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Abstract

In this paper, we focus on extensions of methods for interpolating rational func-
tions from their evaluations, in the context of erroneous evaluations. This prob-
lem can be seen both from a computer algebra and a coding theory point of
view. In computer algebra, this is a generalization of Simultaneous Rational
Function Reconstruction with errors and multiprecision evaluations. From an
error correcting codes point of view, this problem is related to the decoding of
some algebraic codes such as Reed-Solomon, Derivatives or Multiplicity codes.
We give conditions on the inputs of the problem which guarantee the uniqueness
of the interpolant.

Since we deal with rational functions, some evaluation points may be poles:
a first contribution of this work is to correct any error in a scenario with poles
and multiplicities that extends [KPY20]. Our second contribution is to adapt ra-
tional function reconstruction for random errors, and provide better conditions
for uniqueness using interleaving techniques as in [GLZ21].

1. Introduction

This paper deals with interpolation methods for reconstructing a vector of
rational functions, in presence of erroneous data. We present an extension of this
problem, meaning that for any evaluation point, we have more information than
just the evaluation of the rational function. Our goal is to study the condition
on the inputs of the problem which guarantees the uniqueness of the solution,
when some errors occur. We start by presenting the problem in its more general
form.

⋆This research work is supported by ANR-21-CE39-0009-BARRACUDA and ANR-21-
CE39-0006-SANGRIA.

Email addresses: guerrini@lirmm.fr (Eleonora Guerrini),
kamel.lairedj02@etud.univ-paris8.fr (Kamel Lairedj), lebreton@lirmm.fr (Romain
Lebreton), ilaria.zappatore@inria.fr (Ilaria Zappatore)

Preprint submitted to Elsevier July 28, 2022



Vector Rational Function Reconstruction. The Vector Rational Function Recon-
struction (VRFR) is the problem of reconstructing a vector of reduced rational
functions f/g = (f1/g1, . . . , fn/gn) ∈ Fq(x)n, given some polynomials ak, the
remainders rk = fk/gk mod ak, and bounds on the degrees of the numerators
and the denominators.

The VRFR problem generalizes the Cauchy interpolation problem, obtained
by taking a1 = · · · = an =

∏λ
j=1(x − αj) for some distinct αj ∈ Fq, since in

this case the modular equations become equations on the evaluations rk(αj) =
fk(αj)/gk(αj).

We call Simultaneous Rational Function Reconstruction (SRFR) the special
case of VRFR where all the rational functions share the same denominator, i.e.
g1 = · · · = gn = g ∈ Fq[x] and gcd(gcd(fi), g) = 1.

We now focus on the homogeneous linear system associated to SRFR (see
Definition 2.6) — where the unknowns are the coefficients of f and g. The
common denominator in SRFR implies that we have fewer unknowns than the
general VRFR problem, so fewer equations are potentially needed to solve the
problem. In the interpolation version of the problem, this is directly related
to the number λ of evaluation points needed to interpolate f/g (while in the
general version of SRFR it coincides with the degree of the polynomials ak’s).
However, if we reduce λ, the uniqueness of the solution (as a vector of rational
functions) is no longer guaranteed.

We can learn more on that by looking at the coding theory literature,
for instance at the collaborative decoder for Interleaved Reed-Solomon codes
[BKY03, SSB07, SVM09]. This decoder performs an SRFR: it has to recover
a vector of rational functions sharing the same denominator, namely the error
locator polynomial. Since the number of evaluation points is reduced (by ex-
ploiting the common denominator of SRFR), the decoder can fail and one has
to bound this probability failure. In case of success, the vector of rational func-
tions returned by the decoder reduces to a vector of polynomials corresponding
to the vector of sent messages.

An extension of the decoder of Interleaved Reed-Solomon codes is provided
in [GLZ19, GLZ21], dealing with the case where the solution does not reduce
to vector of polynomials — it remains a vector of rational functions.

In this paper we go further in the generalization of SRFR in order to handle
multiprecision evaluations and poles of the vector of rational functions that
we want to recover. In particular, we focus on SRFR with a1 = . . . = an =∏
(x−αj)ℓj for some positive integers ℓj ’s, called precision of the reconstruction.

This is a more general setting than the interpolation case, corresponding to
a more general notion of evaluation called multiprecision evaluation. In the
following paragraph, we focus on this notion.

Multiprecision evaluation and poles. Cauchy interpolation is the problem of
recovering f/g from its evaluations f(αj)/g(αj) at distinct evaluation points,
with the restriction that g(αj) ̸= 0. Notice that this extends the Lagrange
interpolation (where deg(g) = 0) to the rational function case. However, we
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can learn more information from an evaluation point αj if we also consider a
precision ℓj ≥ 1, i.e. by computing rj(x) = f(x)/g(x) mod (x − αj)

ℓj . We
refer to this approach as multiprecision evaluation. Taylor formula states that
knowing rj is equivalent to knowing the evaluation at αj ’s of f/g and of its
derivatives (f/g)(i) for i < ℓj (assuming a sufficiently large field characteristic).

In the polynomial case (i.e. deg(g) = 0 and n = 1), we can recover f from
its multiprecision evaluation by Hermite interpolation. In [KPY20] we can find
a generalization that can handle rational functions and errors (see the following
paragraph for more details on the interpolation with errors problem).

We cannot evaluate f(x)/g(x) mod (x − αj)
ℓj when αj is a pole of (f/g)

(i.e. g(αj) = 0) — in this case g(x) is not invertible modulo (x− αj)
ℓj . A first

approach to overcome this problem is to set the evaluation rj = (f/g)(αj) to a
new symbol ∞ when g(αj) = 0 and ℓj = 1. To the best of our knowledge, this
approach was first introduced in [KY13, KY14] in the context of sparse polyno-
mial interpolation. For dense polynomial interpolation (which is the context of
this paper), in [Per14], Cauchy interpolation is extended to handle poles even
in case of errors, but without multiprecision (ℓj = 1 for all j). This technique is
further extended in [KPY20] to recover a rational function from a multiprecision
evaluation, except on poles, i.e. ℓj = 1 when g(αj) = 0.

In this paper, we propose a new definition of multiprecision evaluation of
a rational function f/g that also captures the case of poles with their orders
(Definition 2.1). We circumvent the poles problem by multiplying the rational
function by an appropriate power of (x − αj) such that αj is not a pole of the
resulting rational function.

Comparing to [KPY20], we do not have to treat here separately the eval-
uation points which are poles. Indeed, we give a more unified framework in
this paper: any evaluation point is handled by using the same technique. We
then define in Section 2.1 the interpolation problem related to multiprecision
evaluation.

Interpolation with errors. In this paper we deal with SRFR with errors: we
assume that some evaluations may be erroneous, i.e. there exists αj for which
rj(x) ̸= f(x)/g(x) mod (x − αj)

ℓj . We now consider the case without mul-
tiplicities (ℓj = 1 for all j). In this case, one could still hope to recover the
rational functions vector by considering some additional evaluations using er-
ror correcting codes decoding techniques. To the best of our knowledge, the
first attempt in this direction is done by [Per14, Section 2.3.2], where the prob-
lem is defined in terms of rational codes. A rational code can be seen as an
extension of a Reed-Solomon code [RS60], where codewords are evaluations of
rational functions (of bounded degrees) instead of polynomials. Decoding can
be performed by an algorithm which extends Welch-Berlekamp method [WB86]
for Reed-Solomon codes. An important point is that the Welch-Berlekamp key
equation must be modified in order to handle possible poles of the rational func-
tions [Per14]. Decoding rational codes is, in this sense, a first important case of
SRFR with Errors and poles (SRFRwE).

An extension of rational codes to multiprecision evaluation is presented in
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[KPY20]. They call Hermite interpolation with errors the related decoding prob-
lem. This can be seen as an extension of derivatives codes [GW11] for rational
functions instead of polynomials. In this paper, we remove the assumption of a
large field characteristic of [KPY20] by using Hasse derivatives [Has36]. This is
a classical strategy to remove the characteristic’s assumption, used repeatedly
in coding theory [RJ97, O’S00, KP04, KSY14].

The goal of interpolation with errors problems (related to polynomials, ra-
tional functions or their vector versions) is to provide a condition on problem’s
inputs that guarantees that the interpolant is unique. For this purpose, [RS60,
Per14, BK14, KSY14, KPY20] give the number of extra evaluation points that
are required to correct up to a certain number of errors. However, in the context
of collaborative decoding of Reed-Solomon codes, [BKY03, SSB07, SVM09] have
shown that one can add fewer evaluation points and correct almost all errors, or
equivalently random errors with high probability, using interleaving techniques.
Recently, we showed how to adapt the interleaving techniques to SRFRwE but
without handling poles [GLZ19, GLZ21]. Here, we extend these techniques to
a multiprecision setting, handling multiplicities and poles. As in [GLZ21], some
error patterns could lead to a non-unique interpolant, making the reconstruc-
tion of the solution infeasible. We provide an upper bound on the number of
such troublesome errors.

