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ABSTRACT
Order bases are a fundamental tool for linear algebra with
polynomial coefficients. In particular, block Wiedemann
methods are nowadays able to tackle large sparse matrix
problems because they benefit from fast order basis algo-
rithms. However, such fast algorithms suffer from two prac-
tical drawbacks: they are not designed for early termination
and often require more knowledge on the input than neces-
sary. In this paper, we propose an online algorithm for order
basis which allows for both early termination and minimal
input requirement while keeping quasi-optimal complexity
in the order. Using this algorithm inside block Wiedemann
methods leads to an improvement of their practical perfor-
mances by a constant factor.

1. INTRODUCTION
Order bases (also called sigma bases) are the cornerstone

of efficient algorithms with polynomial matrices over finite
fields. Their use in algorithms for determinant, column re-
duction [6] or minimal nullspace basis [21] has reduced these
problems to the simpler computation of polynomial matrix
multiplication. A complete panel of these reductions can be
found in [11, 19].

Since their introduction in 1994 [1], order basis computa-
tions are quasi-optimal in the order of approximation. Fast
linear algebra has been included later on for square matrices
[6], then for any matrix dimensions [20].

Historically, order basis were introduced in [1] to give a
generalization of Hermite-Padé approximants in the matrix
case. It is nowadays well known that a minimal generator
of a linearly generated scalar sequence is related to a spe-
cific Padé approximant. As a non trivial transposition to
the matrix case, it has been shown in [18, 16] that order
bases provide a fast solution to the problem of computing a
minimal generator of a linearly generated matrix sequence.
Note that many other approaches solve this problem, e.g.
Toeplitz/Hankel solver, matrix Berlekamp-Massey or matrix
extended Euclidean, but only few of them provide fast poly-
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nomial arithmetic together with fast matrix multiplication.
We refer to [14] for a classification of all possible algorithms
with their corresponding reference and complexity.

Modern sparse linear algebra over a finite field exten-
sively relies on Coppersmith’s block Wiedemann algorithm
[4], which in turn computes a minimal matrix generating
polynomial. In practical applications (e.g. integer factoriza-
tion or rank of cohomology group), we do not always dispose
a priori of a tight bound on the degree of the minimal gen-
erator. Early termination techniques are an important tool
to deal with this issue but, to the best of our knowledge, no
fast block Wiedemann algorithms enable early termination
strategies in the order basis computation.

Hence we focus in this paper on the application of order
basis to the block Wiedemann framework and we investi-
gate the possibility to reduce its complexity in the context
of early termination. In particular, existing fast order ba-
sis algorithms may compute superfluous coefficients of their
power series matrix input when stopping early. This is the
case of the fast algorithm PM-Basis of [6]. The cost of com-
puting this power series matrix is dominant in block Wiede-
mann, and so it is of great interest to minimize the number
of required coefficients.

Main results. We contribute by giving two new algorithms
iPM-Basis and oPM-Basis. Algorithm iPM-Basis is a variant
of PM-Basis suited to early termination. It consists of an
iterative version of the recursive algorithm PM-Basis. This
enables efficient early termination strategies in block Wiede-
mann methods. However, this is not optimal yet because we
may have to pay the cost of computing more coefficients of
the power series matrix than necessary.

Therefore we propose a fast online order basis oPM-Basis.
Since online algorithms require minimal knowledge on the
input by definition (see Section 5), we use oPM-Basis inside
block Wiedemann algorithm and show that it has a positive
impact both in theory (see Proposition 12) and practice (see
Figure 4) in the context of early termination.

2. USEFUL MATERIALS
Let K be a field. If A =

∑
iAix

i is in K[x]m×n or
K[[x]]m×n, and i, j are integers with i 6 j, then we write

Ai...j = Ai +Ai+1x+ · · ·+Aj−1x
j−i−1,

so that Ai...j has degree less than j − i.
Let A ∈ K[x]m×m and B ∈ K[x]m×n with A of degree less

than d. Then, the middle product MP(A,B, d, h) of A and
B is defined as the part Dd−1...h of the product D := A ·B,



so that deg(MP(A,B, d, h)) < h− d+ 1. The balanced case
corresponds to h = 2d− 1; we denote this MP(A,B, d).

2.1 Shifted degree
The notion of shifted degree of a polynomial matrix is

an extension of the classic polynomial degree where some
scalings are introduced either by row or by column. In par-
ticular, the shifted ~s-row degree of a row vector v ∈ K[x]1×n

with ~s = [s1, . . . , sn] corresponds to max
1≤i≤n

(si+deg v[i]) ∈ N.

This naturally extends to any matrix A ∈ K[x]m×n by
considering the ~s-row degrees of the rows of A. The follow-
ing lemma states the compatibility of the ~s-row degree with
matrix multiplication.

Lemma 1 ([19, Lemma 2.4]). If the ~u-row degree of B ∈
K[x]k×n is bounded by the vector ~v ∈ Zk and the ~v-row de-
gree of A ∈ K[x]m×k is bounded by ~w ∈ Zm then the ~u-row
degree of AB is bounded by ~w.

2.2 Row reduced matrix
A matrix R ∈ K[x]m×m is said to be ~s-row reduced if the

~s-row degree of R is lesser or equal to the ~s-row degree of
UR for any unimodular matrix U . Note that we say that a
~s-row degree ~u is greater or equal to ~v if all its components
are greater or equal. Despite this is not a total order, it
always exists a matrix with minimal ~s-row degree in the set
of UR for U unimodular [19, Corollary 1.21].

