Computing power series
at high precision”

BY ROMAIN LEBRETON
ECO Team

Pole Algo-Calcul seminar
LIRMM

February 6th, 2015

. This document has been written using the GNU TpXyacs text editor (see www.texmacs.org).

http://www.texmacs.org

Field of research

My field of research: Computer Algebra

e in between Computer Science and Mathematics
e sub-field of Symbolic Computation

e typical objects

355
o numbers 2, 13
o polynomials r+22+223, 22y —28y"—a"y"
o modular computation 5mod7, x+x*+2zr3mod (z?—1)
/ 1 0 11 \
o matrices v Lha 0
1 z2+4 23 x 0
2 0 34+ 2% 0

Formal power series

Let K be an effective field, i.e. a set with algorithms for 4, — %, / eg QZ/pZ

A formal power series f € IK[[x]] is a sequence (f;)icn of K, denoted by

flz)=) fiz'.

i>0

Remarks:

e Like a polynomial but with no finite degree constraint

e Addition, multiplication same as polynomials

If f:Z fniC":(Z gnmn) (Z hnxn) then fn:Z?ZO Gihvp —;

e Purely formal: No notion of “analytic” convergence

Formal power series

Let K be an effective field, i.e. a set with algorithms for 4, — %, / eg QZ/pZ

A formal power series f € IK[[x]] is a sequence (f;)icn of K, denoted by

flz)=) fiz'.

i>0

Computationally speaking:

e only truncated power series

e denote by f(z)=g(x)+ O(z) the truncation at the term 2V

we say “modulo 2V " or “at order N or “at precision N"

e Compute a power series: compute its first NV terms

Formal power series

Let K be an effective field, i.e. a set with algorithms for 4, — %, / eg QZ/pZ

A formal power series [€ K[[x]] is a sequence (f;);cn of K, denoted by

fl@)y=> fiz'.
i>0
Motivation:
e Approximation of functions
Example: Taylor expansion of f at =0

f(CU) _ f(()) i f’(O)Z‘—{— f//Q(O) Z‘2+"'+ f(Z;(O) $i+0w_>0(xi+1)

Formal power series

Let K be an effective field, i.e. a set with algorithms for 4, — %, / eg QZ/pZ

A formal power series [€ K[[x]] is a sequence (f;);cn of K, denoted by

fl@)y=> fiz'.
i>0
Motivation:

e Generating functions in Combinatorics

Example: Catalan numbers (C),),,en (number of full binary trees)

G((Cu)z) = 3 Cpan=1"¥1227

2x
n>=0
= 1+2+222+523 4+ 142 +422°+ 13225+ O(2")

Formal power series

Let K be an effective field, i.e. a set with algorithms for 4, — %, / eg QZ/pZ

A formal power series [€ K[[x]] is a sequence (f;);cn of K, denoted by

fley=>" fiz*
i>0
Motivation:
e In computer algebra
Power series are ubiquitous when computing with polynomials
Example:
Euclidean division of a,b € K[z], a=0bq+ r with deg(r) < deg(b)

The quotient ¢ is computed using a /b € K||z]]

Our objective

Compute basic operations like 1 / f, /f, log(f), exp(f) € IK[[z]] quickly
in theory (quasi-linear time) and in practice (see below).

Theoretical complexity “reminder’:

Power series multiplication at order n costs (arithmetic complexity)

M(n) = O(nlognloglogn) = O(n)
Practical complexity:

In one second with today's computer, in (Z /1048583 Z)[[x]] we can

e multiply two power series at order ~2-10°

e compute 1/ f,log(f),exp(f),/f at order ~5-10°

e compute the Catalan generating function at order ~5-10°

(and at order ~4000 over integers)

Outline of the talk

Two paradigms for power series computation:
1. Newton iteration

2. Relaxed algorithms

Newton operator - Numerical context

Historically comes from Isaac NEWTON, “La méthode des fluxions” in 1669

Goal of Newton iteration

Find approximate solutions of an equation ®(z) =0 where ®: R — RR.

