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ABSTRACT
We provide algorithms computing power series solutions of
a large class of differential or q-differential equations or sys-
tems. Their number of arithmetic operations grows linearly
with the precision, up to logarithmic terms.

1. INTRODUCTION
Truncated power series are a fundamental class of objects

of computer algebra. Fast algorithms are known for a large
number of operations starting from addition, derivative, in-
tegral and product and extending to quotient, powering and
several more. The main open problem is composition: given
two power series f and g, with g(0) = 0, known mod xN ,
the best known algorithm computing f(g) mod xN has a

cost which is roughly that of
√
N products in precision N ;

it is not known whether quasi-linear (i.e., linear up to log-
arithmic factors) complexity is possible in general. Better
results are known over finite fields [4, 25] or when more in-
formation on f or g is available. Quasi-linear complexity
has been reached when g is a polynomial [11], an algebraic
series [19], or belongs to a large class containing for instance
the expansions of exp(x)− 1 and log(1 + x) [8].

One motivation for this work is to deal with the case
when f is the solution of a given differential equation. Us-
ing the chain rule, a differential equation for f(g) can be
derived, with coefficients that are power series. We focus on
the case when this equation is linear, since in many cases lin-
earization is possible [5]. When the order n of the equation
is larger than 1, we use the classical technique of convert-
ing it into a first-order equation over vectors, so we consider
equations of the form

xkδ(F ) = AF + C, (1)
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where A is an n×n matrix over the power series ring K[[x]]
(K being the field of coefficients), C and the unknown F
are size n vectors over K[[x]] and for the moment δ denotes
the differential operator d/dx. The exponent k in (1) is a
non-negative integer that plays a key role for this equation.

By solving such equations, we mean computing a vector F
of power series such that (1) holds modulo xN . For this, we
need only compute F polynomial of degree less than N + 1
(when k = 0) or N (otherwise). Conversely, when (1) has a
power series solution, its firstN coefficients can be computed
by solving (1) modulo xN (when k 6= 0) or xN−1 (otherwise).

If k = 0 and the field K has characteristic 0, then a for-
mal Cauchy theorem holds and (1) has a unique vector of
power series solution for any given initial condition. In this
situation, algorithms are known that compute the first N
coefficients of the solution in quasi-linear complexity [5]. In
this article, we extend the results of [5] in three directions:

Singularities. We deal with the case when k is positive. A
typical example is the computation of the composition F =
f(g) when f is Gauss’ 2F1 hypergeometric series. Although
f is a very nice power series

f = 1 +
ab

c
x+

a(a+ 1)b(b+ 1)

c(c+ 1)

x2

2!
+ · · · ,

we exploit this structure indirectly only. We start from the
differential equation

x(x− 1)f ′′ + (x(a+ b+ 1)− c)f ′ + abf = 0 (2)

and build up and solve the more complicated

g(g − 1)

g′2
F ′′+

g′2(g(a+ b+ 1)− c) + (g − g2)g′′

g′3
F ′+abF = 0

in the unknown F , g being given, with g(0) = 0. Equa-
tion (2) has a leading term that is divisible by x so that
Cauchy’s theorem does not apply and indeed there does not
exist a basis of two power series solutions. This behavior is
inherited by the equation for F , so that the techniques of [5]
do not apply — this example is actually already mentioned
in [11], but the issue with the singularity at 0 was not ad-
dressed there. We show in this article how to overcome this
singular behavior and obtain a quasi-linear complexity.

Positive characteristic. Even when k = 0, Cauchy’s the-
orem does not hold in positive characteristic and Eq. (1)



may fail to have a power series solution (a simple example
is F ′ = F ). However, such an equation may have a solution
modulo xN . Efficient algorithms finding such a solution are
useful in conjunction with the Chinese remainder theorem.
Other motivations for considering algorithms that work in
positive characteristic come from applications in number-
theory based cryptology or in combinatorics [7, 8, 10].