The following lemma gives a criteria to certify that a ma-
trix is ~s-row reduced. Denote by x~s the n×n diagonal matrix
with entries [xsi , . . . , xsn ].

Lemma 2 ([2, 19]). Let ~u be the ~s-row degree of a ma-
trix R ∈ K[x]m×m. Then R is ~s-row reduced if and only if
the leading coefficient matrix T = x−~uRx~s mod x of R for
the ~s degree has full rank.

This row reduced form is not unique as is. Extra conditions
on R are required for unicity; this is known as the Popov
form [2]. The following lemma establishes a condition on
the product of reduced matrices to be reduced.

Lemma 3 ([19, lemma 2.18]). If B is a full-rank ~u-
row reduced matrix with its ~u-row degree bounded by ~v, then
AB is ~u-row reduced if and only if A is ~v-row reduced.

3. ORDER BASIS ALGORITHMS
Let F =

∑
i>0 Fix

i ∈ K[[x]]m×n be a matrix of power

series with m ≥ n, σ a positive integer and (F, σ) be the
K[x]-module of v ∈ K[x]1×m such that vF ≡ 0 mod xσ. A
polynomial matrix P is a (left) order basis of F of order
σ ∈ N∗ and shift ~s ∈ Nm if the rows of P form a basis of
(F, σ), P is non-singular and P is ~s-row reduced (see [20, 19]
for more details).

Without loss of generality, we only consider in this paper
the case n = O(m) with a balanced shift ~s as in [6]. Indeed
the techniques of [20] allow to reduce the general situation
to our particular case.

Nowadays there are mainly two algorithms for computing
order bases. In this section, we propose a new presentation
of these two algorithms of [6] using the modern framework
of order basis from [19].

Throughout the paper, the order basis algorithms, ex-
cept M-Basis, will take as input a power series matrix F ∈

K[[x]]m×n, a shift vector ~s ∈ Nm and an approximation or-
der σ ∈ N∗, and return a (σ,~s) order basis P of F and its
~s-row degree ~u.

3.1 The base case (order 1)
In order to simplify the presentation of all following order

basis algorithms, we treat separately the case σ = 1. This
case corresponds to finding a polynomial matrix M of min-
imal ~s-row degree such that MF ≡ 0 mod x. This problem
roughly reduces to the computation of the column reduced
echelon form of the kernel of πF ∈ Km×n, where π is a
permutation matrix such that the sequence π~s is increasing.
Hence, one can use the PLE decomposition [10] over K for
this matter. In this decomposition, P is a permutation ma-
trix, L is a lower unit triangular matrix and E is the echelon
form.

Algorithm 1: Basis(F,~s)

Input: F ∈ Km×n, ~s ∈ Nm
Output: M ∈ K[x]m×m, ~u ∈ Nm

1: Find the permutation π s.t. π~s is sorted increasingly
2: Compute the PLE decomposition τLE of πF

3: Let r = rank(E) and write L =

[
Lr
G Im−r

]
4: M :=

[
xIr
−GL−1

r Im−r

]
τ−1π

5: ~u := τ−1π~s+
[
1r 0n−r

]T
6: return M,~u

Proposition 4. Algorithm Basis outputs a (1, ~s) order
basis M of F and its ~s-row degree ~u. Its complexity is
O(mnrω−2) operations in K, where r corresponds to the rank
of F .

Proof. For the correctness of the algorithm, we need to
prove that MF ≡ 0 mod x, detM 6= 0 and M is ~s-row
reduced. By definition of the row echelon form, it is clear
that the m−r last rows of E are zero. Consequently the last
m− r rows of MF are also zero. Since the first r rows of M
equal to xIr, it is clear that MF ≡ 0 mod x. Then detM =
±xr 6= 0. Finally we assume, without loss of generality, that
the permutations π and τ are equal to the identity. This
assumption implies that ~s is already sorted increasingly and
that ~u = [s1 + 1, . . . , sr + 1, sr+1, . . . , sm]. Therefore, the
matrix T = x−~uMx~s = Im +O(x−1)x→∞, which implies by
Lemma 2 that M is ~s-row reduced and then concludes the
proof of correctness of algorithm Basis. The complexity of
Basis algorithm is dominated by the cost O(mnrω−2) of PLE
decomposition [10].

3.2 Quadratic algorithm
To compute a (σ,~s)-order basis, Algorithm M-Basis pre-

sented in [6] works iteratively by induction on the approxi-
mation order.

Proposition 5. Algorithm M-Basis is correct and its com-
plexity is O(mωσ2) operations in K.