Context and applications. Evaluation interpolation is a central technique in
computer algebra. It is used for instance to counteract the phenomenon of
intermediate expression swell which occurs when working over e.g. Z or Fq[x]
(see for instance [GG13, Section 5]).

The present paper is an extension of [GLZ21], in which the evaluation inter-
polation technique is used to solve polynomial linear systems A(x)y(x) = b(x)
(PLS), i.e. linear systems with univariate polynomial coefficients, where A(x) is
full rank and b(x) is a vector. An important feature of the PLS problem is that
its solution y(x) = f(x)/g(x) is a vector of rational functions with the same
denominator (by Cramer’s rule).

We recall that the evaluation interpolation technique can be used for a paral-
lel resolution of PLS. Consider a network of λ computing nodes whose j-th node
evaluates A(αj) and b(αj) and solves the evaluated system rj = A(αj)

−1b(αj).
All the nodes then send r1, . . . , rλ to a main node which finally performs a
simultaneous rational function reconstruction to recover the solution y(x).

An important generalization of this PLS solving technique asks the j-th
computing node to lift the evaluated solution A(αj)

−1b(αj) at a precision ℓj ,
i.e. to compute rj(x) = y(x) mod (x− αj)

ℓj . In the special case of λ = 1, this
method is due to [MC79, Dix82] and it is based on Hensel’s Lemma, which is
closely related to Newton-Raphson iteration. Still when λ = 1, it improves the
complexity with respect to evaluation interpolation but can not be parallelized.
For a general λ, this method combines the advantages of both approaches (see
[CS05] for the integer case).

So, the main node has to recover y(x) = f(x)/g(x) from multiprecision
evaluations rj(x) = y(x) mod (x − αj)

ℓj — this amounts to solving an SRFR
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problem. The sum of multiprecisions L =
∑λ
j=1 ℓj is a parameter of great

importance. On one hand, if the main node chooses an L which is too small,
it may not be able to recover y(x) because the SRFR problem’s solution is not
unique. On the other hand, if L is unnecessarily high, the computing network
performs superfluous computations.

The hybrid PLS resolution method presented above requires that the evalua-
tion point αj is not a pole of the solution y(x), so that A(αj) would be invertible.
The starting point of this paper is the remark that the j-th computing node
could still learn the valuation of y(x) at the point αj and the first terms of
its Laurent series expansion, using techniques similar to [DSV00] in the integer
case. In this scenario, the main node has to recover y(x) from a generalized
multiprecision evaluation with poles (see Definition 2.1).

Polynomial linear system solving with errors. As in [GLZ21], this paper focuses
on a scenario in which the computing nodes could make errors, possibly com-
puting rj(x) ̸= y(x) mod (x−αj)ℓj . We call Polynomial Linear System solving
with Errors (PLSwE) the problem of recovering y(x) given its multiprecision
evaluations, some of which are erroneous [BK14, KPSW17, GLZ19, GLZ21].

As before, the PLS with errors problem can be seen as an instance of an
SRFR with errors (SRFRwE, see Section 2.2). This work studies SRFRwE
instances leading to uniqueness, which is a central property in the same way that
unique decoding algorithms are essential in error correcting codes. Our goal is
to minimize the total multiprecision L required to uniquely recover the solution,
or equivalently to maximize the bound on the number of errors (decoding radius)
that we could correct for a given L.

To sum up, the present work extends the results of [GLZ21] on SRFRwE to
the setting of a multiprecision evaluation that also allows evaluation points to
be poles of the rational function. We leave the corresponding results on PLSwE
as a future work.

Outline of the paper. The paper is structured as follows. In Section 2, we present
a new setting of SRFR with multiprecision evaluation that can also handle poles.
We extend the results of [KPY20] in this setting, removing the assumptions on
the characteristic of the field.

In Section 3, we study the uniqueness conditions for random errors. Using
interleaving techniques from algebraic coding theory, we can lower the total
multiprecision L compared to Section 2.

2. Rational Function Reconstruction with errors

Preliminaries and notations. We start by fixing notations and the setting of
this work. Let Fq be a finite field of order q. We denote by Fq[x]<d the set of
polynomials over Fq of degree less than d. In this paper, we extensively deal
with vectors of polynomials over Fq[x]: we use lowercase bold letters for vectors
f ∈ Fq[x]n, and we denote by fi their components. The degree of a nonzero
vector f is deg(f) = maxi(deg(fi)). We also consider the set of evaluation points
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{α1, . . . , αλ}, where αj ∈ Fq are pairwise distinct. We associate a multiplicity
ℓj ∈ Z≥0 to any evaluation point αj . We assume that the evaluation points are
ordered so that the sequence of multiplicities (ℓj)j is nonincreasing.

Recall that the valuation valαj
(f) of a nonzero polynomial f(x) at αj is

defined as the maximal integer v such that (x− αj)
v divides f . By convention,

we fix valαj (0) = +∞. The valuation can be extended to rational functions
f/g ∈ Fq(x) by valαj (f/g) := valαj (f) − valαj (g). Therefore, the valuation
valαj

(f/g) is the maximal integer v such that f/g can be written (x − αj)
vb

where b(x) ∈ Fq(x) and b(αj) ∈ Fq \{0}. In particular, if valαj
(f/g) is negative,

then g must vanish at αj . In this case, valαj
(g) = − valαj

(f/g) provided that
gcd(f, g) = 1.

In this paper, we often consider valuations of vectors of rational functions
f/g ∈ Fq(x)n; we define valαj (f/g) = mink(valαj (fk/g)). With this definition,
we keep the property that the valuation valαj

(f/g) is the maximal integer v such
that f/g can be written (x− αj)

vb where b(x) ∈ Fq(x)n and b(αj) ̸= 0 ∈ Fnq .
Finally, we will sometimes assume in this paper that the vectors of rational

functions f/g are reduced, meaning that gcd(f , g) := gcd(gcdi(fi), g) = 1.

We now present our new formal definition of multiprecision evaluation that
also handles multiprecision evaluation at poles in a unified setting. The notation
J0; ℓjK denotes the set of integers k such that 0 ≤ k ≤ ℓj .

Definition 2.1 (Multiprecision evaluation). We set the evaluation of a re-
duced fraction f/g ∈ Fq(x)n at αj at precision ℓj to be (vj , rj) ∈ J0; ℓjK×Fq[x]n
such that

vj := min(valαj
(g), ℓj)

rj := f/(g/(x− αj)
vj ) mod (x− αj)

ℓj−vj .

By convention, we set rj := 1 when vj = ℓj .

Remark 2.2. From now on, we consider rj of degree less than ℓj − vj when
vj < ℓj .

Note that rj is well-defined: if vj = valαj (g), then g/(x−αj)
vj has valuation 0

at αj , so it is invertible modulo (x− αj)
ℓj−vj . Otherwise, if vj = ℓj , then rj is

defined modulo 1, so any value works.

Remark 2.3. The definition of vj requires gcd(f , g) = 1; this hypothesis can
be lifted by setting vj := min(ℓj ,max(0,− valαj (f/g))). Therefore, we stress
out that the evaluation (vj , rj) depends only on the fraction f/g and not on
the choice of representatives of the fraction.

Lemma 2.4. Let (vj , rj) be the multiprecision evaluation at αj of a vector of
rational functions f/g, then gcd(rj , (x− αj)

vj ) = 1.

Proof. If vj = ℓj then rj = 1 so the claim follows. We consider now the case vj <
ℓj . We assume w.l.o.g. that the fraction f/g is reduced, i.e. that gcd(f , g) = 1.
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We distinguish two cases. First, if valαj (f/g) ≥ 0, then valαj (g) = 0 and so,
vj = 0. Otherwise, if valαj (f/g) < 0, then valαj (g) = − valαj (f/g) and since
vj < lj , we have that vj = valαj

(g). Thus, valαj
(rj) = valαj

(f/g)+ vj = 0. So,
in both cases gcd(rj , (x− αj)

vj ) = 1.

Notice that Definition 2.1 amounts to give the first ℓj−vj terms of the formal
Laurent series Fq((x−αj))n expansion of the vector f/g, and vj zero coefficients
of g (g = 0 mod (x− αj)

vj ).

2.1. The interpolation problem without errors
In this section, we focus on the problem of interpolating a multipoint eval-

uation.