Our objectives in this respect are to overcome the lack of a
Cauchy theorem, or of a formal theory of singular equations,
by giving conditions that ensure the existence of solutions
at the required precisions. More could probably be said
regarding the p-adic properties of solutions of such equations
(as in [6, 27]), but this is not the purpose of this paper.

Functional Equations. The similarity between algorithms
for linear differential equations and for linear difference equa-
tions is nowadays familiar to computer algebraists. We thus
use the standard technique of introducing σ : K[[x]]→ K[[x]]
a unitary ring morphism and letting δ : K[[x]] → K[[x]] de-
note a σ-derivation, in the sense that δ is K-linear and that
for all f, g in K[[x]], we have

δ(fg) = fδ(g) + δ(f)σ(g).

These definitions, and the above equality, carry over to ma-
trices over K[[x]]. Thus, our goal is to solve the following
generalization of (1):

xkδ(F ) = Aσ(F ) + C. (3)

As above, we are interested in computing a vector F of power
series such that (3) holds mod xN .

One motivation for this generalization comes from cod-
ing theory. The list-decoding of the folded Reed-Solomon
codes [18] leads to an equation Q(x, f(x), f(qx)) = 0 where
Q is a known polynomial. A linearized version of this is of
the form (3), with σ : φ(x) 7→ φ(qx). In cases of interest we
have k = 1, and we work over a finite field.

In view of these applications, we restrict ourselves to the
following setting:

δ(x) = 1, σ : x 7→ qx,

for some q ∈ K \ {0}. Then, there are only two possibilities:

• q = 1 and δ : f 7→ f ′ (differential case);

• q 6= 1 and δ : f 7→ f(qx)−f(x)
x(q−1)

(q-differential case).

As a consequence, δ(1) = 0 and for all i ≥ 0, we have

δ(xi) = γix
i−1 with γ0 = 0 and γi = 1+q+· · ·+qi−1 (i > 0).

By linearity, given f =
∑
i≥0 fix

i ∈ K[[x]],

δ(f) =
∑
i≥1

γifix
i−1

can be computed mod xN in O(N) operations, as can σ(f).
Conversely, assuming that γ1, . . . , γn are all non-zero in K,
given f of degree at most n−1 in K[x], there exists a unique
g of degree at most n such that δ(g) = f and g0 = 0; it is
given by g =

∑
0≤i≤n−1 fi/γi+1x

i+1 and can be computed

in O(N) operations. We denote it by g =
∫
q
f . In particular,

our condition excludes cases where q is a root of unity of low
order.

Notation and complexity model. We adopt the conven-
tion that uppercase letters denote matrices or vectors while

lowercase letters denote scalars. The set of n ×m matrices
over a ring R is denoted Mn,m(R); when n = m, we write
Mn(R). If f is in K[[x]], its degree i coefficient is written fi;
this carries over to matrices. The identity matrix is written
Id (the size will be obvious from the context). To avoid any

confusion, the entry (i, j) of a matrix M is denoted M (i,j).
Our algorithms are sometimes stated with input in K[[x]],
but it is to be understood that we are given only truncations
of A and C and only their first N coefficients will be used.

The costs of our algorithms are measured by the number
of arithmetic operations in K they use. We let M : N→ N be
such that for any ring R, polynomials of degree less than n
in R[x] can be multiplied in M(n) arithmetic operations in R.
We assume that M(n) satisfies the usual assumptions of [17,
§8.3]; using Fast Fourier Transform, M(n) can be taken in
O(n log(n) log log(n)) [13, 28]. We note ω ∈ (2, 3] a constant
such that two matrices in Mn(R) can be multiplied in O(nω)
arithmetic operations in R. The current best bound is ω <
2.3727 ([31] following [14, 30]).

Our algorithms rely on linear algebra techniques; in par-
ticular, we have to solve several systems of non-homogeneous
linear equations. For U in Mn(K) and V in Mn,1(K), we
denote by LinSolve(UX = V ) a procedure that returns ⊥ if
there is no solution, or a pair F,K, where F is in Mn,1(K)
and satisfies UF = V , and K ∈ Mn,t(K), for some t ≤ n,
generates the nullspace of U . This can be done in time
O(nω). In the pseudo-code, we adopt the convention that if
a subroutine returns ⊥, the caller returns ⊥ too (so we do
not explicitly handle this as a special case).

