
Computing power series
at high precision�

by Romain Lebreton

ECO Team

Pole Algo-Calcul seminar
LIRMM

February 6th, 2015

�. This document has been written using the GNU TEXMACS text editor (see www.texmacs.org).

http://www.texmacs.org

Field of research

My �eld of research: Computer Algebra

� in between Computer Science and Mathematics

� sub-�eld of Symbolic Computation

� typical objects

� numbers 2;
355
113

� polynomials x+x2+2x3; x5 y8¡x8 y7¡x7y6

� modular computation 5 mod 7; x+x2+2x3mod (x2¡ 1)

� matrices

0BBB@
1 0 1 1
x 1 1+x 0

1 x2+x3 x 0

x2 0 x3+x4 0

1CCCA
� :::

Formal power series

Let K be an e�ective �eld, i.e. a set with algorithms for +;¡; �; / e.g. Q;Z/pZ

A formal power series f 2K[[x]] is a sequence (fi)i2N of K, denoted by

f(x)=
X
i>0

fix
i:

De�nition

Remarks:

� Like a polynomial but with no �nite degree constraint

� Addition, multiplication same as polynomials

If f =
P

fnx
n=(

P
gnx

n) (
P

hnx
n) then fn=

P
i=0
n gihn¡i

� Purely formal: No notion of �analytic� convergence

Formal power series

Let K be an e�ective �eld, i.e. a set with algorithms for +;¡; �; / e.g. Q;Z/pZ

A formal power series f 2K[[x]] is a sequence (fi)i2N of K, denoted by

f(x)=
X
i>0

fix
i:

De�nition

Computationally speaking:

� only truncated power series

� denote by f(x)= g(x)+O(xN) the truncation at the term xN

we say �modulo xN � or �at order N � or �at precision N �

� Compute a power series: compute its �rst N terms

Formal power series

Let K be an e�ective �eld, i.e. a set with algorithms for +;¡; �; / e.g. Q;Z/pZ

A formal power series f 2K[[x]] is a sequence (fi)i2N of K, denoted by

f(x)=
X
i>0

fix
i:

De�nition

Motivation:

� Approximation of functions

Example: Taylor expansion of f at x=0

f(x)= f(0)+ f 0(0)x+
f 00(0)
2

x2+ ���+ f (i)(0)
i!

xi+Ox!0(x
i+1)

Formal power series

Let K be an e�ective �eld, i.e. a set with algorithms for +;¡; �; / e.g. Q;Z/pZ

A formal power series f 2K[[x]] is a sequence (fi)i2N of K, denoted by

f(x)=
X
i>0

fix
i:

De�nition

Motivation:

� Generating functions in Combinatorics

Example: Catalan numbers (Cn)n2N (number of full binary trees)

G((Cn); x) =
X
n>0

Cnx
n=

1¡ 1¡ 4x
p

2x

= 1+x+2x2+5x3+ 14x4+ 42 x5+ 132x6+O(x7)

Formal power series

Let K be an e�ective �eld, i.e. a set with algorithms for +;¡; �; / e.g. Q;Z/pZ

A formal power series f 2K[[x]] is a sequence (fi)i2N of K, denoted by

f(x)=
X
i>0

fix
i:

De�nition

Motivation:

� In computer algebra

Power series are ubiquitous when computing with polynomials

Example:

Euclidean division of a; b2K[x], a= b q+ r with deg(r)< deg(b)

The quotient q is computed using a/b2K[[x]]

Our objective

Compute basic operations like 1 / f ; f
p

; log(f); exp(f) 2 K[[x]] quickly
in theory (quasi-linear time) and in practice (see below).