Proof. Let us prove the correctness of Algorithm M-
Basis by induction on the order σ. The case σ = 1 is already
proven as it corresponds to Algorithm Basis. Assume Pk−1



Algorithm 2: M-Basis(F, σ,~s)

Input: F ∈ K[[x]]m×n, ~s ∈ Nm and σ ∈ N∗
Output: P ∈ K[x]m×m and ~u ∈ Nm

1: P0, ~u0 := Basis(F mod x,~s )
2: for k = 1 to σ − 1 do
3: F ′ := (x−kPk−1F ) mod x
4: Mk, ~uk := Basis(F ′, ~uk−1)
5: Pk := MkPk−1

6: return Pσ−1, ~uσ−1

is a (k,~s)-order basis of F , and let us prove that MkPk−1

is a (k + 1, ~s)-order basis. By definition, F ′ ∈ Km×n is
the first non-zero term of Pk−1F . Since MkF

′ ≡ 0 mod x,
Pk = MkPk−1 is a basis for (F, k + 1). One need to show
that Pk is ~s-row reduced to finish the proof. By definition
of order basis, Pk−1 is ~s-row reduced and its ~s-row degree
is bounded by ~uk−1. Similarly, Mk is ~uk−1-row reduced and
its ~uk−1-row degree is bounded by ~uk. So it follows directly
from Lemmas 1 and 3 that Pk is ~s-row reduced and its ~s-row
degree is bounded by ~uk.

The complexity of M-Basis is dominated by step 5 which
computes at most k+1 products of m×m matrices. Hence,
the cost of each loop is bounded by O(mωk). Incorporating
the latter cost in the for loop gives the announced complexity
for M-Basis.

Remark 1. Let θk be the maximum degree of Pk in M-
Basis. In Proposition 5, we use θk = k. However, for generic
matrices and homogeneous shift ~s, one can show that θk =
dkn/me. As a consequence, the arithmetic complexity of
M-Basis becomes O(mωσθσ) = O(mω−1nσ2).

3.3 Quasi-linear algorithm
A divide-and-conquer approach has been presented in [6],

namely the PM-Basis algorithm. The idea is similar to the
ones used in [15, 1]: it reduces the computation of one order
basis of order σ to two order bases of order σ/2.

Algorithm 3: PM-Basis(F, σ, ~s)

Input: F ∈ K[[x]]m×n, ~s ∈ Nm and σ ∈ N∗
Output: P ∈ K[x]m×m and ~u ∈ Nm

1: if σ = 1 then
2: return Basis(F mod x,~s )
3: else
4: Pl, ~ul := PM-Basis(F, bσ/2c, ~s )
5: F ′ := MP(Pl, F, bσ/2c+ 1, σ)
6: Ph, ~uh := PM-Basis(F ′, dσ/2e, ~ul)
7: return Ph · Pl, ~uh

As explained in [6], this strategy allows to reduce the
arithmetic complexity to O(mωM(σ) log(σ)), where M de-
notes the arithmetic complexity of polynomial multiplica-
tion. Note that the proof of correctness of PM-Basis is a
direct implication of Lemmas 1 and 3. Contrary to M-Basis,
the recursive structure of PM-Basis makes it difficult to en-
able early termination.

4. FAST ITERATIVE ORDER BASIS

In this section, we give a variant of PM-Basis more suited
to early termination. We present an original iterative vari-
ant iPM-Basis of the recursive algorithm PM-Basis. Let
us denote ν2(k) the valuation in 2 of any integer k. Let
k =

∑r
i=1 2ni be the binary writing of k with ν2(k) = n1 <

· · · < nr. For 0 6 j 6 r, we define ϕ(k, j) =
∑r
i=r−j+1 2ni

as the sum of the jth highest bits of k. For example, if k = 7
then r = 3 and [ϕ(k, i)]06i63 = [0, 4, 6, 7].

Algorithm 4: iPM-Basis’(F, σ,~s)

Input: F ∈ K[[x]]m×n, ~s ∈ Nm and σ ∈ N∗
Output: P ∈ K[x]m×m and ~u ∈ Nm

1: F (0) = F
2: M0, ~u0 := Basis(F mod x,~s )
3: for k = 1 to σ − 1 do
4: v := ν2(k)

5: M (k) = ((Mk−1 ·M (k−20)) ·M (k−21)) · · ·M (k−2v−1)

6: F (k) = MP(M (k), F (k−2v), 2v + 1, 2v+1)

7: Mk, ~uk := Basis(F (k) mod x, ~uk−1)

8: v := ν2(σ), σ =
∑r
i=1 2ni

9: M (σ) = ((Mσ−1 ·M (σ−20)) ·M (σ−21)) · · ·M (σ−2v−1)

10: return (M (ϕ(σ,r)) ·M (ϕ(σ,r−1))) · · ·M (ϕ(σ,1)), ~uσ−1

It is easy to add a stop criteria to iPM-Basis’ in the for
loop after line 7. When σ is a power of two, Algorithms
PM-Basis and iPM-Basis perform the same ordered sequence
of polynomial matrix multiplication and call to Basis. Note
that these algorithms differ in terms of memory manage-
ment.

Proposition 6. For any F,~s and k ∈ N, Algorithms
PM-Basis and iPM-Basis’ have the same output and perform
the same computations on the input F, 2k, ~s.

Proof. We proceed by induction. When k = 0, both
algorithms perform only a call to Basis (F mod x,~s ).

Now recursively, suppose the result true for k < t and let
us prove it for k = t. The program PMt := PM-Basis(F, 2t, ~s)
is made of 4 instructions, and we claim that they are mapped
to subparts of Itt := iPM-Basis’(F, 2t, ~s) as follows:

1. line 4 of PMt maps to the code Itt,beg of Itt from the
beginning until line 5 for k = 2t−1;

2. line 5 of PMt corresponds to line 6, k = 2t−1 of Itt;
3. line 6 and 7 of PMt are mapped to Itt,end defined by

the code from line 7, k = 2t−1 to the end of Itt.
Our proposition follows from this former correspondence,
which we now prove. Note that since σ is a power of two,
iPM-Basis’ outputs M (σ).