Main results. Equation (3) is linear, non-homogeneous in
the coefficients of F , so our output follows the convention
mentioned above. We call generators of the solution space
of Eq. (3) at precision N either ⊥ (if no solution exists) or a
pair F,K where F ∈Mn,1(K[x]) and K ∈Mn,t(K[x]) with
t ≤ nN , such that for G ∈ Mn,1(K[x]), with deg(G) < N ,
xkδ(G) = Aσ(G)+C mod xN if and only if G can be written
G = F +KB for some B ∈Mt,1(K).

Seeing Eq. (3) as a linear system, one can obtain such an
output using linear algebra in dimension nN . While this
solution always works, we give algorithms of much better
complexity, under some assumptions related to the spec-
trum SpecA0 of the constant coefficient A0 of A. First, we
simplify our problem: we consider the case k = 0 as a special
case of the case k = 1. Indeed, the equation δ(F ) = Aσ(F )+
C mod xN is equivalent to xδ(F ) = Pσ(F ) +Q mod xN+1,
with P = xA and Q = xC. Thus, in our results, we only
distinguish the cases k = 1 and k > 1.

Definition 1. The matrix A0 has good spectrum at pre-
cision N when one of the following holds:

• k = 1 and SpecA0∩(qi SpecA0−γi) = ∅ for 1 ≤ i < N

• k > 1, A0 is invertible and

– q = 1, γ1, . . . , γN−k are non-zero, | SpecA0| = n
and SpecA0 ⊂ K;

– q 6= 1 and SpecA0 ∩ qi SpecA0 = ∅ for 1 ≤ i < N .

In the classical case when K has characteristic 0 and q = 1, if
k = 1, A0 has good spectrum when no two eigenvalues of A0

differ by a non-zero integer (this is e.g. the case when A0 =
0, which is essentially the situation of Cauchy’s theorem;



this is also the case in our 2F1 example whenever c val(g) is
not an integer, since SpecA0 = {0, val(g)(1− c)− 1}).

These conditions could be slightly relaxed, using gauge
transformations (see [1, Ch. 2] and [2, 3]). Also, for k > 1
and q = 1, we could drop the assumption that the eigenval-
ues are in K, by replacing K by a suitable finite extension,
but then our complexity estimates would only hold in terms
of number of operations in this extension.

As in the non-singular case [5], we develop two approaches.
The first one is a divide-and-conquer method. The problem
is first solved at precision N/2 and then the computation
at precision N is completed by solving another problem of
the same type at precision N/2. This leads us to the fol-
lowing result, proved in Section 2 (see also that section for
comparison to previous work). In all our cost estimates, we
consider k constant, so it is absorbed in the big-Os.

Theorem 1. Algorithm 2 computes generators of the so-
lution space of Eq. (3) at precision N by a divide-and-conquer
approach. Assuming A0 has good spectrum at precision N ,
it performs in time O(nωM(N) log(N)). When either k > 1
or k = 1 and qiA0 − γiId is invertible for 0 ≤ i < N , this
drops to O(n2M(N) log(N) + nωN).

Our second algorithm behaves better with respect to N ,
with cost in O(M(N)) only, but it always involves polyno-
mial matrix multiplications. Since in many cases the divide-
and-conquer approach avoids these multiplications, the sec-
ond algorithm becomes preferable for rather large precisions.

In the differential case, when k = 0 and the characteristic
is 0, the algorithms in [5, 11] compute an invertible ma-
trix of power series solution of the homogeneous equation
by a Newton iteration and then recover the solution using
variation of the constant. In the more general context we
are considering here, such a matrix does not exist. How-
ever, it turns out that an associated equation that can be
derived from (3) admits such a solution. Section 3 describes
a variant of Newton’s iteration to solve it and obtains the
following.

