Relaxed Hensel lifting of triangular sets*

BY ROMAIN LEBRETON

LIRMM Université Montpellier II

^{*.} This document has been written using the GNU T_EX_{MACS} text editor (see www.texmacs.org).

Context: root lifting

Previous work.

[Berthomieu, L. '12]

- Relaxed algorithm for lifting **one** root of a polynomial system over $k[[x]], \mathbb{Z}_p$
- Comparison to existing Newton iteration:
 - → Complexity improvements

Today's talk.

- Relaxed algorithms for lifting **all** roots of a polynomial system over $k[[x]], \mathbb{Z}_p$
- Comparison to existing Newton iteration

Representation of all roots

Notations.

- \mathcal{I} zero-dimensional ideal spanned by $\boldsymbol{f} = (f_1, ..., f_r) \in K[X_1, ..., X_r]$
- Quotient algebra $\mathbf{A} := K[X_1, ..., X_r] / \mathcal{I}$

Definition.	
Triangular representation	Univariate representation
$\begin{split} \mathbf{T} &= (T_1, \dots, T_r) \\ T_i &\in K[X_1, \dots, X_i] \text{ monic} \\ T_i \text{ reduced w.r.t. } (T_1, \dots, T_{i-1}) \end{split}$	Primitive linear form Λ Minimal polynomial Q of Λ Parametrizations (S_i)
$\begin{split} K[X_1]/(T_1) \\ \vdots \\ K[X_1,,X_j]/(T_1,,T_j) \\ \vdots \\ \mathbb{A} &:= K[X_1,,X_r]/(T_1,,T_r) \end{split}$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

Lifting of triangular representations

Example of lifting.

Let $\boldsymbol{f} = (f_1, f_2)$ in $\mathbb{Z}[X_1, X_2]$ with

 $\begin{cases} f_1 := 33 X_2^3 + 14699 X_2^2 + 276148 X_1 + 6761112 X_2 - 11842820 \\ f_2 := 66 X_1 X_2 + X_2^2 - 94 X_1 - 75 X_2 - 22. \end{cases}$

Input: Triangular set T_0 modulo 7 of $f \in \mathbb{Z}[X_1, X_2]$ with

 $T_0 := (X_1^2 + 5X_1, X_2^2 + 3X_1X_2 + 2X_2 + 4X_1 + 6)$

Output: Triangular set T_2 modulo 7^3 of f

 $(X_1^2 + (5 + 5 \cdot 7 + 6 \cdot 7^2) X_1 + (7 + 7^2), \quad X_2^2 + (3 + 2 \cdot 7 + 7^2) X_1 X_2 + (2 + 3 \cdot 7 + 5 \cdot 7^2) X_2 + (4 + 5 \cdot 7^2) X_1 + (6 + 3 \cdot 7 + 6 \cdot 7^2))$

Remark. The precision is enough to recover the triangular set of f $T := (X_1^2 - 9X_1 + 56, X_2^2 + 66X_1X_2 - 75X_2 - 94X_1 - 22) \in \mathbb{Z}[X_1, X_2].$

Lifting of triangular representations

General context.

R ring, (p) principal ideal.

 R_p : completion of R for p-adic valuation.

Input.

- **f** polynomial system in $R[X_1, ..., X_r]$ given as an *s.l.p.*
- Triangular representation T_0 of f over R/(p)

+ Hensel hypothesis: Jac f_0 is invertible modulo T_0

Output.

• Triangular representation \boldsymbol{T} of \boldsymbol{f} over R_p at precision N

In this talk, R = k[x], p = (x), $R_p = k[[x]]$

Contribution

Existing body of work.

Newton-like iteration for triangular representation lifting over R_p

My contribution.

- First **relaxed** algorithm for triangular representation lifting over R_p
- Complexity improvements compared to Newton's iteration
- Implementation in the computer algebra software MATHEMAGIX

Applications of lifting.