1. First the call to PMt−1 on line 4 of PMt corresponds
to Itt−1 by induction hypothesis. The latter code and Itt
share the same code until line 7, k = 2t−1 − 1. Then Itt−1

outputs the product M (2t−1) of line 9, which corresponds to
the product of Itt, line 5 for k = 2t−1.

2. Let us prove that the inputs of both middle prod-
ucts are the same. By induction hypothesis, the outputs

of PMt−1 and Itt−1 are the same, that is M (2t−1) as we
have seen before. Concerning the second input, note that
F (k−2v) = F (0) = F for k = 2t−1. So the middle products

coincide and their outputs F ′ and F (2t−1) correspond.
3. By recurrence hypothesis, line 6 of PMt corresponds

to It′t−1 := iPM-Basis’(F (2t−1), 2t−1, ~u2t−1−1). Thus, we will



prove the correspondence of It′t−1 followed by line 7 of PMt

with Itt,end. Let us denote with an additional apostrophe

the local variables Mk,M
(k) and F (k) of It′t−1. Let us prove

by recurrence that for all 0 < k < 2t−1, ~u′k = ~uk+2t−1 ,

M ′k = Mk+2t−1 , M ′(k) = M (k+2t−1) and F ′(k) = F (k+2t−1).

The initialization of It′t−1 gives F ′(0) = F (2t−1) and M ′0 =
M2t−1 . Then recursively on k < 2t−1; suppose the claim
verified for indices lesser than k, and let us prove it for k.

First M ′(k) = M (k+2t−1). Indeed both formulas of line 5 of
iPM-Basis’ match since M ′k−1 = Mk−1+2t−1 , ν2(k) = ν2(k+

2t−1) and M ′(k−2i) = M (k+2t−1−2i) for all 0 6 i < ν2(k).
Then the middle product of line 6 have the same input and

therefore F ′(k) = F (k+2t−1). Finally, M ′k = Mk+2t−1 and
~u′k = ~uk+2t−1 as they are the output of Basis on the same
inputs.

At last, the products of line 9 of It′t−1 and Itt,end differ
only by one term, which corresponds to line 7 of PMt.

Corollary 7. Algorithm iPM-Basis’ outputs a (σ,~s) or-
der basis P of F and its ~s-row degree ~u in O(mωM(σ) log(σ))
operations in K.

Proof. The complexity of our algorithm follows from
the one of Algorithm PM-Basis for orders σ that are pow-
ers of two. Concerning the correctness, note that M (k) =
Mk−1 · · ·Mk−2v where v = ν2(k). As a consequence, the
output of Algorithm iPM-Basis’ is Mσ−1 · · ·M0. The vari-
ables Mk of iPM-Basis’ coincide with those of M-Basis be-
cause PM-Basis performs the same calls to Basis as M-Basis.
Subsequently, the output of iPM-Basis’ and M-Basis coincide
and our output is a (σ,~s) order basis of F .

We now propose an improved version iPM-Basis of Algo-
rithm iPM-Basis’ with respect to memory utilization. In
iPM-Basis’, we have O(σ) variables M (k) and F (k). We can
reduce this number to O(log(σ)) by keeping only one vari-

able M̄ (v) for all M (k) with the same valuation v = ν2(k),

the same for F (k) and one variable M for the last Mk.

Algorithm 5: iPM-Basis(F, σ,~s)

Input: F ∈ K[[x]]m×n, ~s ∈ Nm and σ ∈ N∗
Output: P ∈ K[x]m×m and ~u ∈ Nm

1: F̄ (∞) = F
2: M,~u0 := Basis(F mod x,~s )
3: for k = 1 to σ − 1 do
4: v := ν2(k), v′ := ν2(k − 2v)

5: M̄ (v) = ((M · M̄ (0)) · M̄ (1)) · · · M̄ (v−1)

6: F̄ (v) = MP(M̄ (v), F̄ (v′), 2v + 1, 2v+1)

7: M,~uk := Basis(F̄ (v) mod x, ~uk−1)

8: v := ν2(σ), σ =
∑r
i=1 2ni

9: M̄ (v) = ((M · M̄ (0)) · M̄ (1)) · · · M̄ (v−1)

10: return (M̄ (n1) · M̄ (n2)) · · · M̄ (nr), ~uσ−1

This way, we store at each step k the M (r) and F (r) for
indices r in the following set :

Pk := {r 6 k s.t. r = max {s 6 k | ν2(s) = ν2(r)}}.

It remains to prove that the indices (k − 2i)16i<v, k − 2v

and (ϕ(k, i))16i6r of respectively lines 5, 6 and 10 of iPM-
Basis’ belong to Pk. For any 0 6 i < ν2(k), let us prove that

k − 2i ∈ Pk. First ν2(k − 2i) = i. The only other candidate
greater than k − 2i with valuation i would be k, but since
ν2(k) 6= i, it must be that k − 2i ∈ Pk. Then ϕ(k, i) ∈ Pk
for 1 6 i 6 r; the valuation of ϕ(k, i) is greater than nr−i+1

and the next integer with such a valuation is greater than
k. Finally k − 2v = ϕ(k, r − 1).