®(z)
Idea:

Approximate ® around y € R by a linear function
Choose N (y) to cancel the linear approx. of @

. ie. N(y)=y-— ;?,((Z))

/

If v is a “good" approximation of a solution of ®(x) =0 then

N (y) is an even better approximation.

Newton operator - Numerical context

d(x)

Idea:
Approximate @ around x =y by a linear function

Choose N (y) to cancel the linear approx. of @

ie. N(y)=y-— g),((yy))

A J\/(y) y v

Newton iteration: Starting from yo:= v, iterate yp1:=N(yx)

y? —2
2y

Example: ®(z)=22-2, N:y—y—
Yo = 1.50000000000000000000

y1 =N (yo) =1.41666666666666666663
yo =N (y1) =1.41421568627450980392
y3 =N (y2) =1.41421356237468991059

Newton operator - Numerical context

d(x)
Idea:

Approximate @ around x =y by a linear function

Choose N (y) to cancel the linear approx. of @

/

Newton iteration: Starting from yo:= v, iterate yp1:=N(yx)

If yi. converges then its number of correct decimal is approximately doubled.

Equivalently, if vy -7 with r a regular solution of ® (i.e. ®'(r)+0) then

(E’J“ ;)Z) s 0(y)) (28/(y)) Quadratic convergence
k — o0

Newton operator - Numerical context

Side note: Knowing which starting values o make (yx)rcn converge is a hard problem

Figure. Basins of attraction for 2° — 1 =0 over C (source Wikipedia)

Symbolic Newton operator

This time, let ®: K||x]] — K[[z]] be a polynomial function, i.e. ® € K[[x]]|y]

Similarly to the numerical case, we define for y € I[F[[x]] the newton operator

N(y)=y— g),(é))

However, the behavior is simpler in the symbolic world

Theorem - Symbolic Newton iteration
L. If yo satisfies ®(yp) =0+ O(x) then

the sequence (yx) will converge to a solution s € K[[z]] of ®(z)=0

2. Quadratic convergence is guaranteed:

S= Y+ O($2k)

Remark: Only works for regular root, i.e. ®'(yg)# 0 mod z. Otherwise, ®(y) is not invertible.

Symbolic Newton operator

Reminder: ® € K|[[z]][y] and N (y) =y — ®(y)

Theorem - Symbolic Newton iteration

1. If y satisfies ®(yp) =0+ O(x) then

the sequence (yi) will converge to a solution s € K[[z]] of ®(z)=0

2. Quadratic convergence is guaranteed:

§ =Yk + @($2k)

Sketch of the proof:

N

Suppose we have an approximate solutions vy, i.e. ®(y) =0+ O(2") =2V p(z).

Let us find a small perturbation 2"V ¢ of y that improves the solution.

Taylor expansion of ® near y:

O(y+a2Ne) = (y)+'(y) xVNe+O((z"e)?)
= 2z (p(x)+@'(y)e) +O(z*") [

A\ e

N .
choose € to cancel this

Symbolic Newton operator — Examples

Example:

Compute the inverse of a power series [€ K[[z]]

The series 1/ f is a solution of 0=®(y):=1/y — f

Therefore we derive the Newton operator

Ny)=y+0-yf)y

Newton iteration: Take f=1+4 2+ 2?2

Yo:=1

y1=N(yo)=1—2z—2*+O0(z'?)
yzzN(yl)21—x+x3—2$4—3x5—m6+0(m10)
ys=N(y2)=1—a+ 23— 2t +2°— 27— 28— 62+ O (21
ya=N(ys)=1—z+a’—2*+2°—2"+2°+O(z'°)

(Starting point. 1=

f

mod x)

Symbolic Newton operator — Examples

Example:

v1—4x

Compute the Catalan generating function G(z)=>" C), 2" = L P

G(x) is a solution of 0=®(y):= 22y —1)*— (1 —4x)

The Newton operator becomes

B 2zy—1)2—(1—4z) (1—y+azy?)
N(y)=y - :le(ny—l) =y (1—nyy%

Newton iteration:

yo:=Cop=1

n=1+z+0(z)

yo=14z+222+52°+62*+22°+O(x'?)
ys=14+x+22°+523+142* +422° + 13225+ 42927 + 1302 28 + 3390 2° + O(z'?)
ya=1+x+222+523+142% + 4225+ 13225 + 429 27 + 1430 28 + 4862 2° + O(x1?)