Theorem 2. Assuming A0 has good spectrum at preci-
sion N , one can compute generators of the solution space
of Eq. (3) at precision N by a Newton-like iteration in time
O(nωM(N) + nω log(n)N).

To the best of our knowledge, this is the first time such a low
complexity is reached for this problem. Without the good
spectrum assumption, however, we cannot guarantee that
this algorithm succeeds, let alone control its complexity.

2. DIVIDE-AND-CONQUER
The classical approach to solving (3) is to proceed term-

by-term by coefficient extraction. Indeed, we can rewrite
the coefficient of degree i in this equation as

RiFi = ∆i, (4)

where ∆i is a vector that can be computed from A, C and
all previous Fj (and whose actual expression depends on k),
and Ri is as follows:{

Ri = (qiA0 − γiId) if k = 1

Ri = qiA0 if k > 1.

Ideally, we wish that each such system determines Fi uniquely
that is, that Ri be a unit. For k = 1, this is the case when

Algorithm 1: Recursive Divide-and-Conquer

RDAC(A,C, i, N, k)
input : A ∈Mn(K[[x]]),C ∈ Li,

i ∈ N, N ∈ N \ {0}, k ∈ N \ {0}
output: F ∈ Li+N

if N = 1 then
if k = 1 then Ri := qiA0 − γiId else Ri := qiA0

if det(Ri) = 0 then return Fi
else return −R−1

i C0

else
m := dN/2e
H := RDAC(A,C, i,m, k)
D := (C− xkδ(H) + (qiA− γixk−1Id)σ(H)) div xm

K := RDAC(A,D, i+m,N −m, k)
return H + xmK

end

i is not a root of the indicial equation det(qiA0 − γiId) = 0.
For k > 1, either this is the case for all i (when A0 is in-
vertible) or for no i. In any case, we let R be the set of
indices i ∈ {0, . . . , N − 1} such that det(Ri) = 0; we write
R = {j1 < · · · < jr}, so that r = |R|.

Even when R is empty, so the solution is unique, this
approach takes quadratic time in N , as computing each in-
dividual ∆i takes linear time in i. To achieve quasi-linear
time, we split the resolution of Eq. (3) mod xN into two half-
sized instances of the problem; at the leaves of the recursion
tree, we end up having to solve the same Eq. (4).

When R is empty, the algorithm is simple to state (and
the cost analysis simplifies; see the comments at the end of
this section). Otherwise, technicalities arise. We treat the
cases i ∈ R separately, by adding placeholder parameters for
all corresponding coefficients of F (this idea is already in [2,
3]; the algorithms in these references use a finer classification
when k > 1, by means of a suitable extension of the notion
of indicial polynomial, but take quadratic time in N).

Let f1,1, . . . , fn,r be nr new indeterminates over K (below,
all boldface letters denote expressions involving these formal
parameters). For ρ = 1, . . . , r, we define the vector Fjρ with
entries f1,ρ, . . . , fn,ρ and we denote by L the set of all vectors

F = ϕ0 + ϕ1Fj1 + · · ·+ ϕrFjr ,

with ϕ0 in Mn,1(K[x]) and each ϕ` in Mn(K[x]) for 1 ≤ ` ≤
r. We also define Li the subspace of vectors of the form

F = ϕ0 + ϕ1Fj1 + · · ·+ ϕµ(i)Fµ(i),

where µ(i) is defined as the index of the largest element
j` ∈ R such that j` < i; if no such element exist (for instance
when i = 0), we let µ(i) = 0. A specialization S : L →
Mn,1(K[x]) is simply an evaluation map defined by fi,` 7→
fi,` for all i, `, for some choice of (fi,`) in Knr.

We extend δ and σ to such vectors, by letting δ(fi,`) = 0
and σ(fi,`) = fi,` for all i, `, so that we have, for F in L

δ(F) = δ(ϕ0) + δ(ϕ1)Fj1 + · · ·+ δ(ϕr)Fjr ,

and similarly for σ(F).
The main divide-and-conquer algorithm first computes F

in L , by simply skipping all equations corresponding to in-
dices i ∈ R; it is presented in Algorithm 2. In a second step,
we resolve the indeterminacies by plain linear algebra. For



i ≥ 0, and F,C in L , we write

E(F,C, i) = xkδ(F)−
(
(qiA− γixk−1Id)σ(F) + C

)
.