5. ONLINE ORDER BASIS ALGORITHM
The (σ,~s)-order basis Mσ−1 · · ·M0 of F is a function of

F mod xσ; this can be seen easily on Algorithm M-Basis.
However fast Algorithms PM-Basis and iPM-Basis may re-
quire more coefficients of F to compute the same order ba-
sis. The speed of these algorithms is attained by perform-
ing computations in advance, which in turn require more
knowledge on F . More precisely, for any order σ such that

2t−1 < σ 6 2t, Algorithm iPM-Basis reads F mod x2
t

(see
line 6 for k = 2t−1).

In some applications, such as the block Wiedemann method,
the cost of computing the input F is dominant and minimiz-
ing its required precision can have a practical impact. This
will be the subject of Section 6.

The purpose of this section is to give an algorithm that
requires minimal knowledge on F while keeping a quasi-
optimal complexity in the order σ. Note that Algorithm
M-Basis satisfies the first condition but not the second, and
that PM-Basis (and iPM-Basis) is in the opposite situation.

5.1 Online algorithms
Let A be an algorithm with one of its input i = [i0, . . . , in]

and its output o = [o0, . . . , on] that are sequences. We say
that A is an online algorithm with respect to its input i if
it reads at most i0, . . . , ij when computing oj for any 0 6
j 6 n. This notion, first defined by [7], was popularized in
the domain of Computer Algebra in [8] under the name of
relaxed algorithms.

In our context of order basis algorithms, we consider the
input F as the sequence of its power series coefficients Fi
and the output to be the sequence [M0, . . . ,Mσ−1]. To put
it differently, we say that an order basis algorithm is online
if it requires minimal knowledge on F , that is if it reads
at most F0, . . . , Fk when computing Mk. Our first example
of online order basis algorithm is M-Basis; the computation
of Mk requires (x−kPk−1F ) mod x, which in turn depends
only on the power series coefficients F0, . . . , Fk of F .

Our objective in this section is to obtain a fast online order
basis algorithm. In algorithm iPM-Basis, we have noticed
that the middle product of step 5 may read more entries of
F than necessary. Therefore, we need to perform this step
differently.

5.2 Shifted online middle product
Let A ∈ K[x]m×m and B ∈ K[x]m×n with A of degree less

than d. We are interested in computing the middle product
C = MP(A,B, d, h) under the following constraint: we can-
not use the polynomial coefficients Ai+d or Bi+d before we
have computed the coefficients C0, . . . , Ci of C. Compared
to online algorithms, there is a shift in the indices of A and
B due to the fact that the ith coefficient of MP(A,B, d, h)
is the (i+ d− 1)-th coefficient of A ·B. We will call such an
algorithm a shifted online algorithm for the middle product.

Note that for our problem, the reading constraint affects
only B since Ai+d = 0 by definition. Therefore we are
only interested in algorithms for the middle product that



are shifted online with respect to B. Algorithms that are
(shifted) online with respect to only one input out of two
are called (shifted) half-line algorithms.

Let us focus on the balanced base h = 2d− 1 for the rest
of this section. As in the offline (not online) case, we have
a naive algorithm for the middle product which consists in
computing the full product A0...2d−1 ·B0...d using an half-line
algorithm w.r.t. B.

We denote by H(n) the arithmetic complexity of multi-
plying two such power series at precision n by a half-line
algorithm. As with classic multiplication cost functions, we
suppose that H is a super-linear, i.e. that rH(s) 6 H(rs) for
any integers r, s. The cost of the naive shifted online middle
product algorithm is therefore SMPNaive := H(2n− 1).

We now propose a dedicated shifted online algorithm sMid-
dleProduct for the middle product that will save asymptot-
ically a factor 2 in the complexity compared to the naive
algorithm.

Algorithm 6: sMiddleProduct(A,B, d)

Input: A ∈ K[x]m×m of degree < d, B ∈ K[x]m×n

Output: MP(A,B, d) ∈ K[x]m×n

1: for k = 0 to d− 1 do
2: if k = 0 then
3: C = (A0...d ·B0...d)d−1...2d−1 ∈ K[x]m×n

4: else
5: m := ν2(k)

6: C = C + MP(A0...2m+1−1, Bd+k−2m...d+k, 2
m) xk

7: return C

The scheme of computation of our algorithm is given in
Figure 1 when d = 8. Decompose C = MP(A,B, d) into a
lower and an upper part C = L + xU where L = (A0...d ·
B0...d) div xd−1 and U = (A0...d−1 ·Bd...2d−1) mod xd−1. At
the first step of our algorithm, we are allowed to use A0...d

and B0...d in order to compute C0 = L0. We chose to com-
pute the whole L via a classic offline multiplication algo-
rithm at cost M(d).

Let B′ := Bd...2d−1. For the computation of U , the read-
ing constraint translates to the following: the computation
of Ui must read at most the coefficients B′i of B′. So we can
use a half-line multiplication algorithm for this task, at cost
H(d− 1).

Altogether, Algorithm sMiddleProduct computes C in time
SMPGL := M(d) + H(d − 1). Since M(d) = o (H(d)) and
2H(d− 1) 6 H(2d− 1), we deduce that

2 SMPGL(d) 6 (1 + o(1))SMPNaive(d).

In Figure 1 and Algorithm sMiddleProduct (see lines 5-6),
we chose to use the half-line multiplication of [9].