Remark: the inverse of (1 —2xy;) is computed using previous Newton iteration

Cost of symbolic Newton operator

Complexity to compute an approximate solution of ®(y) =0 at order O(z™):

e The cost of the last iteration is dominant.

e The last iteration involves some multiplication and additions at order O(z%) to evaluate
O(yx), D'(yr) (and invert '(yy))

= The cost is O(M(n))

Remark: The complexity of evaluation of ® is a constant hidden in the O

Intermediate checkpoint

So far,

e Newton iteration computes power series f solutions of implicit equations ®(y) =0

e It costs asymptotically a constant number of multiplication.

Upcoming, Relaxed algorithms
e the second important paradigm to compute common power series

e It computes power series f solutions of “recursive” equations ®(y)=1y

These two techniques are complementary
They yield the current best complexity to compute power series at high precision

Improved data structure for power series

The lazy representation — An improved data structure for f € IK[[x]]

1. Storage of the current approximation modulo 2V of f

2. Attach a function increasePrecision() to f

Examples:
e Based on Newton iteration:

Store the current approximation Y},
increasePrecision() perform Y. 1 =N (Y}) ~ doubles precision

e Naive multiplication of f=gh e K|[[z]]:

increasePrecision() computes one more term of f=>" f, 2™ using
n
i=0

Pros: Management of precision is more user-friendly

Controlling the reading of inputs

In a context of lazy representation, the following question is important:

Which coefficients of the input are required to compute the output at order O(2™)?

Why is it important ?
1. First of all, these coefficients of the inputs may require computation ~- can be costly

2. Controlling the access of the inputs will be the cornerstone of the new technique to
compute recursive power series

Controlling the reading of inputs

In a context of lazy representation, the following question is important:

Which coefficients of the input are required to compute the output at order O(2™)?

Very different dependency on the inputs

Newton iteration for e.g. power series inversion

Computing the coefficients of 1/ f in 22", ..., 22" ~! requires reading the same coeffi-

cients of f
2k—|—1

Indeed i1 =N (yx) =[yr+ (1 — yr f) yx) mod z
More precisely: Read fsx,..., read for+1_; then output (1/ f)or,.ce, (1/ f)op+1_;

Fast multiplication f = ghmod x™ (FFT)

Read all coefficients g, ..., gn 1, ho, ..., hy, 1 of inputs then output fo, ..., [,

Naive multiplication

Read g, hg, output fj ’ Read go, g1, ho, h1, output f; ’ Read go. 91, 92, ho, h1, ha, output fo

Relaxed algorithms

We are interested in algorithms that control the reading of their inputs

(on-line or relaxed algorithm) [HENNIE '66]

_ ol
a =) 50Ul ap | a1 | a2

: reading allowed

:Z@Obixi bo | b1 | b2

c= fla,b) =3 .5, ciz’ |

Relaxed algorithms

We are interested in algorithms that control the reading of their inputs

(on-line or relaxed algorithm) [HENNIE '66]

_ ol
a =) 50Ul ap | a1 | a2

: reading allowed

:Z@Obiaﬁi bo | b1 | b2

c= fla,b) = .s ¢z’ | S|

Relaxed algorithms

We are interested in algorithms that control the reading of their inputs

(on-line or relaxed algorithm) [HENNIE '66]

_ ol
a =) 50Ul ap | a1 | a2

: reading allowed

:Z@Obiaﬁi bo | b1 | b2

c= fla,b) =3 .sociz’ | S| |

Relaxed algorithms

We are interested in algorithms that control the reading of their inputs

(on-line or relaxed algorithm) [HENNIE '66]

_ i
a =) 50Ul aop | a1 | a2

: reading allowed

:Zi>obz‘$i bO bl b2

c= fla,b) =3 50cz* [C]C|C2

Off-line or zealous algorithm: condition not met.

Trivial examples of relaxed algorithms

Naive Addition: Compute f =g+ h using f, = gn+ hn
The addition algorithm is online:

— it outputs f; reading only ¢; and h;.