In particular, E(F,C, 0) is a parameterized form of Eq. (3).
The key to the divide-and-conquer approach is to write H =
F mod xm, K = F div xm and D = (C−E(H,C, i)) div xm.
Using the equalities

xkδ(F) = xkδ(H) + xm+kδ(K) + γmx
m+k−1σ(K)

and γi+m = γm + qmγi, a quick computation shows that

E(F,C, i) = (E(H,C, i) mod xm)+xmE(K,D, i+m). (5)

Lemma 1. Let A be in Mn(K[x]) and C in Li, and let
F = RDAC(A,C, i,M, k) with i+M ≤ N . Then:

1. F is in Li+M ;

2. for j ∈ {0, . . . ,M−1} such that i+ j 6∈ R, the equality
coeff(E(F,C, i), xj) = 0 holds;

3. if C and F in Mn,1(K[x]) with degF < M are such
that E(F,C, i) = 0 mod xM and there exists a spe-
cialization S : Li →Mn,1(K[x]) such that C = S(C),
then there exists a specialization S′ : Li+M →Mn,1(K[x])
which extends S and such that F = S(F).

F is computed in time O((n2 + rnω)M(M) log(M) + nωM).

Proof. The proof is by induction on M .
Proof of 1. For M = 1, we distinguish two cases. If i ∈ R,
say i = j`, we return Fi = Fj` . In this case, µ(i+ 1) = `, so
our claim holds. If i 6∈ R, because C0 ∈ Li, the output is
in Li as well. This proves the case M = 1.

For M > 1, we assume the claim to hold for all (i,M ′),
with M ′ < M . By induction, H ∈ Li+m and K ∈ Li+M .
Thus, D ∈ Li+m and the conclusion follows.

Proof of 2. For M = 1, if i ∈ R, the claim is trivially
satisfied. Otherwise, we have to verify that the constant
term of E(F,C, i) is zero. In this case, the output F is
reduced to its constant term F0, and the constant term of
E(F,C, i) is (up to sign) RiF0 + C0 = 0, so we are done.

For M > 1, we assume that the claim holds for all (i,M ′),
with M ′ < M . Take j in {0, . . . ,M − 1}. If j < m, we have
coeff(E(F,C, i), xj) = coeff(E(H,C, i), xj); since i+j /∈ R,
this coefficient is zero by assumption. If m ≤ j, we have
coeff(E(F,C, i), xj) = coeff(E(K,D, i), xj−m). Now, j+i /∈
R implies that (j−m) + (i+m) /∈ R, and j−m < M −m,
so by induction this coefficient is zero as well.

Proof of 3. For M = 1, if i ∈ R, say i = j`, we have
F = Fj` , whereas F has entries in K; this allows us to define
S′. When i 6∈ R, we have F = S(F), so the claim holds as
well. Thus, we are done for M = 1.

For M > 1, we assume our claim for all (i,M ′) with
M ′ < M . Write H = F mod xm, K = F div xm and
D = (C−xkδ(H)+(qiA−γixk−1Id)σ(H)) div xm. Then, (5)
implies that E(H,C, i) = 0 mod xm and E(K,D, i + m) =
0 mod xM−m. The induction assumption shows that H is a
specialization of H, say H = S′(H) for some S′ : Li+m →
Mn,1(K[x]) which extends S. In particular, D = S′(D).
The induction assumption also implies that there exist an
extension S′′ : Li+m → Mn,1(K[x]) of S′, and thus of S,
such that K = S′′(K). Then F = S′′(F), so we are done.