It turns out that the middle product of line 6 of iPM-
Basis is unbalanced and does not exactly fit the settings of
this section. However, the same ideas apply; we can cut the
middle product in two parts, apply an offline multiplication
on the lowest part and an half-line algorithm on the highest
part.

5.3 Online order basis
For the purpose of a fast online order basis algorithm, we

will use the lazy data structure to encode our polynomial

Figure 1: Shifted online middle product

matrices as in [8, 3]. In this data structure, polynomials are
given as a promise, and the evaluation of its coefficients is
delayed.

We assume that we dispose of a class OsMiddleProduct that
perform the shifted online middle product using the lazy
data structure. In this setting, step k of Algorithm sMid-
dleProduct is performed when the k-th coefficient of the mid-
dle product is asked for.

Algorithm 7: oPM-Basis(F, σ,~s)

Input: F ∈ K[[x]]m×n, ~s ∈ Nm and σ ∈ N∗
Output: P ∈ K[x]m×m and ~u ∈ Nm

1: F̄ (∞) = F
2: M,~u0 := Basis(F mod x,~s )
3: for k = 1 to σ − 1 do
4: v := ν2(k), v′ := ν2(k − 2v)

5: M̄ (v) = ((M · M̄ (0)) · M̄ (1)) · · · M̄ (v−1)

6: F̄ (v) = OsMiddleProduct(M̄
(v), F̄ (v′), 2v + 1, 2v+1)

7: M,~uk := Basis(F̄ (v) mod x, ~uk−1)

8: v := ν2(σ), σ =
∑r
i=1 2ni

9: M̄ (v) = ((M · M̄ (0)) · M̄ (1)) · · · M̄ (v−1)

10: return (M̄ (n1) · M̄ (n2)) · · · M̄ (nr), ~uσ−1

Proposition 8. oPM-Basis is a correct online order basis
algorithm of arithmetic complexity O(mωM(σ) log2(σ)).

Proof. Remember that F̄ (v) of line 8 corresponds to
F (k), which in turn equals to (Mk−1 · · ·M0F )k...k+2v . There-

fore, the call to F̄ (v) mod x on line 7 will read at most the
entries F0, . . . , Fk of F at step k.

The cost analysis is similar to the one of PM-Basis, ex-
cept that our middle product at order σ now costs H(σ) =
O(M(σ) log(σ)) instead of M(σ) [8]. Thus, Algorithm oPM-
Basis costs O(mωH(σ) log(σ)) = O(mωM(σ) log2(σ)), which
is quasi-linear in σ.

6. APPLICATION TO BLOCK WIEDEMANN



Let A ∈MN (K) be a sparse matrix, which means that it
has O(N log(N)) non-zero entries. Block Wiedemann meth-
ods are useful for the computation of the rank [17], the de-
terminant [13] of such matrices and also for sparse linear sys-
tems solving [4]. The main ingredient of block Wiedemann
algorithms is the computation of ΠAV

U the minimal matrix
generating polynomial of the matrix sequence S = (Si)

σ
i=0

such that ΠAV
U ∈ K[x]m×m and Si = (UAiV ) ∈ Km×n where

m ≥ n. Here U ∈ Km×N , V ∈ KN×n are chosen randomly.
Note that A can be preconditioned to ensure structural prop-
erties.

Definition 9. The matrix Π =
∑d
i=0 Πix

i ∈ K[x]m×m is a
left matrix generating polynomial of S if

d∑
i=0

ΠiSi+j = 0m×n, ∀j ≥ 0,

and det(Π) 6= 0. It is said to be minimal if Π is row reduced.

As described in [18, 16], one can obtain ΠAV
U from a (σ,~s)

order basis P of the matrix series F = [
∑σ
i=0 S

T
i x

i | Im]T ∈
K[[x]]2m×n where ~s = [0m, 1m]. It is well known since Cop-
persmith work [4] that an order σC = dN/me+dN/ne+O(1)
is sufficient in most cases. However, this bound may be loose
for certain class of matrices.

Theorem 2.12 of [13] gives a tighter bound by looking at
the invariant factors of the characteristic matrix (xIN −A).
Let µ be the sum of the degrees of the n largest invariant
factors of (xIN − A). Then the minimal matrix generating
polynomial of S can be derived from an order basis at pre-
cision σKV = dµ/me + dµ/ne + O(1) [13, 17]. Note that µ
gives a bound on the determinantal degree of ΠAV

U .
When the values of µ and σKV are not known, early ter-

mination is a good strategy to stop the course of the order
basis algorithm. We use an heuristic method to detect that
we have reached order σKV. For example, we can test if
the m smallest values of the ~s-row degree of P remain un-
changed for a few consecutive orders. This latter condition
is similar to getting consecutive zero discrepancies in the
Berlekamp-Massey algorithm [12].

We will from now on set ourselves in the context of early
termination in the block Wiedemann algorithm. So we have
three choices for an order basis algorithms in block Wiede-
mann that allows early termination : the two online algo-
rithms M-Basis and oPM-Basis, and the offline algorithm
iPM-Basis.