Definition 2.5 (Simultaneous RFR with poles). Given,

• a set of λ ≥ 1 evaluation points αj ’s with corresponding precisions ℓj ,

• two positive degree bounds N,D ∈ Z>0,

• for all 1 ≤ j ≤ λ, (vj , rj) ∈ J0; ℓjK × Fq[x]n with gcd((x− αj)
vj , rj) = 1,

we consider the problem of finding f/g ∈ Fq(x)n such that

vj = min(ℓj ,max(0,− valαj
(f/g))), (1)

rj = f/(g/(x− αj)
vj ) mod (x− αj)

ℓj−vj for 1 ≤ j ≤ λ, (2)
deg(f) < N, deg(g) < D. (3)

Link with Cauchy interpolation. If n = 1 (no vector), ℓj = 1 (no multiplicity),
and vj = 0 (no pole), the simultaneous RFR with poles coincides with the
problem of finding a rational function f/g such that f(αj)/g(αj) = rj , given
rj ∈ Fq and the degree constraints as in Equation (3). Notice that here we
are excluding poles of the vector of rational functions. Thus, simultaneous
RFR with poles generalizes a classical computer algebra problem, known as
Cauchy interpolation. Cauchy interpolation, does not always admit a solution.
Furthermore, if it does, this solution is unique when we consider

λ ≥ LRFR := N +D − 1 (4)

evaluation points [GG13, Section 5.8].
Usually in the literature, we focus on the weaker version of the Cauchy

interpolation problem, whose goal is to find (f, g) such that f(αj) = rjg(αj),
given rj and the degree constraints as in Equation (3). This problem has the
advantage to be linear, and it always admits a nonzero solution when λ = LRFR.
Furthermore, if λ ≥ LRFR (as in Equation (4)) this solution is unique.

Any solution of the Cauchy interpolation problem is also a solution of the
weaker version. The converse is not always true. However, it can be proven
that the converse becomes true when the solution (f, g) of the weaker version
satisfies gcd(f, g) = 1 [GG13, Corollary 5.18].
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We now come back to Definition 2.5. As for the Cauchy interpolation, we
observe that any solution f/g of simultaneous RFR also satisfies the following
weaker version.

Definition 2.6 (Weak simultaneous RFR with poles (SRFR)). Given,

• a set of λ ≥ 1 evaluation points αj ’s with corresponding precisions ℓj ,

• two positive degree bounds N,D ∈ Z>0,

• for all 1 ≤ j ≤ λ, (vj , rj) ∈ J0; ℓjK × Fq[x]n with gcd((x− αj)
vj , rj) = 1,

we consider the problem of finding (f , g) ∈ Fq[x]n+1 such that for all 1 ≤ j ≤ λ,

(x− αj)
vjf = rjg mod (x− αj)

lj , (5)
deg(f) < N, deg(g) < D. (6)

Let G :=
∏λ
j=1(x−αj)ℓj , and denote L :=

∑λ
j=1 ℓj = deg(G) the number of

evaluation points counted with their multiplicities. Using the Chinese Remain-
der Theorem, we define r ∈ Fq[x]n<L as the unique vector of polynomials such
that r = rj mod (x−αj)

ℓj for any 1 ≤ j ≤ λ. Similarly, we define w ∈ Fq[x]<L
so that w = (x− αj)

vj mod (x− αj)
ℓj for any 1 ≤ j ≤ λ. Then Equation (2) is

equivalent to
r = wf/g mod G. (7)

Remark 2.7. We now observe that our definition of SRFR slightly differs from
the literature about this topic. Usually, SRFR refers to the case where vj = 0
and the modulus G (obtained by applying the Chinese Remainder Theorem as in
(7)) can be any polynomial in Fq[x] [OS07, GLZ20]. Despite these ambiguities,
we use the same acronym SRFR for this case, to make the notations simple.

As for the Cauchy interpolation, this problem is linear and always admits a
nonzero solution, when nL ≤ nN +D−1 (in this case, we have more unknowns
than equations). On the contrary, the stronger version of Definition 2.5 does not
always have a solution. For instance, the Cauchy interpolation counter-example
of [GG13, Example 5.19] applies here when nL = nN +D − 1 and n = 1.

We have the following proposition as in the Cauchy interpolation problem.

Proposition 2.8. Let (f , g) ∈ Fq[x]n+1 be a solution of SRFR (Definition 2.6).
If gcd(f , g) = 1, then f/g is a solution of simultaneous RFR with poles (cf.
Definition 2.5), with the same entries.

Proof. We want to prove that f/g satisfies all the equations of Definition 2.5.
Note that if gcd(f , g) = 1, then max(0,− valαj

(f/g)) = valαj
(g). Therefore,

min(ℓj ,max(0,− valαj
(f/g))) = min(ℓj , valαj

(g)).
Our goal then is to prove that

vj = min(ℓj , val(g)) =: v′j (8)
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Assume for now that it is true. If vj < ℓj , then vj = valαj (g), and we can
divide Equation (5) by g to get Equation (2). Moreover, Equation (2) is always
verified when vj = ℓj .

We now prove the claim of Equation (8). On one hand, (x − αj)
vj divides

both (x − αj)
vjf and (x − αj)

ℓj , so it divides rjg by looking at Equation (5).
By hypothesis, gcd(rj , (x−αj)vj ) = 1 which gives that (x−αj)vj divides g and
vj ≤ v′j .

On the other hand, notice that (x− αj)
v′j divides both g and (x− αj)

ℓj , so
it divides (x − αj)

vjf . Since gcd(f , g) = 1 and (x − αj)
v′j divides g, we also

have gcd(f , (x − αj)
v′j ) = 1. Therefore, (x − αj)

v′j must divide (x − αj)
vj and

so v′j ≤ vj .

We will now show that SRFR admits a unique solution when L ≥ LRFR.
This upper bound is coherent with the number of evaluations needed to uniquely
reconstruct a solution of the Cauchy Interpolation problem (ℓj = 1 for any j,
in which case L = λ).

Proposition 2.9. Assume L ≥ LRFR. For any (φ, ψ) and (f , g) nonzero
solutions of SRFR with the same entries, i.e. satisfying for all 1 ≤ j ≤ λ,{

(x− αj)
vjφ = rjψ mod (x− αj)

ℓj

deg(φ) < N, deg(ψ) < D

{
(x− αj)

vjf = rjg mod (x− αj)
ℓj

deg(f) < N, deg(g) < D

then φ/ψ = f/g.

Proof. By multiplying (x−αj)vjφ = rjψ mod (x−αj)ℓj by g and (x−αj)vjf =
rjg mod (x− αj)

ℓj by ψ, we obtain:{
(x− αj)

vjφg = rjψg mod (x− αj)
ℓj+valαj

(g)

(x− αj)
vjfψ = rjψg mod (x− αj)

ℓj+valαj
(ψ).

Let us assume for now that valαj
(g) ≥ vj and valαj

(ψ) ≥ vj . Then, by
subtracting one equation by the other we get

(x− αj)
vj (φg − fψ) = 0 mod (x− αj)

ℓj+vj

⇐⇒ (φg − fψ) = 0 mod (x− αj)
ℓj .

Let p := φg − fψ. We have that p = 0 mod G where G :=
∏λ
j=1(x − αj)

ℓj .
Since deg(p) < N +D−1 and the degree of G is L ≥ N +D−1, we have shown
that p = 0 as desired.

We now prove that valαj
(g) ≥ vj and valαj

(ψ) ≥ vj . From Equation (5), we
have

(x− αj)
vjf = rjg + (x− αj)

ℓjP

for a given P ∈ Fq[X]. The polynomial (x−αj)
vj divides both (x−αj)

vjf and
(x−αj)ℓjP because vj ≤ ℓj , so it must divide rjg. Since we have assumed that
gcd(rj , (x− αj)

vj ) = 1, then (x− αj)
vj divides g and so valαj

(g) ≥ vj . We get
similarly that valαj

(ψ) ≥ vj .
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2.2. The interpolation problem with errors
In this work we deal with the SRFR problem, focusing on a scenario where

some errors occur. For this purpose, we start by introducing our error model,
we then provide the formal definition of SRFR with errors (and poles) (Defini-
tion 2.11), and we finally describe the technique used to solve it.

Note that from now on, for simplicity, we consider reduced vectors of rational
functions f/g.

Error model. We start by defining what is an error on an evaluation. For all
1 ≤ j ≤ λ, let (vj , rj) ∈ J0; ℓjK × Fq[x]n such that gcd((x − αj)

vj , rj) = 1. We
define the error support E := {j | (x−αj)

vjf ̸= rjg mod (x−αj)
ℓj} as the set

of positions j where (vj , rj) differs from a vector of rational function f/g. For
any erroneous position j, we define the minimal error index µj := valαj ((x −
αj)

vjf − rjg). Note that for j ∈ E, µj < ℓj . We can extend the definition of
µj also for correct positions by setting µj := min(valαj

((x− αj)
vjf − rjg), ℓj)

for any 1 ≤ j ≤ λ.

Remark 2.10. In order to state a parallel with the context of error-correcting
codes, we consider (vj , rj)1≤j≤λ as the received message that we want to cor-
rect as f/g. For that, first we should define a distance in the space of received
messages, which measures the number of errors. The distance should take into
account the definition of multiprecision evaluation, and be consistent with the
definition of error model. The following definition corresponds to our require-
ments but is not a proper distance because the objects being compared are not
of the same type: on one hand we have a vector of rational functions and on
the other hand an evaluation.