For the complexity analysis, the most expensive part of
the algorithm is the computation of D. At the inner re-
cursion steps, the bottleneck is the computation of Aσ(H),

Algorithm 2: Divide-and-Conquer

DAC(A,C,N, k)
input : A ∈Mn(K[[x]]), C ∈Mn,1(K[[x]]),

N ∈ N \ {0}, k ∈ N \ {0}
output: Generators of the solution space of

xkδ(F ) = Aσ(F ) + C at precision N .
F := RDAC(A,C, 0, N, k)

(F has the form ϕ0 + ϕ1Fj1 + · · ·+ ϕrFjr )
T := xkδ(F)−Aσ(F)− C mod xN

Γ := (T
(j)
i , i ∈ R, j = 1, . . . , n)

Φ,∆ := LinSolve(Γ = 0)
M := [ϕ1, . . . , ϕr]
return ϕ0 +MΦ,M∆

where H has degree less than M and A can be truncated
mod xM (the higher degree terms have no influence in the
subsequent recursive calls). Computing σ(H) takes time
O(N(n + rn2)) and the product is done in time O((n2 +
rnω)M(M)); recursion leads to a factor log(M). The base
cases use O(M) matrix inversions of cost O(nω) and O(M)
multiplications, each of which takes time O(rnω).

The second step of the algorithm is plain linear algebra:
we know that the output of the previous algorithm satisfies
our main equation for all indices i /∈ R, so we conclude by
forcing the remaining ones to zero.

Proposition 1. Given A ∈Mn(K[x]) and C ∈Mn,1(K[x]),
Algorithm 2 returns generators of the solution space of (3)
mod xN in time O((n2+rnω)M(N) log(N)+r2nωN+rωnω).

Proof. The first claim is a direct consequence of the con-
struction above, combined with Lemma 1. For the cost es-
timate, we need to take into account the computation of
T, the linear system solving, and the final matrix products.
The computation of T fits in the same cost as that of D
in Algorithm 1, so no new contribution comes from here.
Solving the system Γ = 0 takes time O((rn)ω). Finally, the
product [ϕ1 · · ·ϕr]∆ involves an n×(rn) matrix with entries
of degree N and an (rn) × t constant matrix, with t ≤ rn;
proceeding coefficient by coefficient, and using block matrix
multiplication in size n, the cost is O(r2nωN).

When all matrices Ri are invertible, the situation becomes
considerably simpler: r = 0, the solution space has dimen-
sion 0, there is no need to introduce formal parameters, the
cost drops to O(n2M(N) log(N) + nωN) for Lemma 1, and
Proposition 1 becomes irrelevant.

When A0 has good spectrum at precision N , we may not
be able to ensure that r = 0, but we always have r ≤ 1.
Indeed, when k = 1, the good spectrum condition implies
that for all 0 ≤ i < N and for j ∈ N, the matrices Ri and
Rj have disjoint spectra so that at most one of them can be
singular. For k > 1, the good spectrum condition implies
that all Ri are invertible, whence r = 0. This proves Thm. 1.

Previous work. As said above, Barkatou and Pflügel [3],
then Barkatou, Broughton and Pflügel [2], already gave algo-
rithms that solve such equations term-by-term, introducing
formal parameters to deal with cases where the matrix Ri
is singular. These algorithms handle some situations more
finely than we do (e.g., the cases k ≥ 2), but take quadratic
time; our algorithm can be seen as a divide-and-conquer
version of these results.



In the particular case q 6= 1, n = 1 and r = 0, another
forerunner to our approach is Brent and Traub’s divide-and-
conquer algorithm [12]. That algorithm is analyzed for a
more general σ, of the form σ(x) = xq(x), as such, they are
more costly than ours; when q is constant, we essentially end
up with the approach presented here.

Let us finally mention van der Hoeven’s paradigm of re-
laxed algorithms [19, 22, 23], which allows one to solve sys-
tems such as (3) in a term-by-term fashion, but in quasi-
linear time. The cornerstone of this approach is fast relaxed
multiplication, otherwise known as online multiplication, of
power series.