Our objective

Theoretical complexity �reminder�:

Power series multiplication at order n costs (arithmetic complexity)

M(n)=O(n log n log logn)=O~(n)

Practical complexity:

In one second with today's computer, in (Z/1048583Z)[[x]] we can

� multiply two power series at order '2 �106

� compute 1/f ; log(f); exp(f); f
p

at order '5 � 105

� compute the Catalan generating function at order '5 � 105

(and at order '4000 over integers)

Outline of the talk

Two paradigms for power series computation:

1. Newton iteration

2. Relaxed algorithms

Newton operator - Numerical context

Historically comes from Isaac Newton, �La méthode des �uxions� in 1669

Find approximate solutions of an equation �(x)= 0 where �:R!R.
Goal of Newton iteration

Idea:

Approximate � around y 2R by a linear function

Choose N (y) to cancel the linear approx. of �

i:e. N (y)= y¡ �(y)
�0(y)

If y is a �good� approximation of a solution of �(x)= 0 then

N (y) is an even better approximation.

Intuition

Newton operator - Numerical context

Idea:

Approximate � around x= y by a linear function

Choose N (y) to cancel the linear approx. of �

i:e. N (y)= y¡ �(y)
�0(y)

Newton iteration: Starting from y0 := y, iterate yk+1 :=N (yk)

Example: �(x)=x2¡ 2, N : y 7! y¡ y2¡ 2
2 y

y0=1:50000000000000000000

y1=N (y0)= 1.41666666666666666663

y2=N (y1)= 1.41421568627450980392

y3=N (y2)= 1.41421356237468991059

Newton operator - Numerical context

Idea:

Approximate � around x= y by a linear function

Choose N (y) to cancel the linear approx. of �

i:e. N (y)= y¡ �(y)
�0(y)

Newton iteration: Starting from y0 := y, iterate yk+1 :=N (yk)

If yk converges then its number of correct decimal is approximately doubled.

Equivalently, if yk!!! !
k!1

r with r a regular solution of � (i.e. �0(r)=/ 0) then

(yk+1¡ r)
(yk¡ r)2

!!! !
k!1

�00(y)/(2�0(y)) Quadratic convergence

Theorem

Newton operator - Numerical context

Side note: Knowing which starting values y0 make (yk)k2N converge is a hard problem

Figure. Basins of attraction for x5¡ 1=0 over C (source Wikipedia)

Symbolic Newton operator

This time, let �:K[[x]]!K[[x]] be a polynomial function, i.e. �2K[[x]][y]

Similarly to the numerical case, we de�ne for y 2F[[x]] the newton operator

N (y)= y¡ �(y)
�0(y)

However, the behavior is simpler in the symbolic world

1. If y0 satis�es �(y0)= 0+O(x) then

the sequence (yk) will converge to a solution s2K[[x]] of �(x)= 0

2. Quadratic convergence is guaranteed:

s= yk+O
¡
x2

k�

Theorem - Symbolic Newton iteration

Remark: Only works for regular root, i.e. �0(y0)=/ 0modx. Otherwise, �0(y) is not invertible.

Symbolic Newton operator

Reminder: �2K[[x]][y] and N (y)= y¡ �(y)

�0(y)

1. If y0 satis�es �(y0)= 0+O(x) then

the sequence (yk) will converge to a solution s2K[[x]] of �(x)= 0

2. Quadratic convergence is guaranteed:

s= yk+O
¡
x2

k�

Theorem - Symbolic Newton iteration

Sketch of the proof:

Suppose we have an approximate solutions y, i.e. �(y)= 0+O(xN)=xN p(x).

Let us �nd a small perturbation xN " of y that improves the solution.