Naive Multiplication: Compute f=gh using fr,=> ", gihn—;
1. This multiplication algorithm is online:
— it outputs f; reading fo, ..., f; and qgo, ..., g;.

2. Its complexity is quadratic |

Fast relaxed multiplications

Problem.
Fast multiplication algorithms (Karatsuba, FFT) are offline.
Challenge.

Find a quasi-optimal on-line multiplication algorithm.

Theorem. [FISCHER, STOCKMEYER '74], [SCHRODER '97], [VAN DER HOEVEN ’'97]

[BERTHOMIEU, VAN DER HOEVEN, LECERF 'l11], [L., ScHOST '13]

From an off-line multiplication algorithm which costs M(/V) at precision IV,

we can derive an on-line multiplication algorithm of cost

R(N)=O(M(N)log N)=O(N).

Fast relaxed multiplications

Problem.
Fast multiplication algorithms (Karatsuba, FFT) are offline.
Challenge.

Find a quasi-optimal on-line multiplication algorithm.

Theorem. [FISCHER, STOCKMEYER '74], [SCHRODER '97], [VAN DER HOEVEN ’'97]

[BERTHOMIEU, VAN DER HOEVEN, LECERF 'l11], [L., ScHOST '13]

From an off-line multiplication algorithm which costs M(/V) at precision IV,

we can derive an on-line multiplication algorithm of cost

R(N)=O(M(N)log N)=O(N).

Theorem. [vAN DER HOEVEN ’07, ’12]

R(N) = M(N) log(N) *V)

Seems not to be used yet in practice.

Recursive power series

Definition
A power series iy € Q|[T]] is recursive if there exists ® such that
o y=2(y)
e D(y), only depends on yq, ..., yn 1
Example. Compute g =exp(f) defined as exp(f):=>_,-,];" when f(0) =
Remark that ¢'= [’ ¢.

So g is recursive with yo=1 and y=®(y)= [f'y.

oo (1),

= 1/n-(
- 1/”'(f0yn—1+“'+f7;—1 Yo)

Moreover

So ®(y), only depends on g, ..., Y 1.

Definition

Recursive power series

A power series iy € Q|[T]] is recursive if there exists ® such that

o y=2o(y)

o D(y), only depends on yg, ..., Yn 1

~> It is possible to compute y from ® and 1y. But how fast?

Relaxed algorithms and recursive power series

Relaxed algorithms allow the computation of recursive power series

On an example.

Compute g =exp(f) for f:x+%a;2+0(:r;2)

We know that g is recursive with yo=1 and y=o(y)= [f'y.

~ Use the relation ®(y),=1/n-(f"y)n—1 + online multiplication for -y

Computations:

(read only yq using an online multiplication)

: reading allowed

y=1+0(x)

®(y)1=1/1-(f"y)o=1

Y= iz Yit" Yo | ?
| ®

O(y) =D is0 pid’ Po | P1

Relaxed algorithms and recursive power series

Relaxed algorithms allow the computation of recursive power series

On an example.

Compute g =exp(f) for f:x+%a;2+0(:r;2)

We know that g is recursive with yo=1 and y=o(y)= [f'y.

~ Use the relation ®(y),=1/n-(f"y)n—1 + online multiplication for -y

Computations:
y=1+z+0O(z?)
P(y)r=1/1-(f"y)o=1

(read only yo using an online multiplication)

Y=Y iso Wil Yo

Y1

: reading allowed

| ®

C(y) =350 P’ r0

P1

Relaxed algorithms and recursive power series

Relaxed algorithms allow the computation of recursive power series

On an example.

Compute g =exp(f) for f:x+%a;2+0(:r;2)

We know that g is recursive with yo=1 and y=o(y)= [f'y.

~ Use the relation ®(y),=1/n-(f"y)n—1 + online multiplication for -y

Computations:
y=1+z+0O(z?)
P(y)2=1/2-(f"y)1=1

(read only v, y1 using an online multiplication)

Y=Y iso Wil Yo

U1

: reading allowed

| ®

C(y) =350 P’ r0

P1

P2

Relaxed algorithms and recursive power series

Relaxed algorithms allow the computation of recursive power series

On an example.