In [19, 20], van der Hoeven offers two relaxed multiplica-
tion algorithms (the first one being similar to that of [16]);
both take time O(M(n) log(n)). When r = 0, this yields
a complexity similar to Prop. 1 to solve Eq. (3), but it is
unknown to us how this carries over to arbitrary r.

When r = 0, both our divide-and-conquer approach and
the relaxed one can be seen as “fast” versions of quadratic
time term-by-term extraction algorithms. It should appear
as no surprise that they are related: as it turns out, at least
in simple cases (with k = 1 and n = 1), using the relaxed
multiplication algorithm of [20] to solve Eq. (3) leads to
doing exactly the same operations as our divide-and-conquer
method, without any recursive call. We leave the detailed
analysis of these observations to future work.

For suitable “nice” base fields (e.g., for fields that sup-
port Fast Fourier Transform), the relaxed multiplication al-
gorithm in [19] was improved in [21, 24], by means of a
reduction of the log(n) overhead. This raises the question
whether such an improvement is available for divide-and
conquer techniques.

3. NEWTON ITERATION

3.1 Gauge Transformation
Let F be a solution of Eq. (3). To any invertible ma-

trix W ∈ Mn(K[x]), we can associate the matrix Y =
W−1F ∈ Mn(K[[x]]). We are going to choose W in such a
way that Y satisfies an equation simpler than (3). The heart
of our contribution is the efficient computation of such a W .

Lemma 2. Let W ∈Mn(K[x]) be invertible in Mn(K[[x]])
and let B ∈Mn(K[x]) be such that

B = W−1(xkδ(W )−Aσ(W )) mod xN . (6)

Then F in Mn,1(K[x]) satisfies

xkδ(F ) = Aσ(F ) + C mod xN (3)

if and only if Y = W−1F satisfies

xkδ(Y ) = Bσ(Y ) +W−1C mod xN . (7)

Proof. Differentiating the equality F = WY gives

xkδ(F ) = xkδ(W )σ(Y ) + xkWδ(Y ).

Since xkδ(W ) = Aσ(W )−WB mod xN , we deduce

xkδ(F )−Aσ(F )−C = W (xkδ(Y )−Bσ(Y )−W−1C) mod xN .

Since W is invertible, the conclusion follows.

The systems (3) and (7) are called equivalent under the
gauge transformation Y = WF . Solving (3) is thus reduced

Algorithm 3: PolCoeffsDE

PolCoeffsDE(P,Q, k,N)

input : P ∈Mn(K[x]) of degree less than k,
Q ∈Mn,1(K[[x]]), N ∈ N \ {0}, k ∈ N \ {0}

output: Generators of the solution space of
xkδ(Y ) = Pσ(Y ) +Q at precision N .

for i = 0, . . . , N − 1 do
C := Qi + (P1q

i−1Yi−1 + · · ·+ Pk−1q
i−k+1Yi−k+1)

if k = 1 then
Yi,Mi := LinSolve((γiId− qiP0)X = C)

else
Yi,Mi := LinSolve(−qiP0X = C − γi−k+1Yi−k+1)

end

end

return Y0 + · · ·+ YN−1x
N−1, [M0 M1x · · ·MN−1x

N−1]

to finding a simple B such that (7) can be solved efficiently
and such that the equation

xkδ(W ) = Aσ(W )−WB mod xN (8)

that we call associated to (3) has an invertible matrix W
solution that can be computed efficiently too.

As a simple example, consider the differential case, with
k = 1. Under the good spectrum assumption, it is custom-
ary to choose B = A0, the constant coefficient of A. In this
case, the matrix W of the gauge transformation must satisfy

xW ′ = AW −WA0 mod xN .

It is straightforward to compute the coefficients of W one
after the other, as they satisfy W0 = Id and, for i > 0,

(A0 − iId)Wi −WiA0 = −
∑
j<i

Ai−jWj .

However, using this formula leads to a quadratic running
time in N . The Newton iteration presented in this section
computes W in quasi-linear time.