We define a weighted Hamming “distance”

d(f/g, (vj , rj)1≤j≤λ) :=
∑
j∈E

(ℓj − µj)

between a vector of rational functions f/g and evaluations (vj , rj)j . By defini-
tion, this quantity is zero if and only if µj = ℓj for all j, which is equivalent to
E = ∅. Therefore, the distance is zero if and only if (f , g) is a solution of SRFR
for the evaluations (vj , rj)j . Note that, in the case of Cauchy interpolation
(n = 1, ℓj = 1, vj = 0), then d(f/g, (vj , rj)j) = |E| is the classical Hamming
distance where E simplifies to the set E = {j | f(αj) ̸= rjg(αj)}.

We can now define our interpolation with errors problem; starting from any
(vj , rj)j , our goal is to find a rational function f/g which is close to (vj , rj)j
according to our definition of distance.

Definition 2.11 (SRFR with poles and errors (SRFRwE)). Given param-
eters N,D ∈ Z>0, τ̂ ∈ Z≥0, and for all 1 ≤ j ≤ λ, (vj , rj) ∈ J0; ℓjK × Fq[x]n
such that gcd((x− αj)

vj , rj) = 1, find a vector of rational functions f(x)/g(x)
satisfying the degree constraints N > deg(f), D > deg(g) and the distance
bound τ̂ ≥ d(f/g, (vj , rj)j).

10



In a context where the distance between f/g and (vj , rj)j is given by the
(non weighted) Hamming distance, i.e. if we are looking for f/g such that
τ ≥ |E| for a given τ , then f/g is a solution of SRFRwE for τ̂ :=

∑τ
j=1 ℓj . This

is because d(f/g, (vj , rj)j) =
∑
j∈E(ℓj − µj) ≤

∑τ
j=1 ℓj , since the sequence of

the ℓj ’s is nonincreasing.

Key Equations. We now describe our technique to solve SRFRwE.
We define the error locator polynomial Λ :=

∏
j∈E(x − αj)

ℓj−µj . Observe
that deg(Λ) = d(f/g, (vj , rj)j) and Λ((x − αj)

vjf − rjg) = 0 mod (x − αj)
ℓj

because µj = min(valαj ((x− αj)
vjf − rjg), ℓj).

Remark that, by definition, τ̂ is a known upper bound on the degree of the
error locator, i.e. τ̂ ≥ deg(Λ). Therefore, we have that (Λf ,Λg) belongs to the
set Sr,N+τ̂ ,D+τ̂ of solutions (φ, ψ) ∈ Fq[x]n+1 of the key equations

(x− αj)
vjφ = rjψ mod (x− αj)

ℓj for 1 ≤ j ≤ λ (9)
deg(φ) < N + τ̂ , deg(ψ) < D + τ̂ . (10)

Remark 2.12. Notice that (Λf ,Λg) is a solution of SRFR (see Definition 2.6)
with entries (vj , rj)j , N + τ̂ , and D + τ̂ . Thus, our resolution method consists
in finding solutions of this specific SRFR problem.

We will now give an equivalent system of equations whose polynomial un-
knowns have smaller degrees. We define G∞ :=

∏
j(x − αj)

vj and L∞ :=

deg(G∞). Since (x − αj)
vj divides (x − αj)

vjφ and (x − αj)
ℓj , it divides rjψ.

However, gcd((x − αj)
vj , rj) = 1 so (x − αj)

vj divides ψ for all j, hence G∞

divides ψ. If we denote by ψ̄ the quotient ψ/G∞, then Equations (9) and (10)
are equivalent to

φ = rj
G∞

(x− αj)vj
ψ̄ mod (x− αj)

ℓj−vj , (11)

deg(φ) < N + τ̂ , deg(ψ̄) < D + τ̂ − L∞. (12)

This latter equation is consistent with the choice of rj of degree smaller
than ℓj − vj in Remark 2.2: only the remainders of rj modulo (x − αj)

ℓj−vj

matter. Also, the definition of minimal error index µj only depends on the
residue of rj modulo (x−αj)

ℓj−vj . Indeed, if vj > valαj
(g), then µj = valαj

(g)
regardless of the value of rj . If vj ≤ valαj (g) then rjg is well-defined modulo
(x− αj)

ℓj−vj+valαj
(g), so modulo (x− αj)

ℓj , and so we can conclude that µj is
also well-defined.

We have already remarked that (Λf ,Λg) belongs to Sr,N+τ̂ ,D+τ̂ . How-
ever, if the degree bounds N > deg(f), D > deg(g) and the error bound
τ̂ ≥ deg(Λ) are not tight, we get also other solutions. Indeed, Sr,N+τ̂ ,D+τ̂ ⊇
⟨xiΛf , xiΛg⟩0≤i<δN+τ̂,D+τ̂

, where

δN+τ̂ ,D+τ̂ := min(N − deg(f), D − deg(g)) + τ̂ −
∑
j∈E

(ℓj − µj) (13)

11



and ⟨bi⟩ denotes the Fq-vector space spanned by the bi’s.
Note that δN+τ̂ ,D+τ̂ is defined so that i < δN+τ̂ ,D+τ̂ if and only if deg(xiΛf) <

N + τ̂ and deg(xiΛg) < D + τ̂ .

Link to previous work. Our scenario can be viewed as an extension of different
previous works. If in the key equations (9) we consider vj = 0 (no poles) and
ℓj = 1 (no multiplicities), we fall back to the simpler key equations

φ(αj) = rjψ(αj), deg(φ) < N + τ, deg(ψ) < D + τ. (14)

These key equations (14) comes from [BK14, KPSW17, GLZ19] and they derive
from the generalization of the Welch-Berlekamp method [WB86] for decoding
Reed-Solomon codes. Also, if g(x) ∈ Fq (no rational function) and ℓj > 1 (with
multiplicities), the key equations (9) and (10) can be used for the decoding of
derivative codes [GW11] or of the related multiplicity codes [KSY14].

The paper [KPY20] considers poles but without multiplicities. Their key
equation is a special case of our key equation (11). Indeed, if αj is an apparent
pole, defined as vj > 0, then vj = 1 since vj ≤ ℓj = 1. In this case, G∞ is the
product of apparent poles, and we have

• if αj is an apparent pole, the key equation (11) reduces to the identity
0 = 0 mod (x− αj)

ℓj ,

• otherwise, the key equation (11) becomes φ = rjG
∞ψ̄ mod (x− αj)

ℓj .

By applying the Chinese remainder theorem, we can deduce φ = rjG
∞ψ̄ mod

Ḡ where Ḡ =
∏

{j|vj=0}(x − αj). Multiplying by G∞, we obtain G∞φ =

rj(G
∞)2ψ̄ mod ḠG∞. This is the key equation of [KPY20, Equation (16)]

(where H = rj(G
∞)2), which admits (Λf ,Λg/G∞) as solution (note that

(Λg)/G∞ = Λ̄Ḡ).

2.3. Uniqueness of SRFRwE for all errors
In this framework, it is crucial to determine a bound on L which guaran-

tees that SRFRwE has a unique solution. In order to study the conditions of
uniqueness of SRFRwE, we will analyze the uniqueness of Sr,N+τ̂ ,D+τ̂ .

Theorem 2.13. Under the setting of Definition 2.11, assume that

L ≥ N +D − 1 + 2τ̂ .

If there exists a reduced fraction solution f(x)/g(x) of the SRFRwE problem
then Sr,N+τ̂ ,D+τ̂ has the special form

Sr,N+τ̂ ,D+τ̂ = ⟨xiΛf , xiΛg⟩0≤i<δN+τ̂,D+τ̂

for δN+τ̂ ,D+τ̂ defined as in Equation (13).
In this case, the solution f(x)/g(x) of SRFRwE is unique.

12



The bound on L of Theorem 2.13 generalizes the following results in the
literature:

1. Reed-Solomon codes [RS60].
Consider vj = 0 (no poles), ℓj = 1 (no multiplicities), D = 1 and n = 1
(polynomials instead of rational functions). In this case, we can take
τ̂ = τ ≥ |E| as a bound on the size of the error support. Thus, the
bound becomes L ≥ N +2τ , which matches the unique decoding radius of
Reed-Solomon codes.

2. We find the same bound L ≥ N + D − 1 + 2τ as [Per14, BK14] for the
extension of RS codes to the rational case, i.e. vj = 0, ℓj = 1, D > 1 and
n = 1.

3. Multiplicity codes [KSY14] (or derivative codes [GW11]).
If we consider vj = 0 (no poles), D = 1 and n = 1 (polynomial case) and
constant multiplicities ℓ = ℓ1 = · · · = ℓλ, we get the bound λℓ ≥ N + 2τℓ
of [KSY14] where τ ≥ |E| is a bound on the error support size.