Taylor expansion of � near y:

�(y+xN ") = �(y)+�0(y)xN "+O((xN ")2)
= xN (p(x)+�0(y) ")|| |{z}} }

choose " to cancel this

+O(x2N) �

Symbolic Newton operator � Examples

Example:

Compute the inverse of a power series f 2K[[x]]

The series 1/f is a solution of 0=�(y) := 1/y¡ f

Therefore we derive the Newton operator

N (y)= y+(1¡ y f) y

Newton iteration: Take f =1+x+x 2

y0 := 1 (Starting point. 1=
1
f
mod x)

y1=N (y0)=1¡x¡x2+O(x10)

y2=N (y1)=1¡x+x3¡ 2x4¡ 3x5¡x6+O(x10)

y3=N (y2)=1¡x+x3¡x4+x6¡x7¡x8¡ 6x9+O(x10)

y4=N (y3)=1¡x+x3¡x4+x6¡x7+x9+O(x10)

Symbolic Newton operator � Examples

Example:

Compute the Catalan generating function G(x)=
P

Cnx
n=

1¡ 1¡ 4 x
p

2x

G(x) is a solution of 0=�(y) := (2x y¡ 1)2¡ (1¡ 4x)

The Newton operator becomes

N (y)= y¡ (2x y¡ 1)2¡ (1¡ 4x)
4x(2x y¡ 1) = y+

(1¡ y+x y2)
(1¡ 2x y)

Newton iteration:

y0 :=C0=1

y1=1+x+O(x10)

y2=1+x+2x2+5x3+6x4+2 x5+O(x10)

y3=1+x+2x2+5x3+ 14x4+ 42x5+ 132x6+ 429x7+ 1302x8+ 3390x9+O(x10)

y4=1+x+2x2+5x3+ 14x4+ 42x5+ 132x6+ 429x7+ 1430x8+ 4862x9+O(x10)

Remark: the inverse of (1¡ 2x yk) is computed using previous Newton iteration

Cost of symbolic Newton operator

Complexity to compute an approximate solution of �(y)= 0 at order O(xN):

� The cost of the last iteration is dominant.

� The last iteration involves some multiplication and additions at order O(xN) to evaluate
�(yk), �0(yk) (and invert �0(yk))

) The cost is O(M(n))

Remark: The complexity of evaluation of � is a constant hidden in the O

Intermediate checkpoint

So far,

� Newton iteration computes power series f solutions of implicit equations �(y)= 0

� It costs asymptotically a constant number of multiplication.

Upcoming, Relaxed algorithms

� the second important paradigm to compute common power series

� It computes power series f solutions of �recursive� equations �(y)= y

These two techniques are complementary
They yield the current best complexity to compute power series at high precision

Improved data structure for power series

1. Storage of the current approximation modulo xN of f

2. Attach a function increasePrecision() to f

The lazy representation � An improved data structure for f 2K[[x]]

Examples:

� Based on Newton iteration:

Store the current approximation Yk
increasePrecision() perform Yk+1=N (Yk) doubles precision

� Naive multiplication of f = g h2K[[x]]:

increasePrecision() computes one more term of f =
P

fnx
n using

fn=
X
i=0

n

gihn¡i

Pros: Management of precision is more user-friendly

Controlling the reading of inputs

In a context of lazy representation, the following question is important:

Which coe�cients of the input are required to compute the output at order O(xN)?

Why is it important ?

1. First of all, these coe�cients of the inputs may require computation can be costly

2. Controlling the access of the inputs will be the cornerstone of the new technique to
compute recursive power series

Controlling the reading of inputs

In a context of lazy representation, the following question is important:

Which coe�cients of the input are required to compute the output at order O(xN)?

Very di�erent dependency on the inputs

� Newton iteration for e.g. power series inversion

Computing the coe�cients of 1/ f in x2
k
; :::; x2

k+1¡1 requires reading the same coe�-
cients of f

Indeed yk+1=N (yk)= [yk+(1¡ yk f) yk]mod x2
k+1

More precisely: Read f2k,..., read f2k+1¡1 then output (1/f)2k,..., (1/f)2k+1¡1

� Fast multiplication f = g hmod xn (FFT)

Read all coe�cients g0; :::; gn¡1, h0; :::; hn¡1 of inputs then output f0; :::; fn

� Naive multiplication

Read g0;h0, output f0 | Read g0; g1;h0;h1, output f1 | Read g0; g1; g2;h0;h1;h2, output f2