We demonstrate below that online algorithms M-Basis and
oPM-Basis can improve offline block Wiedemann complex-
ity by a constant factor, up to 2, under some conditions.
Whereas this gain can only be observed with M-Basis when
the ratio µ/N is small, we show that this always the case
with oPM-Basis whenever N is big. For the sake of simplicity
we now consider that m = n and m,σ are powers of two.

Computing S has dominant cost. Let δ be the minimal
value such that a (δ, ~s)-order basis of F contains ΠAV

U . We
know that 2µ/m < δ ≤ σKV ≤ σC [13]. We will assume that
our heuristic stop the order basis algorithm at order δ.

We now compare the complexity of the first two steps
of the block Wiedemann algorithm, 1) computing the se-
quence of UAiV ’s and 2) computing the (δ, ~s)-order basis,
depending on the choice of order basis algorithm (M-Basis,
iPM-Basis or oPM-Basis). Respectively, we note these com-
plexities CM-Basis, CPM-Basis and CoPM-Basis.

M-Basis and oPM-Basis are both online algorithms that
only require the first δ coefficients of F . On the contrary,
iPM-Basis requires the first 2t coefficients of F when 2t−1 <
δ ≤ 2t. Let X be the cost of computing one coefficient of
the sequence F , i.e. UAiV = U(A(Ai−1V )). We assume
without of loss generality that X = Θ(m2N), which is the
case whenever m = O(log(N)). Then

CM-Basis = δX +O(mωδ2) (1)

CPM-Basis = 2tX +O(mωδ log(δ)) (2)

CoPM-Basis = δX +O(mωδ log2(δ)) (3)

The following two propositions establish order relation be-
tween these complexities.

Proposition 10. The ratio CPM-Basis/CM-Basis tends to 2t/δ
when µ/N tends to 0.

Proof. First, one has CPM-Basis
CM-Basis

= 2t/δ+ε1
1+ε2

where ε1 :=

mω log(δ)/X and ε2 := mωδ/X . Since ε1 = O(ε2), it is
enough to prove that ε2 tends to 0 to imply that CPM-Basis/CM-Basis

tends to 2t/δ when µ/N tends to 0. Using X = Θ(m2N)
and δ = O(µ/m), we get that ε2 = O(mω−3µ/N) which
tends to 0 as claimed.

Proposition 11. The ratio CPM-Basis/CoPM-Basis tends to 2t/δ
when N tends to infinity.

Proof. The proof is similar but with ε2 := mω log2(δ)/X .
From ε2 = O(mω−2 log2(δ)/N) and using δ = O(N) and
m = O(log(N)), we deduce that ε2 = O(log3(N)/N) which
tends to 0 when N tends to infinity.

Analysis of the gain due to online algorithms. We
will now assume that either we are using M-Basis and µ/N is
small, or we are using oPM-Basis and N is large. Therefore
Propositions 10 and 11 state that we gain a constant factor
Kδ = 2t/δ compared to “offline” block Wiedemann. This
constant K depends on δ and satisfies 1 6 K < 2. The
upper bound is tight as it is easy to find δ such that K is
as close as you want to 2. The following proposition states
that the average gain is greater than 1.

Proposition 12. Let δ be a random variable uniformly
distributed between 1 and σC = 2r. Then the expected value
of Kδ tends to 2 ln 2 ' 1.39 when r tends to infinity.

Proof. If δ were a random variable uniformly distributed
between 2t−1 + 1 and 2t, then its mean value would be

K(t) :=
1

2t

2t∑
δ=2t−1+1

Kδ =

2t∑
δ=2t−1+1

1

δ
−−−→
t→∞

ln 2.

The actual mean value of Kδ is

1

2r
(K1+

r∑
i=1

2iK(i)) =
K1

2r
+

r−1∑
j=0

2−jK(r−j) −−−→
r→∞

2 ln 2.

7. PRACTICAL PERFORMANCES
In this section, we discuss the implementation of our algo-

rithms. The code is developed and distributed in the LinBox
library (www.linalg.org). All the following benchmarks
have been done on an Intel Core i7-4960HQ @ 2.6GHZ with
16Gb RAM and 4 cores. Only the computations of the block
Wiedemann sequences have been done in parallel as it is the
primary goal of this approach.



7.1 Polynomial matrix multiplication
Our fast implementation of polynomial matrix multiplica-

tion relies on several optimizations. First, we use the FFLAS

package, available through the LinBox library, as a primitive
for matrix multiplication. This allows to reach the proces-
sor’s peak performance for matrix multiplication over word
size prime field [5]. Secondly, we provide cache friendly DFT
transforms for polynomials which uses SIMD vectorization,
i.e. SSE4 instructions. As both matrices and polynomials
must be stored contiguously to be cache friendly, we there-
fore implement two data structures, i.e. matrix of polyno-
mials and polynomial of matrices, and efficient conversions
in between.

m, d MMX FLINT 2.4 our code
16, 1024 0.02s 0.26s 0.03s
16, 2048 0.04s 0.70s 0.06s
16, 4096 0.09s 1.68s 0.13s
16, 8192 0.20s 4.52s 0.28s
128, 512 1.00s 26.21s 0.82s
256, 256 4.00s 36.71s 1.75s
512, 512 69.19s 465.66s 19.64s
1024, 64 71.36s 115.52s 13.95s
2048, 32 298.27s 263.88s 48.90s

Table 1: Computation times of polynomial matrix mul-

tiplication in Fp[x]m×m with degree d and p a 23-bit FFT

prime.