4. When considering multiplicities, i.e. ℓj ≥ 1, we get the same bound L ≥
N +D − 1 + 2τ̂ as [KPY20]. Moreover, Theorem 2.13 extends the work
of [KPY20] in two ways: first, we can handle multiplicities of poles and
second, we remove the hypothesis on the characteristic char(Fq) ≥ ℓj .
The latter hypothesis was needed since Hermite interpolation at order ℓj
involves the coefficient 1/(ℓj−1)!. We use Hasse derivatives in Section 2.4
to overcome this problem.

Proof. We assume that there exists a solution f(x)/g(x) of the SRFRwE prob-
lem with instance (vj , rj)1≤j≤λ.

We now prove that Sr,N+τ̂ ,D+τ̂ ⊂ ⟨xiΛf , xiΛg⟩0≤i<δN+τ̂,D+τ̂
, the other in-

clusion being straightforward. From now on, we fix (φ, ψ) ∈ Sr,N+τ̂ ,D+τ̂ .
First we show that gφ− fψ = 0. We have that,{

(x− αj)
vjφ = rjψ mod(x− αj)

ℓj

(x− αj)
vjΛf = rjΛg mod(x− αj)

ℓj .

We multiply the first equation by Λg, so it reaches precision ℓj + vj . Indeed
valαj

(Λg) ≥ vj since (x − αj)
vj divides rjΛg and gcd((x − αj)

ℓj , rj) = 1.
Similarly, we multiply the second equation by ψ so it becomes an equation
modulo (x− αj)

ℓj+vj (since valαj (ψ) ≥ vj). Finally, we get

(x− αj)
vjΛ(φg − fψ) = 0 mod (x− αj)

ℓj+vj

⇐⇒ Λ(φg − fψ) = 0 mod (x− αj)
ℓj .

The polynomial p := Λ(φg−fψ) is zero modulo G =
∏λ
j=1(x−αj)ℓj , which

has degree L. However, p has degree

deg(p) ≤ deg(Λ) + max(deg(g) + deg(φ),deg(f) + deg(ψ))

⇒ deg(p) < τ̂ + (N +D − 1 + τ̂)

⇒ deg(p) < L.
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So, p = 0. Finally, Λ ̸= 0 so φg − fψ = 0.

Since φg − fψ = 0 and gcd(f , g) = 1 then there exists P ∈ Fq[x] such that
(φ, ψ) = (Pf , Pg). The key equations (x− αj)

vjφ = rjψ mod (x− αj)
ℓj yield

P ((x− αj)
vjf − rjg) = 0 mod (x− αj)

ℓj for all j.
Since µj = min(valαj

((x−αj)vjf−rjg), ℓj), and µj < ℓj iff j ∈ E, we obtain
that P = 0 mod (x − αj)

ℓj−µj for j ∈ E. This means that ∃Q ∈ Fq[x], P =
ΛQ. Finally, (φ, ψ) = Q(Λf ,Λg) and the degree constraints on (φ, ψ) imply
deg(Q) < δN+τ̂ ,D+τ̂ which concludes our proof.

The bound L ≥ N +D−1+2τ̂ on the number of evaluations required to en-
sure uniqueness depends on bounds N,D on the degrees of deg(f),deg(g). Since
an overestimation of the degree bounds N,D implies an unnecessary increase of
the bound on L, in [KPSW17] or [GLZ21, Section 4]) authors introduce some
early termination techniques. The following remark gives an input for adapting
these techniques in our context.

Remark 2.14. Let Sr,ν,ϑ be the solution set of the key Equation (9) with
degree constraints deg(φ) < ν,deg(ψ) < ϑ. Then (xiΛf , xiΛg) still belongs to
Sr,ν,ϑ provided that i < δν,ϑ where δν,ϑ := min(ν−deg(f), ϑ−deg(g))−deg(Λ).

Then, the proof of Theorem 2.13 can be adapted to show that for any ν, ϑ,
Sr,ν,ϑ = ⟨xiΛf , xiΛg⟩0≤i<δν,ϑ whenever L ≥ max(N + ϑ,D + ν)− 1 + τ̂ .

2.4. Solving key equations
Our resolution method of SRFRwE is based on solving the key equations (9),

with degree constraints (10). When the number L is large enough to ensure that
the solution is unique, i.e. Sr,N+τ̂ ,D+τ̂ = ⟨xiΛf , xiΛg⟩, we can recover (Λf ,Λg)
by finding the minimal degree solution (whose last component is monic) of
Sr,N+τ̂ ,D+τ̂ . Then we can recover (f , g) from (Λf ,Λg) by dividing by Λ =
gcd(Λf ,Λg).

There are two main methods to find the minimal solution of Sr,N+τ̂ ,D+τ̂

according to the algebraic interpretation of this solution set. First, Sr,N+τ̂ ,D+τ̂

can be seen as a Fq-vector space. Indeed, we will show later that the set of
solutions is the kernel of a linear map Γr. By taking a column echelon form
of the matrix Mr,N+τ̂ ,D+τ̂ associated to Γr, we can find the minimal degree
solution [WB86, BK14, KPSW17].

The solution space Sr,N+τ̂ ,D+τ̂ can be also seen as a Fq[x]-submodule of
Fq[x]n+1. Its minimal solution can be extracted from a particular Fq[x]-basis of
this module, called the row reduced basis [Fit95, OS07, Nie13, RS16].

For the rest of this section we focus on the first method, based on linear
algebra, since it will be useful to prove uniqueness results of SRFRwE in the
random error framework (Section 3).
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Solving key equations with linear algebra. We recall that Sr,N+τ̂ ,D+τ̂ is the set
of (φ, ψ) which belongs to the kernel of the following Fq-linear map Γr:

Fq[x]n<N+τ̂ × Fq[x]<D+τ̂ →
λ∏
j=1

(
Fq[x]/(x− αj)

ℓj
)n

(φ, ψ) 7→ ((x− αj)
vjφ− rjψ)1≤j≤n.

We now fix a Fq-vector space basis for the domain and the codomain of Γr, and
represent Γr as the matrix Mr,N+τ̂ ,D+τ̂ according to those bases. Therefore,
we can see Sr,N+τ̂ ,D+τ̂ as the kernel of a matrix Mr,N+τ̂ ,D+τ̂ .

We use the monomial basis (xt)t=0..ℓ−1 for each component Fq[x]<ℓ on the
domain. The codomain is isomorphic to (Fq[x]/G)n where G :=

∏λ
j=1(x−αj)ℓj .

So, we consider a specific basis (Hi,j)0≤i<ℓj
1≤j≤λ

of Fq[x]/G such that Hi,j is defined

using the Chinese remainder theorem as the only polynomial which satisfies Hi,j =

{
0 mod(x− αj′)

ℓj′ when j′ ̸= j
(x− αj)

i mod(x− αj)
ℓj

deg(Hi,j) < deg(G)
.

We call this a Hasse basis since it is the dual basis of the Hasse derivatives
[Has36] (see for instance [Cox20, Section 2]).

Monomial to Hasse basis. In order to deduce the matrix associated to Γr, we
need to decompose according to the Hasse basis the polynomials φk, ψ which are
written on the monomial basis (xt). Since xt = (x−α+α)t =

∑t
i=0

(
t
i

)
αt−i(x−

α)i, we get that the following decomposition on the Hasse basis for xt:

xt =
∑

1≤j≤λ
0≤i≤min(t,ℓj−1)

(
t

i

)
αt−ij Hi,j mod G.

Let’s define the matrix Wα,ℓ corresponding to the change of basis from the
monomial basis to the Hasse basis. The formulae are

Wα,ℓ,d :=

Wα1,ℓ1,d

...
Wαλ,ℓλ,d

 ∈ FL×dq ,

where,

Wαj ,ℓj ,d :=



1 αj α2
j α3

j . . .
(
ℓj−1
0

)
α
ℓj−1
j . . .

(
d−1
0

)
αd−1
j

0 1 2αj 3α2
j

(
ℓj−1
1

)
α
ℓj−2
j . . .

(
d−1
1

)
αd−2
j

0 0 1 3αj
(
ℓj−1
2

)
α
ℓj−3
j . . .

(
d−1
2

)
αd−3
j

0 0 0 1
...

...

0 0 0 0
. . .

...
...

0 0 0 0 0
(
ℓj−1
ℓj−1

)
α0
j . . .

(
d−1
ℓj−1

)
α
d−ℓj
j


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belongs to Fℓj×dq and d ≥ ℓj for all j.
Notice that if ℓj = 1 for all j, then Wα,ℓ simplifies, and we get the Vander-

monde matrix

Wα,1,d =

1 α1 α2
1 . . . αd−1

1
...

...
...

...
1 αλ α2

λ . . . αd−1
λ

 ∈ Fλ×dq .

Multiplication in the Hasse basis. Assume that rj is given by its decomposition
on the Hasse basis, i.e. that we are given the coefficients ri,j,k ∈ Fq such that
rj,k =

∑
0≤i<ℓj ri,j,k(x − αj)

i mod (x − αj)
ℓj , where rj,k is the k-th vector

component of rj .
We now explain how the multiplication works on the Hasse basis. By looking

at the residues modulo (x− αj)
ℓj , we can remark that

Ht,jHs,j′ =

 0 if j ̸= j′

0 if j = j′ and t+ s ≥ ℓj
Ht+s,j if j = j′ and t+ s < ℓj

.