Compute g =exp(f) for f:x+%a;2+0(:r;2)

We know that g is recursive with yo=1 and y=o(y)= [f'y.

~ Use the relation ®(y),=1/n-(f"y)n—1 + online multiplication for -y

Computations:
y=1+z+2*+ O(x?)
O(y)o=1/2-(f'yh=1

(read only v, y1 using an online multiplication)

Y=Y iso Wil Yo

U1

Y2

: reading allowed

| ®

T

C(y) =350 P’ r0

P1

©2

Shifted Algorithms

What about the general context?

Recursive equations are evaluated using shifted algorithms

Definition of shifted algorithms.

— { :
a = Zi}(} a; X ap | @1 | A2 |- - : reading allowed

c= fla) =2 i>0 c;xt | co

Remark. Shifted algorithms are built using online algorithms

Shifted Algorithms

What about the general context?

Recursive equations are evaluated using shifted algorithms

Definition of shifted algorithms.

— { :
a = Zi}(} a; X ag | ap | az |- -- : reading allowed

c=fla) =Y 5pcix’ [c]c

Remark. Shifted algorithms are built using online algorithms

Shifted Algorithms

What about the general context?

Recursive equations are evaluated using shifted algorithms

Definition of shifted algorithms.

a = 2720 a; " g | @1 | a2 |- -- : reading allowed
|1
c= f(a) = Zi>0 c; colcy]eo

Remark. Shifted algorithms are built using online algorithms

Relaxed recursive power series

Fundamental Theorem. [WaTT '88], [vAN DER HOEVEN '02], [BERTHOMIEU, L. ISSAC '12]

Let y € IK[[T]] be a recursive power series with y= ®(y).

Given yo and ®, we can compute y at precision N in the time necessary to evaluate ®(y)
by a shifted algorithm.

This is usually O(R(N)).

Proof
y=2(y) = vo=yo

— Zz‘>0 y; " Yo | 2 | 2 |--- : reading allowed

(I)(y) — Z@() Spixi $o | L1

Relaxed recursive power series

Fundamental Theorem. [WaTT '88], [vAN DER HOEVEN '02], [BERTHOMIEU, L. ISSAC '12]

Let y € IK[[T]] be a recursive power series with y= ®(y).

Given yo and ®, we can compute y at precision N in the time necessary to evaluate ®(y)
by a shifted algorithm.

This is usually O(R(N)).

Proof
y=2(y) = vo=yo

Y= Zi>0 yixi Yo | Y1 | ?2 |--- : reading allowed

(I)(y) — Z@() Spixi $o | L1

Relaxed recursive power series

Fundamental Theorem. [WaTT '88], [vAN DER HOEVEN '02], [BERTHOMIEU, L. ISSAC '12]

Let y € IK[[T]] be a recursive power series with y= ®(y).

Given yo and ®, we can compute y at precision N in the time necessary to evaluate ®(y)
by a shifted algorithm.

This is usually O(R(N)).

Proof
y=2(y) = vo=yo

Yy = Zi>0 yixi Yo | Yr | 7?2 |--- : reading allowed

(I)(y) — Z@() Spixi Po | P1 | P2

Relaxed recursive power series

Fundamental Theorem. [WaTT '88], [vAN DER HOEVEN '02], [BERTHOMIEU, L. ISSAC '12]

Let y € IK[[T]] be a recursive power series with y= ®(y).

Given yo and ®, we can compute y at precision N in the time necessary to evaluate ®(y)
by a shifted algorithm.

This is usually O(R(N)).

Proof
y=2(y) = vo=yo

Yy = Zi>0 yixi Yo | Y1 | Y2 |- -- : reading allowed

@ T

(I)(y) — Z@() Spixi Po | P1 | P2

Conclusion

Two general paradigms:

Newton operator Relaxed algorithms

Solve implicit equations P(y) =0 Solve recursive equations y = ®(y)

Faster for higher precision
Less on-line multiplications

Implementations:
Relaxed power series (and p-adics) in MATHEMAGIX
Beginning of a C++ package based on NTL

Also partially present in LINBOX