- Computation of triangular representations over k(x) or $\mathbb Q$
- Repercutions on the complexity of
 - the geometric resolution algorithm
 - the triangular set change of order algorithm

[GIUSTI et al. '01], [HEINTZ et al. '01]

[DAHAN *et al.* '08]

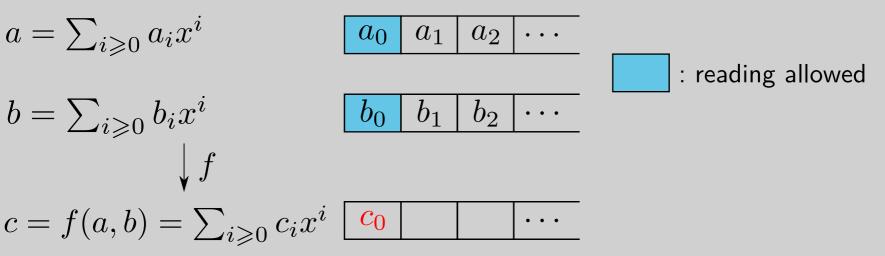
[SCHOST '02]

Definition of *relaxed* (or *on-line*) algorithms.

[HENNIE '66]

The *i*th coefficient of the output is written before the i + 1th, i + 2th, ... coefficients of the inputs are read.

That is

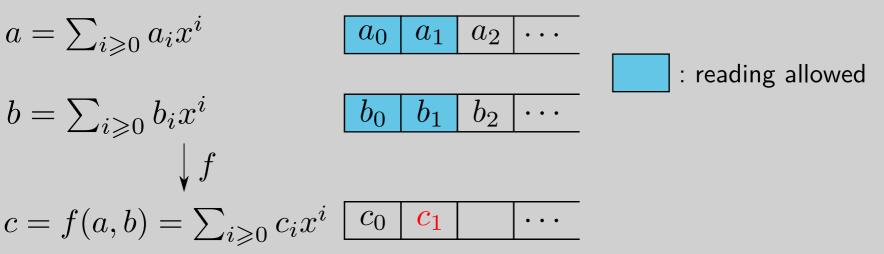


Definition of *relaxed* (or *on-line*) algorithms.

[HENNIE '66]

The *i*th coefficient of the output is written before the i + 1th, i + 2th, ... coefficients of the inputs are read.

That is

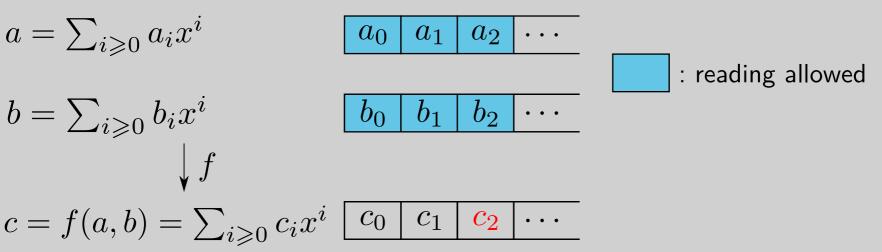


Definition of *relaxed* (or *on-line*) algorithms.

[HENNIE '66]

The *i*th coefficient of the output is written before the i + 1th, i + 2th, ... coefficients of the inputs are read.

That is



Definition of *relaxed* (or *on-line*) algorithms.

[HENNIE '66]

The *i*th coefficient of the output is written before the i + 1th, i + 2th, ... coefficients of the inputs are read.

Definition of *shifted* algorithms.

The *i*th coefficient of the output is written before the *i*th, i + 1th, ... coefficients of the inputs are read.

Relaxed arithmetic

Relaxed addition.

The naive addition algorithm is *relaxed*:

for i from 0 to N do $c_i := a_i + b_i$

Problem.

Fast polynomial multiplication algorithms (e.g. Karatsuba, FFT) are not relaxed.

Relaxed multiplication.[FISCHER, STOCKMEYER '74]Let- M(N): cost of $a \times b$ in k[[x]] at precision N.

- $\mathsf{R}(N)$: cost of $a \times b$ in k[[x]] at precision N by a relaxed algorithm.

Then

$$\mathsf{R}(N) = \mathcal{O}(\mathsf{M}(N) \log N) = \tilde{\mathcal{O}}(N).$$

Relaxed recursive power series

Definition.