We define the matrix Tr,ℓ,k that corresponds to the multiplication by (rj,k)j in
the Hasse basis of Fq[x]/G as

Tr,ℓ,k :=

Tr,ℓ,1,k . . .
Tr,ℓ,λ,k

 ∈ FL×Lq ,

where

Tr,ℓ,j,k :=


r0,j,k
r1,j,k r0,j,k

...
. . . . . .

rℓj−1,j,k . . . r1,j,k r0,j,k

 ∈ Fℓj×ℓjq .

This matrix T is also useful for the multiplication (x−αj)
vjφ of Γr. Define

s such as si,j,k = 1 if i = vj and 0 elsewhere, where 1 ≤ j ≤ λ, 0 ≤ i < ℓj and
1 ≤ k ≤ n as usual.

Matrix formula. We can now give the formula for the matrix Mr,N+τ̂ ,D+τ̂ Ts,ℓ,1Wα,ℓ,N+τ̂ −Tr,ℓ,1Wα,ℓ,D+τ̂

. . .
...

Ts,ℓ,nWα,ℓ,N+τ̂ −Tr,ℓ,nWα,ℓ,D+τ̂


which belongs to FnL×(n(N+τ̂)+D+τ̂)

q .
An important aspect of this matrix is that the coefficients ri,j,k appears only

in the last D+ τ̂ columns of Mr,N+τ̂ ,D+τ̂ , with degree 1. This will play a central
role in all proofs related to the random error model. Note also that this matrix
generalizes the matrix of [BKY03] revisited also in [GLZ21, Remark 2.3].
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Remark 2.15. It is possible to express the solution space Sr,N+τ̂ ,D+τ̂ as the
kernel of a more compact matrix M ′

r,N+τ̂ ,D+τ̂ by considering the linear appli-
cation related to the key Equation (11) instead of Equation (9). In this case,
the matrix M ′

r,N+τ̂ ,D+τ̂ has n(L − L∞) rows and (n(N + τ̂) +D + τ̂ − L∞)
columns, where L∞ := deg(G∞) =

∑
j vj .

3. Rational Function Reconstruction with random errors

Recall that our goal in this work is to determine a bound on L which guar-
antees the uniqueness of the solution of SRFRwE. We showed in Theorem 2.13
that if L ≥ N +D− 1+ 2τ̂ , we can uniquely reconstruct the solution. We have
already remarked in Section 2.2 that our resolution method for SRFRwE is a
generalization of the Welch-Berlekamp decoding technique for Reed-Solomon
codes. As in [GLZ19, GLZ21], we will exploit techniques coming from the de-
coding of Interleaved Reed-Solomon codes (IRS) to reduce the bound on L.

In this section we start by introducing some technical results, we formalize
our problem (Definition 3.3) and we conclude by proving that under some as-
sumptions on the error distribution we can lower the bound on L (Theorem 3.4).

3.1. Multiplicity balancing
In the upcoming Theorem 3.4, we face the following problem: we dispatch

the random errors among the n components of the vectors rj . More specifically,
recall that for the error locator definition Λ(x), an error at the evaluation point
αj for j ∈ E is counted with multiplicity ℓj − µj (see Section 2.2). Thus, we
need to partition the error support E = ⊔nk=1Ik in such a way that the weight∑
j∈Ik(ℓj −µj) of each part Ik, is as small as possible — the symbol ⊔ refers to

a disjoint union.
We denote

MB((ℓj − µj)j , E) := min
E=⊔n

k=1Ik

(
max
k

(
∑
j∈Ik

(ℓj − µj))

)
this minimum, where MB stands for multiplicity balancing. This problem is
commonly known as the load balancing problem, the multiprocessor scheduling
problem, or as P ||Cmax (see for instance [CEC+13, Section 6]).

In general, the problem of computing MB((ℓj − µj), E) is NP-hard. There
are a few simple instances: in the special case without multiplicities (ℓj = 1,
µj = 0 for all j ∈ E), then MB((ℓj − µj), E) = ⌈|E|/n⌉. More generally, if the
(ℓj −µj)j∈E ’s are constant equal to C, then MB((ℓj −µj), E) = C ⌈|E|/n⌉. For
general instances, we can only give approximations in polynomial time. His-
torically, Graham used the list scheduling algorithm to find a 2-approximation
[Gra66]. Indeed, Graham’s result applied to our case gives:

MB((ℓj − µj)j , E) ≤ max
k

( ∑
j∈Ik

(ℓj − µj)

)
≤

⌈∑
j∈E

(ℓj − µj)/n

⌉
+max

j∈E
(ℓj − µj)
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for the partition E = ⊔nk=1Ik given by the list scheduling algorithm. Since⌈∑
j∈E(ℓj − µj)/n

⌉
≤ MB((ℓj − µj)j , E) and maxj∈E(ℓj − µj) ≤ MB((ℓj −

µj)j , E), we obtain a 2-approximation which is easy to compute, i.e.

MB((ℓj − µj)j , E) ≤
⌈∑
j∈E

(ℓj − µj)/n

⌉
+max

j∈E
(ℓj − µj) ≤ 2MB((ℓj − µj)j , E).

(15)

3.2. SRFR with random errors
Theorem 2.13 shows that if we consider L ≥ N + D − 1 + 2τ̂ , we can

uniquely reconstruct solutions of SRFRwE (Definition 2.11). In the following,
we consider a scenario of SRFR with random errors, with the purpose of proving
uniqueness results for a smaller L. This scenario was already presented in coding
theory and it is related to the decoding of Interleaved Reed-Solomon (IRS) codes
[BKY03, BMS04]. An extension of these techniques to SRFRwE (without poles
and multiplicities) can be found in [GLZ19, GLZ21]. Here, we revisit these
results in the more general context of multiprecision interpolation.

In the following remark, we recall some results about the decoding of IRS
codes and clarify the link with our generalized problem.

Remark 3.1. In the previous section we have introduced a technique for solv-
ing the SRFRwE problem, based on the resolution of the key equations (9),
with degree constraints (10).

We briefly recall that an IRS codeword is the multipoint evaluation of a
vector of polynomials of bounded degrees. Decoding an IRS code consists in re-
constructing a vector of polynomials by its evaluations, some of which possibly
erroneous. We can observe that SRFRwE is a generalization of this decod-
ing problem: if vj = 0 (no poles), ℓj = 1 (no multiplicities) and g(x) = 1
(polynomial case instead of rational function) it consists in reconstructing a
vector of polynomials, given its evaluations where some could be erroneous.
Our resolution technique based on the key equations resolution generalizes the
interpolation-based decoding technique for IRS codes [WB86], which is based
on a Cauchy interpolation. For this specific case, Theorem 2.13 tells us that
we can uniquely decode IRS codewords (of an IRS code of length L and dimen-
sion N) when L ≥ N + 2τ0, i.e. up to τ0 :=

⌊
L−N

2

⌋
errors which is also called

unique decoding radius. But, the interleaved structure of these codes allows us
to correct beyond τ0, or equivalently to reduce the number of evaluations, if the
errors are uniformly distributed. Thus, our goal in this section is to reduce the
bound on L of Theorem 2.13, by applying and revisiting the techniques related
to the decoding of IRS to our more general case.

We start by analyzing the possible errors that we could have in our problem.
Given evaluations (vj , rj)1≤j≤λ, where each (vj , rj) ∈ J0; ℓjK × Fq[x]n satisfies
gcd((x−αj)vj , rj) = 1, and a reduced fraction f/g, we divide the error support

E = {j | (x− αj)
vjf ̸= rjg mod (x− αj)

ℓj}
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into the valuation errors

Ev := {j | vj ̸= min(valαj
(g), ℓj)}

and the remaining evaluation errors

Er = {j | (vj = valαj (g) < ℓj) and
(
(x− αj)

vjf/g ̸= rj mod (x− αj)
ℓj−vj

)
}.

Proposition 3.2. The error support E can be partitioned into valuation errors
Ev and evaluation errors Er, i.e. E = Ev ⊔ Er.

Proof. If vj = min(valαj (g), ℓj) = ℓj then j belongs to no error support.
In the case where vj = min(valαj

(g), ℓj) < ℓj , then vj = valαj
(g) < ℓj . In

this case, j ∈ E ⇔ j ∈ Er since (x− αj)
vjf ̸= rjg mod (x− αj)

ℓj is equivalent
to (x− αj)

vjf/g ̸= rj mod (x− αj)
ℓj−vj .

Suppose that vj < min(valαj (g), ℓj). Then valαj (g) > 0 so valαj (f) = 0
(because gcd(f , g) = 1). As a result, vj = valαj ((x − αj)

vjf) < valαj (rjg).
Hence, µj = vj < ℓj . So, in this case, j belongs to both E and Ev.