Table 1 gives a quick preview of the performances of our
code. For comparison purposes, we provide the times of two
standard libraries: FLINT (www.flintlib.org) and Math-
emagix (www.mathemagix.org) abbreviated as MMX. Our
code provides similar or better performances than these ref-
erence libraries. In particular, our optimizations on DFT are
closed to the ones of MMX, known to be efficient. On the
other side, for large matrices, our code performs even better
thanks to the use of optimized BLAS libraries which rely
on the recent AVX2 instructions set of our processor. Note
that MMX does not yet provide such a support in their ma-
trix_naive type. This emphasises the benefit of the FFLAS

approach which always makes use of the most recent tech-
nology. Regarding FLINT’s performances, we explain the
gap in performances by our use of cache friendly storage
and vectorization.

7.2 Online middle product
Our fast shifted online middle product relies on the the

half-line product of [9]. Our choice is driven by its com-
plexity, roughly 1

4
M(σ) log(σ), and its simplicity of imple-

mentation requiring only an efficient offline middle product.
Therefore, we readily benefit from the optimizations of our
polynomial matrix multiplication implementation.

Figure 2 illustrates the ratio of timings of both offline
MiddleProduct and shifted online sMiddleProduct middle prod-
uct algorithms with respect to polynomial matrix multipli-
cation. As expected, the offline middle product behaves ex-
actly as polynomial matrix multiplication and the shifted
online ratio behaves like 1/4 log(σ).

7.3 Online order basis
As described in sections 3 and 5, fast order basis algo-

rithms reduce to polynomial matrix multiplication. Our im-
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Figure 2: Relative performance of different middle

products against polynomial matrix multiplication over

F7340033[x]16×16.

plementations of PM-Basis and oPM-Basis follow this reduc-
tion and therefore mainly use the middle products of 7.2 and
the polynomial matrix multiplication of 7.1. In practice, for
small value of σ, it appears that using fast order basis algo-
rithm is not relevant and switching to quadratic approach as
M-Basis improves the performances. From our experiments,
we observe that this is always the case for σ ≤ 32. In or-
der to speed up order basis implementations, we therefore
use a x32-adic version of our algorithms. For PM-Basis this
corresponds to stopping the recursion at σ = 32, while for
oPM-Basis this comes down to incrementing k by 32 in the
“for” loop. For both of them, the calls of Basis are then
replaced with M-Basis on input series mod x32.
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In figure 3, we report the relative performance of online
order basis, i.e. M-Basis and oPM-Basis, against the fast
offline order basis PM-Basis. From this figure, one can first
see that quadratic approach, as M-Basis , is not competitive
w.r.t. its fast counterpart as soon as σ > 128. The high effi-
ciency of our polynomial matrix operations (multiplication
and middle product) makes it possible to use fast variant



very early. Furthermore, the larger the matrix dimensions
the earlier fast variants outperform M-Basis.

As shown in Figure 3, oPM-Basis almost keeps up with the
performances of PM-Basis, The ratio of timings stays below
2 in the given range of orders, despite its theoretical loga-
rithmic behavior. This makes our oPM-Basis algorithm an
interesting approach when online computation makes sense,
for example when computing the matrix power series coeffi-
cients is very expensive.

7.4 Block Wiedemann algorithms
As demonstrated in section 6, using early strategy in block

Wiedemann should benefit in practice from online order ba-
sis calculation. In order to exhibit such a behavior in prac-
tice, we compare the timings of computing both the required
sequence element UAiV and the corresponding order basis
for any approximation order up to a given bound. We char-
acterize which algorithm is best suited depending on how
early the algorithm terminates.

We use a random sparse matrix A ∈ GL217(F6946817)
with 20 elements per row and two random dense matrices
U, V T ∈ M16×217(F6946817). To give a fair benchmark, we
perform the calculation of the sequence elements UAiV in
parallel (on the column of V ) while order basis calculation is
done sequentially. Order basis could have also benefit from
parallel computation but this only affects the result by a
constant factor and does not change our observation.
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Figure 4: Computation times of early termination in

block Wiedemann using order basis algorithms. A ∈
GL217 (F6946817) with 20 elts/row, m = n = 16.

Figure 4 illustrates the measured times for the first two
steps of block Wiedemann with early termination using the
offline iPM-Basis and online M-Basis, oPM-Basis algorithms.
Note that σ = 214 corresponds to the classic bound (2N/m).

One sees on this figure that whenever early termination
leads us to stop at a value δ smaller than the a priori bound
σC, online algorithms can improve performances. Of course,
this is only the case when δ is not close to a power of two,
where iPM-Basis still remains the fastest. In other cases,
M-Basis improves performance only for very small approxi-
mant orders, which is an implication of Proposition 10. As
soon as δ is getting larger, the quadratic complexity of M-
Basis makes it useless to defeat iPM-Basis even with its extra
UAiV s.

In the case of oPM-Basis, most of the possible values for
δ allow to be faster than using the fast offline approach. In-
deed, it is almost always true that the extra log(δ) of oPM-
Basis is negligible compared to few extra UAiV needed by
iPM-Basis. Except for very few cases around power of two,
this makes oPM-Basis always the fastest algorithm, as pre-
dicted by Proposition 10.
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