
Timings – RNS reconstruction

<table>
<thead>
<tr>
<th>RNS bitsize $\log_2(M)$</th>
<th>Naive - MMX</th>
<th>DAC - FLINT</th>
<th>LinAlg - FFLAS [speedup]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^8</td>
<td>0.74</td>
<td>0.63</td>
<td>0.34 [x 1.8]</td>
</tr>
<tr>
<td>2^9</td>
<td>1.04</td>
<td>1.34</td>
<td>0.39 [x 3.4]</td>
</tr>
<tr>
<td>2^{10}</td>
<td>1.86</td>
<td>3.12</td>
<td>0.72 [x 4.3]</td>
</tr>
<tr>
<td>2^{11}</td>
<td>4.29</td>
<td>6.92</td>
<td>1.57 [x 4.4]</td>
</tr>
<tr>
<td>2^{12}</td>
<td>12.18</td>
<td>16.79</td>
<td>3.94 [x 4.3]</td>
</tr>
<tr>
<td>2^{13}</td>
<td>43.89</td>
<td>40.73</td>
<td>12.77 [x 3.2]</td>
</tr>
<tr>
<td>2^{14}</td>
<td>144.57</td>
<td>113.19</td>
<td>43.13 [x 2.6]</td>
</tr>
<tr>
<td>2^{15}</td>
<td>502.18</td>
<td>316.61</td>
<td>161.44 [x 2.0]</td>
</tr>
<tr>
<td>2^{16}</td>
<td>2187.65</td>
<td>855.48</td>
<td>609.22 [x 1.4]</td>
</tr>
<tr>
<td>2^{17}</td>
<td>10356.08</td>
<td>2337.96</td>
<td>2259.84 [x 1.1]</td>
</tr>
<tr>
<td>2^{18}</td>
<td>39965.23</td>
<td>7295.26</td>
<td>8283.64 [none]</td>
</tr>
<tr>
<td>2^{19}</td>
<td>156155.06</td>
<td>18529.38</td>
<td>31382.81 [none]</td>
</tr>
</tbody>
</table>

Figure. Simultaneous RNS reconstruction (time per integer in μs)

Note: Our precomputations are more costly: we need ~ 1000 a_i’s to amortize them.
Extension for larger moduli

<table>
<thead>
<tr>
<th>Application to integer polynomial multiplication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem: For multiplication in $\mathbb{Z}[x]$, we prefer Fourier primes ($\exists 2^k$-root for k large)</td>
</tr>
<tr>
<td>But there are not so many Fourier primes $\leq 2^{19}$!</td>
</tr>
<tr>
<td>\rightsquigarrow How can we extend our moduli bitsize limit?</td>
</tr>
</tbody>
</table>

Recall: When $m_i \leq 2^t$ and $a_i = \sum_{j=0}^{s-1} a_{i,j} 2^{jt}$, pseudo-reduction $d_{i,\ell} := (\sum_{j=0}^{s-1} a_{i,j} [2^{jt}]_\ell)$

$$
\begin{bmatrix}
 d_{1,1} & \ldots & d_{r,1} \\
 \vdots & \ddots & \vdots \\
 d_{1,s} & \ldots & d_{r,s}
\end{bmatrix} = \begin{bmatrix}
 1 & [2^t]_1 & [2^{2t}]_1 & \ldots & [2^{(s-1)t}]_1 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 1 & [2^t]_s & [2^{2t}]_s & \ldots & [2^{(s-1)t}]_s
\end{bmatrix} \times \begin{bmatrix}
 a_{1,0} & \ldots & a_{r,0} \\
 \vdots & \ddots & \vdots \\
 a_{1,s-1} & \ldots & a_{r,s-1}
\end{bmatrix}
$$

Idea: If $m_i \leq (2^t)^\kappa$, cut B into $B = B_0 + B_1 2^t + \ldots + B_{\kappa-1} 2^{t(\kappa-1)}$ and compute BA as

$$D = (B_0 A) + \ldots + 2^{(\kappa-1)t} (B_{\kappa-1} A)$$
Cost of the extension is about the same:

1. s moduli of bitsize t:

 One multiplication of matrices $(s \times s) \times (s \times r)$

2. s/κ moduli of bitsize κt:

 κ multiplications of matrices $(s/\kappa \times s) \times (s \times r)$

| Bitsize $\log_2(M)$ | RNS reduction | | | RNS reconstruction | | |
|---------------------|--------------|--------|-----------------|--------|----------|----------|----------|
| | FLINT $m_i < 2^{59}$ | FFLAS $\kappa = 1$ $m_i < 2^{19}$ | FFLAS $\kappa = 2$ $m_i < 2^{38}$ | FLINT $m_i < 2^{59}$ | FFLAS $\kappa = 1$ $m_i < 2^{19}$ | FFLAS $\kappa = 2$ $m_i < 2^{38}$ |
| 2^9 | 0.35 | 0.13 | 0.24 | 1.34 | 0.39 | 0.70 |
| 2^{10} | 0.84 | 0.27 | 0.53 | 3.12 | 0.72 | 1.39 |
| 2^{11} | 2.73 | 0.75 | 1.20 | 6.92 | 1.57 | 2.46 |
| 2^{12} | 7.03 | 1.92 | 2.92 | 16.79 | 3.94 | 5.15 |
| 2^{13} | 17.75 | 5.94 | 8.01 | 40.73 | 12.77 | 14.98 |
| 2^{14} | 50.90 | 21.09 | 25.05 | 113.19 | 43.13 | 47.54 |
| 2^{15} | 165.80 | 80.82 | 85.38 | 316.61 | 161.44 | 167.93 |
| 2^{16} | 506.91 | 298.86 | 299.11 | 855.48 | 609.22 | 629.69 |
| 2^{17} | 1530.05 | 1107.23| 1099.52 | 2337.96| 2259.84 | 2375.98 |
| 2^{18} | 4820.63 | 4114.98| 4043.68 | 7295.26| 8283.64 | 8550.81 |
| 2^{19} | 13326.13 | 15491.90| 15092.94 | 18529.38| 31382.81| 33967.42|
Conclusions:

1. Our approach is complementary with asymptotically fast algorithms
 We improves run-times for small and medium size

2. We exploit the available optimized implementations of matrix multiplication (BLAS)
 Reach peak performance of processors, gain a significant constant

3. If our gain is only constant, its impact is substantial to many important applications
 multiplication in $\mathcal{M}_{u,v}(\mathbb{Z}), \mathbb{Z}[x]$, polynomial factorization...

4. When prime bitsize limitation is a problem, we are still able to reduce the computation to
 matrix multiplication with small entries

Perspectives:

1. Implement hybrid version of linear algebra and divide-and-conquer strategies

2. Use different cutting for large moduli to provide further improvement