Finally, assume that vj > min(valαj
(g), ℓj). It must be that valαj

(g) =
min(valαj

(g), ℓj) < vj . Since vj > 0 and gcd((x − αj)
vj , rj) = 1, we get

valαj (rj) = 0. Consequently, valαj (g) = valαj (rjg) < valαj ((x−αj)vjf). Thus,
µj = valαj (g) < ℓj and j belongs to both E and Ev.

We can define a variant of Definition 2.11 which also takes into account these
new error supports.

Definition 3.3 (SRFR with poles and random errors). Given parameters
N,D ∈ Z>0, τ̂v, τ̂r, τr ∈ Z≥0 and for all 1 ≤ j ≤ λ, (vj , rj) ∈ J0; ℓjK × Fq[x]n

such that gcd((x − αj)
vj , rj) = 1, find a vector of rational functions f(x)

g(x) sat-
isfying the degree constraints N > deg(f), D > deg(g) and the error bounds
τ̂v ≥

∑
j∈Ev

(ℓj − µj), τ̂r ≥
∑
j∈Er

(ℓj − µj), and τr ≥ |Er|.

Note that τ̂ := τ̂v + τ̂r is an upper bound on the degree of the error locator
thanks to Proposition 3.2. In a context where the distance between f/g and
(vj , rj)j is given by the (non weighted) Hamming distance, i.e. if we are looking
for f/g such that τv ≥ |Ev| and τr ≥ |Er| for given τv, τr, then f/g is a solution
of SRFR with random errors for τ̂v :=

∑τv
j=1 ℓj and τ̂r :=

∑τr
j=1 ℓj since the

sequence of the ℓj ’s is nonincreasing.
Going back to our previous discussion, the two error supports Er and Ev do

not play the same role on whether a received instance can be uniquely recon-
structed. We will show that for all errors on the valuation error support Ev,
and for a certain proportion of errors on the evaluation error support Er, then
the received instance can be uniquely reconstructed.

Formally, we fix two error supports Ēv and Ēr, and a list of minimal error
indices (µ̄j)1≤j≤λ such that there exists an evaluation (v̄j , r̄j)1≤j≤λ and a vector
of reduced rational functions f(x)/g(x) which corresponds to Ēv, Ēr and (µ̄j).

We consider the family Fv̄,r̄ of received evaluations (vj , rj)1≤j≤λ such that
vj = v̄j for all j, rj = r̄j mod (x − αj)

ℓj−vj for j /∈ Ēr, and rj = r̄j mod (x −
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αj)
µ̄j−vj for j ∈ Ēr. Equivalently, (vj , rj)j ∈ Fv̄,r̄ iff for all j ∈ Ēr, there exists

ej ∈ Fq[x]n such that rj = r̄j + ej(x− αj)
µ̄j−vj mod (x− αj)

ℓj−vj .
Yet another description of Fv̄,r̄ is based on the coefficients ri,j,k of the k-th

vector component rj,k of rj on the Hasse basis (see Section 2.4), i.e.

rj,k =
∑

0≤i<ℓj−vj

ri,j,k(x− αj)
i mod (x− αj)

ℓj−vj .

Then rijk = r̄ijk when j /∈ Ēr or when j ∈ Ēr and i < µ̄j − vj . Moreover, one
can enumerate Fv̄,r̄ by taking all possible ri,j,k in Fq for µ̄j − vj ≤ i < ℓj − vj ,
j ∈ Ēr, and 1 ≤ k ≤ n.

Theorem 3.4. Following the previous notations, we assume that the reduced
fraction f/g is a solution of the problem of Definition 3.3 related to (v̄j , r̄j), i.e.
that N > deg(f), D > deg(g), and τ̂v ≥

∑
j∈Ēv

(ℓj − µ̄j), τ̂r ≥
∑
j∈Ēr

(ℓj − µ̄j),
and τr ≥ |Ēr|. Suppose that

L ≥ N +D − 1 + 2τ̂v + τ̂r +MB(ℓ, J1; τrK).

Let (vj , rj)1≤j≤λ be a uniformly distributed random evaluation in Fv̄,r̄.
Then Sr,N+τ̂ ,D+τ̂ = ⟨xiΛf , xiΛg⟩0≤i<δN+τ̂,D+τ̂

with probability at least 1 −
D+τ̂
q (for δN+τ̂ ,D+τ̂ defined as in Equation (13)).

Note that τ̂ := τ̂r + τ̂v is a bound on the degree of the error locator of any
(vj , rj)j ∈ Fv̄,r̄. Indeed, when (vj , rj)j ∈ Fv̄,r̄, the valuation error supports Ev
of (vj , rj)j and Ēv of (v̄j , r̄j)j coincide. However, the evaluation error supports
are only contained, i.e. Er ⊂ Ēr, since the minimal error indices µj of rj and
µ̄j of r̄j coincide, except for j ∈ Ēr where µj ≥ µ̄j .

Remark 3.5. Let us detail how we can make the bound on the number of
evaluations of Theorem 3.4 more practical.

The following proof of this theorem will actually show the uniqueness result
whenever L ≥ N +D− 1+ 2τ̂v + τ̂r +MB((ℓj − µ̄j), J1; τrK). If we combine this
with the 2-approximation of multiplicity balancing given in Equation (15), we
get the uniqueness result whenever

L ≥ N +D − 1 + 2τ̂v + τ̂r + ⌈τ̂r/n⌉+ ℓ1.

In the special case with no poles (vj = 0 for all j), then τ̂ = τ̂r and the
bound becomes

L ≥ N +D − 1 + τ̂ + ⌈τ̂ /n⌉+ ℓ1,

Moreover, if ℓ1 = · · · = ℓλ = ℓ, we can use the simple form of multiplicity
balancing in this case (see Section 3.1) to get

λℓ ≥ N +D − 1 + ℓ(τ + ⌈τ/n⌉).

The bound on L of Theorem 3.4 is the generalization of existing results:
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1. Interleaved Reed-Solomon codes [BKY03].
Set vj = 0 (no poles), ℓj = 1 (no multiplicities) and D = 1 (polynomial
case). In this case, we can take an empty valuation error support, i.e.
τ̂v = 0, and we can consider τ̂r = τr ≥ |Ēr|. When the multiplicity is
constant, we have seen in Section 3.1 that MB(1, J1; τrK) = ⌈τr/n⌉. So,
by Theorem 3.4, we have L ≥ N − 1 + τr + ⌈τr/n⌉ which matches the
decoding radius of interleaved Reed-Solomon codes for random errors.

2. We find the same bound L ≥ N+D−1+τr+⌈τr/n⌉ than [GLZ19, GLZ21]
for the extension of IRS codes to the rational case.

3. Multiplicity codes [KSY14] (or derivative codes [GW11]).
If we consider vj = 0 (no poles), D = 1 (polynomial case) and constant
multiplicities ℓ = ℓ1 = · · · = ℓλ, our bound for the uniqueness becomes
λℓ ≥ N + ℓ(τ + ⌈τ/n⌉). This corresponds to the interleaved multiplicity
codes capability for random errors. It has to be compared with the unique
decoding capability λℓ ≥ N + 2ℓτ of multiplicity codes [KSY14].

Proof. Since f/g is a solution of the problem of Definition 3.3 for (v̄j , r̄j), then
f/g is also a solution of the same problem for any (vj , rj)1≤j≤λ ∈ Fv̄,r̄. There-
fore, (Λf ,Λg) is always a solution in Sr,N+τ̂ ,D+τ̂ and we always have that
Sr,N+τ̂ ,D+τ̂ ⊆ ⟨xiΛf , xiΛg⟩0≤i<δN+τ̂,D+τ̂

.
The proof is based on the following two steps:

1. show that there exists a draw (vj ,wj) in Fv̄,r̄ for which the corresponding
solution space Sw,N+τ̂ ,D+τ̂ = ⟨xiΛf , xiΛg⟩0≤i<δN+τ̂,D+τ̂

. We only need to
prove the inclusion ⊆ since the other inclusion ⊇ is always verified;

2. derive an upper bound on the probability of the event Sr,N+τ̂ ,D+τ̂ ̸=
⟨xiΛf , xiΛg⟩0≤i<δN+τ̂,D+τ̂

.