Relaxed algorithms

We are interested in algorithms that control the reading of their inputs

(on-line or relaxed algorithm) [Hennie '66]

: reading allowed

De�nition

Relaxed algorithms

We are interested in algorithms that control the reading of their inputs

(on-line or relaxed algorithm) [Hennie '66]

: reading allowed

De�nition

Relaxed algorithms

We are interested in algorithms that control the reading of their inputs

(on-line or relaxed algorithm) [Hennie '66]

: reading allowed

De�nition

Relaxed algorithms

We are interested in algorithms that control the reading of their inputs

(on-line or relaxed algorithm) [Hennie '66]

: reading allowed

O�-line or zealous algorithm: condition not met.

De�nition

Trivial examples of relaxed algorithms

Naive Addition: Compute f = g+h using fn= gn+hn

The addition algorithm is online:

! it outputs fi reading only gi and hi.

Naive Multiplication: Compute f = g h using fn=
P

i=0
n gihn¡i

1. This multiplication algorithm is online:

! it outputs fi reading f0; :::; fi and g0; :::; gi.

2. Its complexity is quadratic !

Fast relaxed multiplications

Problem.

Fast multiplication algorithms (Karatsuba, FFT) are o�ine.

Challenge.

Find a quasi-optimal on-line multiplication algorithm.

From an o�-line multiplication algorithm which costs M(N) at precision N ,

we can derive an on-line multiplication algorithm of cost

R(N)=O(M(N) logN)=O~(N):

Theorem. [Fischer, Stockmeyer '74], [Schröder '97], [van der Hoeven '97]

[Berthomieu, van der Hoeven, Lecerf '11], [L., Schost '13]

Fast relaxed multiplications

Problem.

Fast multiplication algorithms (Karatsuba, FFT) are o�ine.

Challenge.

Find a quasi-optimal on-line multiplication algorithm.

From an o�-line multiplication algorithm which costs M(N) at precision N ,

we can derive an on-line multiplication algorithm of cost

R(N)=O(M(N) logN)=O~(N):

Theorem. [Fischer, Stockmeyer '74], [Schröder '97], [van der Hoeven '97]

[Berthomieu, van der Hoeven, Lecerf '11], [L., Schost '13]

R(N)=M(N) log(N) o(1)
Theorem. [van der Hoeven '07, '12]

Seems not to be used yet in practice.

Recursive power series

A power series y 2Q[[T]] is recursive if there exists � such that

� y=�(y)

� �(y)n only depends on y0; :::; yn¡1

De�nition

Example. Compute g= exp(f) de�ned as exp(f) :=
P

i>0
f i

i!
when f(0)= 0

Remark that g 0= f 0 g.

So g is recursive with y0=1 and y=�(y)=
R
f 0 y.

Moreover

�(y)n =

�Z
f 0 y

�
n

= 1/n � (f 0 y)n¡1
= 1/n � (f00 yn¡1+ ���+ fn¡1

0 y0)

So �(y)n only depends on y0; :::; yn¡1.

Recursive power series

A power series y 2Q[[T]] is recursive if there exists � such that

� y=�(y)

� �(y)n only depends on y0; :::; yn¡1

De�nition

 It is possible to compute y from � and y0. But how fast?

Relaxed algorithms and recursive power series

Relaxed algorithms allow the computation of recursive power series

On an example.

Compute g= exp(f) for f =x+
1

2
x2+O(x2)

We know that g is recursive with y0=1 and y=�(y)=
R
f 0 y.

 Use the relation �(y)n=1/n � (f 0 y)n¡1 + online multiplication for f 0 � y

Computations:

y=1+O(x)

�(y)1=1/1 � (f 0 y)0=1 (read only y0 using an online multiplication)

: reading allowed??

Relaxed algorithms and recursive power series

Relaxed algorithms allow the computation of recursive power series

On an example.

Compute g= exp(f) for f =x+
1

2
x2+O(x2)

We know that g is recursive with y0=1 and y=�(y)=
R
f 0 y.