A power series $y = \sum_{i \ge 0} y_i x^i \in k[[x]]$ is **recursive** if there exists $\Phi \in k[Y]$ such that

- $y = \Phi(y)$
- $\Phi(y)_n$ only depends on $y_0, ..., y_{n-1}$

Fundamental Theorem.	[WATT '88], [HOEVEN '02], [BERTHOMIEU, L. '12]
Let $y \in k[[x]]$ such that $y = \Phi(y)$. Given $u_0 \in k$ and $\Phi \in k[V]$, we can con-	mpute y at precision N in the time necessary to
evaluate $\Phi(y)$ by a shifted algorit	

Reduction to the relaxed framework

Work remaining to have a relaxed lifting algorithm.

• Express the triangular representation T as a **recursive** power series:

$$\boldsymbol{T} = \Phi(\boldsymbol{T}) := \underbrace{\boldsymbol{T}_0 + [B_0^{-1} \left(\boldsymbol{f} - (B - B_0) \left(\boldsymbol{T} - \boldsymbol{T}_0\right)\right) \operatorname{rem} \boldsymbol{T}_0]}_{\text{the coefficient in } x^n \text{ involves only } \boldsymbol{T}_0, \dots, \boldsymbol{T}_{n-1}}$$

where $B \in \mathcal{M}_r(k(x)[X_1, ..., X_r])$ is the *quotient matrix* s.t. $f = B \cdot T$.

• Giving a shifted algorithm for Φ :

$$\boldsymbol{T} = \Phi(\boldsymbol{T}) = \boldsymbol{T}_0 + [B_0^{-1}(\boldsymbol{f} - x^2(\delta(B) \cdot \delta(\boldsymbol{T}))) \text{ rem } \boldsymbol{T}_0]$$

where $\delta(B) := (B - B_0)/x$.

 \Rightarrow Relaxed lifting algorithm for T over R_p

Complexity results

Complexity improvements for univariate representations.

	Newton iteration	Relaxed algorithms		
Univariate representations	$\mathcal{O}(\mathbf{r} L + \mathbf{r}^{\omega}) \operatorname{M}(N) \operatorname{M}(d) + \mathcal{O}(N)$	$\mathcal{O}(L) \operatorname{R}(N) \operatorname{M}(d) + \mathcal{O}(N)$		

- r number of unknowns,
- ${\it N}$ precision of the output,
- L complexity of evaluation,
- d degree of the univariate representation

Timings

Implementation in the computer algebra software MATHEMAGIX.

	KATSURA-3		KATSURA-4		Katsura-5		Katsura-6	
N	Newton	relaxed	Newton	relaxed	Newton	relaxed	Newton	relaxed
2	0.02	0.007	0.08	0.02	0.25	0.06	0.8	0.17
4	0.03	0.01	0.10	0.03	0.35	0.08	1.1	0.22
8	0.05	0.02	0.17	0.05	0.55	0.13	1.7	0.36
16	0.08	0.04	0.29	0.09	0.9	0.24	1.9	0.70
32	0.14	0.07	0.51	0.20	1.7	0.53	5.2	1.5
64	0.26	0.16	1.0	0.44	3.3	1.2	10	3.6
128	0.51	0.36	1.9	1	6.6	2.8	21	8.6

Table. Timings in seconds of lifting of univariate representations over $\mathbb{F}_{16411}[[x]]$ for KATSURA-*n*.

Conclusion

Two paradigms for lifting.	
Newton iteration	Relaxed algorithms
implicit equations $\boldsymbol{P}(\boldsymbol{Y}) = 0$	recursive equations $oldsymbol{Y} = oldsymbol{\Phi}(oldsymbol{Y})$

Contributions.

- Relaxed algorithms for lifting **all** roots of a polynomial system over $k[[x]], \mathbb{Z}_p$
- Complexity improvements w.r.t. existing Newton's iteration
- Implementation in MATHEMAGIX

Perspectives.

- Lift of a polynomial root under more general hypotheses (multiplicities);
- Study hybrid Newton / relaxed algorithms

Thank you for your attention ;-)