1. Consider a partition of the error support Ēr = ⊔nk=1Ik which achieves the
optimal multiplicity balancing for (ℓj − µ̄j) on Ēr (see Section 3.1). Therefore,
for any 1 ≤ k ≤ n, we get that

∑
j∈Ik(ℓj − µ̄j) ≤ MB((ℓj − µ̄j)j , Ēr). For any

j ∈ Ēr, we denote by kj ∈ J1;nK the unique index such that j ∈ Ikj .
Remember that all (vj , rj)j ∈ Fv̄,r̄ coincide when j /∈ Ēr. So we only need

to set wj for j ∈ Ēr. Actually, for all j ∈ Ēr, we want to define wj ∈ Fq[x]n
such that

(x− αj)
vjf −wjg = εkj (x− αj)

µ̄j mod (x− αj)
ℓj

where εi is the i-th element of the canonical basis of Fnq . We need to show
that such a wj exists. Since µ̄j is the minimal error index of r̄j , we have that
µ̄j ≥ vj = valαj

(g) when j ∈ Ēr. Therefore, we can set for j /∈ Ēr,

wj := ((x− αj)
vjf − εkj (x− αj)

µ̄j )/g mod (x− αj)
ℓj−vj ,

which is well-defined because the valuation at αj of the right-hand side is non-
negative. Note that for j /∈ Ēr, (x− αj)

vjf −wjg = 0 mod (x− αj)
µ̄j because

wj coincides with r̄j .
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Fix (φ, ψ) ∈ Sw,N+τ̂ ,D+τ̂ . Our first goal is to prove that p(x) = 0 where
p(x) := f(x)ψ(x) − φ(x)g(x). For j /∈ Ēr, we consider the key equations and
the equations satisfied by wj :{

(x− αj)
vjφ = wjψ mod(x− αj)

ℓj

(x− αj)
vjf = wjg mod(x− αj)

µ̄j
.

We multiply the first equation by g, so it reaches precision (x − αj)
ℓj+valαj

(g).
We multiply the second equation by ψ, which must be a multiple of (x−αj)vj , so
it becomes an equation modulo (x−αj)vj+µ̄j . From (x−αj)vjΛf = wjΛg mod
(x−αj)ℓj , we get that (x−αj)vj divides Λg. As a result, vj+ µ̄j ≤ ℓj+valαj (g),
so we get

(x− αj)
vj (fψ −φg) = 0 mod (x− αj)

vj+µ̄j

(fψ −φg) = 0 mod (x− αj)
µ̄j .

Now, for j ∈ Ēr, we combine the key equations and the equations defining wj :{
(x− αj)

vjφ = wjψ mod(x− αj)
ℓj

(x− αj)
vjf = wjg + εkj (x− αj)

µ̄j mod(x− αj)
ℓj .

By a similar reasoning about precisions, we obtain

(x− αj)
vj (fψ −φg) = εkj (x− αj)

µ̄jψ mod(x− αj)
vj+ℓj

(fψ −φg) = εkj (x− αj)
µ̄j (ψ/(x− αj)

vj ) mod(x− αj)
ℓj .

Note that (x− αj)
vj divides ψ, so valαj

(fψ − φg) ≥ µ̄j . Let us fix k and look
at the k-th component pk of p. We have shown before that

valαj (pk) ≥


ℓj if j /∈ E

µ̄j if j ∈ Ēv

ℓj if j ∈ Ēr \ Ik
µ̄j if j ∈ Ik ⊂ Ēr

.

Therefore, pk is zero modulo a polynomial of degree

L−
∑
j∈Ik

(ℓj − µ̄j)−
∑
j∈Ēv

(ℓj − µ̄j) ≥ L−MB((ℓj − µ̄j)j , Ēr)−
∑
j∈Ēv

(ℓj − µ̄j).

On the other hand, deg(fψ −φg) < N +D − 1 + τ̂ which is less than or equal
to the previous modulus degree. Therefore, pk = 0 and p = 0.

We can now conclude this first part of the proof by showing that Sw,N+τ̂ ,D+τ̂ =
⟨xiΛf , xiΛg⟩0≤i<δN+τ̂,D+τ̂

.
Since fψ−φg = 0 and gcd(gcdi(fi), g) = 1 then there exists P ∈ Fq[x] such

that (φ, ψ) = (Pf , Pg). The key equations (x− αj)
vjφ = rjψ mod (x− αj)

ℓj

yield P ((x− αj)
vjf − rjg) = 0 mod (x− αj)

ℓj for all j.
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We use the fact that µj = min(valαj ((x− αj)
vjf − rjg), ℓj) and the equiv-

alence (µj < ℓj) ⇔ (j ∈ E) to obtain that P = 0 mod (x − αj)
ℓj−µj for

j ∈ E. This means that there exists Q ∈ Fq[x] such that P = ΛQ. Fi-
nally, (φ, ψ) = Q(Λf ,Λg) and the degree constraints on (φ, ψ) imply that
deg(Q) < δN+τ̂ ,D+τ̂ which concludes this part of the proof.

2. We now conclude the proof by bounding the probability of the event
Sr,N+τ̂ ,D+τ̂ ̸= ⟨xiΛf , xiΛg⟩0≤i<δN+τ̂,D+τ̂

. In this last part of the proof we de-
note δr,N+τ̂ ,D+τ̂ := δN+τ̂ ,D+τ̂ and the error locator Λ := Λr to underline the
dependency on rj .

Recall that for all (vj , rj)j ∈ Fv̄,r̄, the minimal error indices µj of rj and
µ̄j of r̄j coincide, except for j ∈ Ēr where µj ≥ µ̄j . This means that the error
locator Λr corresponding to rj divides the error locator Λr̄ of r̄j . Hence, the
δr,N+τ̂ ,D+τ̂ := min(N + τ̂ − deg(f), D + τ̂ − deg(g))− deg(Λr) related to rj is
greater than or equal to δr̄,N+τ̂ ,D+τ̂ which is related to r̄j .

So, for all (vj , rj)j ∈ Fv̄,r̄, we have that (see Section 2.4)

δr̄,N+τ̂ ,D+τ̂ ≤ δr,N+τ̂ ,D+τ̂ ≤ dimSr,N+τ̂ ,D+τ̂ = dimkerMr,N+τ̂ ,D+τ̂ .

We will now show that the probability that a uniformly distributed random
(vj , rj)j in Fv̄,r̄ satisfies dimkerMr,N+τ̂ ,D+τ̂ ≤ δr̄,N+τ̂ ,D+τ̂ is bounded from
below by 1− (D + τ̂)/q. This will conclude the proof.

By the Rank-Nullity Theorem, the rank of Mr,N+τ̂ ,D+τ̂ plus the dimension
of its kernel is equal to the dimension of its domain, so rank(Mr,N+τ̂ ,D+τ̂ ) ≤
n(N + τ̂) +D + τ̂ − δr̄,N+τ̂ ,D+τ̂ =: ρ.

On the other hand, as proved above, there exists a draw (wj)j∈Ēr
of (rj)j∈Ēr

,
such that rank(Mw,N+τ̂ ,D+τ̂ ) = ρ. This means that there exists a nonzero ρ-
minor in Mw,N+τ̂ ,D+τ̂ . We consider the same nonzero ρ-minor in Mr,N+τ̂ ,D+τ̂

as a multivariate polynomial C whose indeterminates are (ri,j,k) for j ∈ Ēr,
µ̄j − vj ≤ i < ℓj − vj , and 1 ≤ k ≤ n. Thus, we have shown before the existence
of a draw (wj)j∈Ēr

of (rj)j∈Ēr
, such that C(wj) is nonzero. Hence, the poly-

nomial C is nonzero. For any matrix r such that (rj)j∈Ēr
is not a root of C,

then rank(Mr,N+τ̂ ,D+τ̂ ) ≥ ρ, so dimkerMr,N+τ̂ ,D+τ̂ ≤ δr̄,N+τ̂ ,D+τ̂ .
Note that the total degree of the polynomial C is at mostD+τ̂ , since only the

last D+ τ̂ columns of the matrix Mr,N+τ̂ ,D+τ̂ contain the variables (ri,j,k)j∈Ēr

with total degree 1 (see Section 2.4). Finally, the polynomial C cannot vanish in
more than a (D+τ̂)/q-fraction of its domain by the Schwartz-Zippel Lemma.

Remark 3.6. We are confident that our techniques can be adapted to a context
of early termination as in [GLZ21, Section 4].

Let Sr,ν,ϑ be the solution set of Equation (9) with degree constraints deg(φ) <
ν, deg(ψ) < ϑ. Then (xiΛf , xiΛg) still belongs to Sr,ν,ϑ provided that i < δν,ϑ
where δν,ϑ := min(ν − deg(f), ϑ− deg(g))− deg(Λ). The proof of Theorem 3.4
can be adapted to show that for any ν, ϑ, Sr,ν,ϑ = ⟨xiΛf , xiΛg⟩0≤i<δν,ϑ with
probability at least 1−ϑ

q whenever L ≥ max(N+ϑ,D+ν)−1+τ̂v+MB(ℓ, J1; τrK).
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4. Conclusion

In this paper we present a multiprecision evaluation approach for the vector
rational reconstruction with errors. This is a complete setting that extends re-
cent literature on the subject, handling poles and removing the hypothesis on
the characteristic of the field. Moreover, we adapt the analysis of simultaneous
rational function reconstruction for random errors in this new scenario, provid-
ing a uniqueness condition (applying interleaving techniques) and an estimation
of the probability failure.
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