 Use the relation �(y)n=1/n � (f 0 y)n¡1 + online multiplication for f 0 � y

Computations:

y=1+x+O(x2)

�(y)1=1/1 � (f 0 y)0=1 (read only y0 using an online multiplication)

: reading allowed?

Relaxed algorithms and recursive power series

Relaxed algorithms allow the computation of recursive power series

On an example.

Compute g= exp(f) for f =x+
1

2
x2+O(x2)

We know that g is recursive with y0=1 and y=�(y)=
R
f 0 y.

 Use the relation �(y)n=1/n � (f 0 y)n¡1 + online multiplication for f 0 � y

Computations:

y=1+x+O(x2)

�(y)2=1/2 � (f 0 y)1=1 (read only y0; y1 using an online multiplication)

: reading allowed?

Relaxed algorithms and recursive power series

Relaxed algorithms allow the computation of recursive power series

On an example.

Compute g= exp(f) for f =x+
1

2
x2+O(x2)

We know that g is recursive with y0=1 and y=�(y)=
R
f 0 y.

 Use the relation �(y)n=1/n � (f 0 y)n¡1 + online multiplication for f 0 � y

Computations:

y=1+x+x2+O(x3)

�(y)2=1/2 � (f 0 y)1=1 (read only y0; y1 using an online multiplication)

: reading allowed

Shifted Algorithms

What about the general context?

Recursive equations are evaluated using shifted algorithms

: reading allowed

De�nition of shifted algorithms.

Remark. Shifted algorithms are built using online algorithms

Shifted Algorithms

What about the general context?

Recursive equations are evaluated using shifted algorithms

: reading allowed

De�nition of shifted algorithms.

Remark. Shifted algorithms are built using online algorithms

Shifted Algorithms

What about the general context?

Recursive equations are evaluated using shifted algorithms

: reading allowed

De�nition of shifted algorithms.

Remark. Shifted algorithms are built using online algorithms

Relaxed recursive power series

Let y 2K[[T]] be a recursive power series with y=�(y).

Given y0 and �, we can compute y at precision N in the time necessary to evaluate �(y)
by a shifted algorithm.

This is usually O(R(N)).

Fundamental Theorem. [Watt '88], [van der Hoeven '02], [Berthomieu, L. ISSAC '12]

y=�(y)) '0= y0

: reading allowed??

Proof
�

Relaxed recursive power series

Let y 2K[[T]] be a recursive power series with y=�(y).

Given y0 and �, we can compute y at precision N in the time necessary to evaluate �(y)
by a shifted algorithm.

This is usually O(R(N)).

Fundamental Theorem. [Watt '88], [van der Hoeven '02], [Berthomieu, L. ISSAC '12]

y=�(y)) '0= y0

: reading allowed?

Proof
�

Relaxed recursive power series

Let y 2K[[T]] be a recursive power series with y=�(y).

Given y0 and �, we can compute y at precision N in the time necessary to evaluate �(y)
by a shifted algorithm.

This is usually O(R(N)).

Fundamental Theorem. [Watt '88], [van der Hoeven '02], [Berthomieu, L. ISSAC '12]

y=�(y)) '0= y0

: reading allowed?

Proof
�

Relaxed recursive power series

Let y 2K[[T]] be a recursive power series with y=�(y).

Given y0 and �, we can compute y at precision N in the time necessary to evaluate �(y)
by a shifted algorithm.

This is usually O(R(N)).

Fundamental Theorem. [Watt '88], [van der Hoeven '02], [Berthomieu, L. ISSAC '12]

y=�(y)) '0= y0

: reading allowed

Proof
�

Conclusion

Two general paradigms:

Newton operator Relaxed algorithms

Solve implicit equations P (y)= 0 Solve recursive equations y=�(y)

Faster for higher precision
Less on-line multiplications

Implementations:

Relaxed power series (and p-adics) in Mathemagix

Beginning of a C++ package based on NTL

Also partially present in LinBox