3.2 Polynomial Coefficients
Our approach consists in reducing efficiently the resolution

of (3) to that of an equivalent equation where the matrix A
of power series is replaced by a matrix B of polynomials
of low degree. This is interesting because the latter can be
solved in linear complexity by extracting coefficients. This
subsection describes the resolution of the equation

xkδ(Y ) = Pσ(Y ) +Q, (9)

where P is a polynomial matrix of degree less than k.

Lemma 3. Suppose that P0 has good spectrum at preci-
sion N . Then Algorithm 3 computes generators of the solu-
tion space of Eq. (9) at precision N in time O(nωN), with
M ∈Mn,t(K) for some t ≤ n.

Proof. Extracting the coefficient of xi in Eq. (9) gives

γi−k+1Yi−k+1 = qiP0Yi + · · ·+ qi−k+1Pk−1Yi−k+1 +Qi.

In any case, the equation to be solved is as indicated in the
algorithm. For k = 1, we actually have C = Qi for all i, so
all these systems are independent. For k > 1, the good spec-
trum condition ensures that the linear system has full rank



for all values of i, so all Mi are empty. For each i, comput-
ing C and solving for Yi is performed in O(nω) operations,
whence the announced complexity.

3.3 Computing the Associated Equation
Given A ∈ Mn(K[[x]]), we are looking for a matrix B

with polynomial entries of degree less than k such that the
associated equation (8), which does not depend on the non-
homogeneous term C, has an invertible matrix solution.

In this article, we content ourselves with a simple version
of the associated equation where we choose B in such a way
that (8) has an invertible solution V mod xk; thus, V and
B must satisfy Aσ(V ) = V B mod xk. The invertible matrix
V is then lifted at higher precision by Newton iteration (Al-
gorithm 6) under regularity conditions that depend on the
spectrum of A0. Other cases can be reduced to this setting
by the polynomial gauge transformations that are used in
the computation of formal solutions [2, 33].

When k = 1 or q 6= 1, the choice

B = A mod xk, V = Id

solves our constraints and is sufficient to solve the associated
equation. When q = 1, k > 1 (in particular when the point 0
is an irregular singular point of the equation), this is not be
the case anymore. In that case, we use a known technique
called the splitting lemma to prepare our equation. See for
instance [1, Ch. 3.2] and [2] for details and generalizations.

Lemma 4 (Splitting Lemma). Suppose that k > 1,
that |SpecA0| = n and that SpecA0 ⊂ K. Then one can
compute in time O(nω) matrices V and B of degree less than
k in Mn(K[x]) such that the following holds: V0 is invertible;
B is diagonal; AV = V B mod xk.

Proof. We can assume that A0 is diagonal: if not, we
let P be in Mn(K) such that D = P−1AP has a diagonal
constant term; we find V using D instead of A, and replace
V by PV . Computing P and PV takes time O(nω), since as
per convention, k is considered constant in the cost analyses.

Then, we take B0 = A0 and V0 = Id. For i > 0, we have
to solve A0Vi−ViA0−Bi = ∆i, where ∆i can be computed
from A1, . . . , Ai and B1, . . . , Bi−1 in time O(nω). We set the
diagonal of Vi to 0. Since A0 is diagonal, the diagonal Bi is
then equal to the diagonal of ∆i, up to sign. Then the entry

(`,m) in our equation reads (r` − rm)V
(`,m)
i = ∆

(`,m)
i , with

r1, . . . , rn the (distinct) eigenvalues of A0. This can always
be solved, in a unique way. The total time is O(nω).

3.4 Solving the Associated Equation
Once B and V are determined as in §3.3, we compute

a matrix W that satisfies the associated equation (8); this
eventually allows us to reduce (3) to an equation with poly-
nomial coefficients. This computation of W is performed
efficiently using a suitable version of Newton iteration for
Eq. (8); it computes a sequence of matrices whose preci-
sion is roughly doubled at each stage. This is described in
Algorithm 6; our main result in this section is the following.

Proposition 2. Suppose that A0 has good spectrum at
precision N . Then, given a solution of the associated equa-
tion mod xk, invertible in Mn(K[[x]]), Algorithm 6 com-
putes a solution of that equation modxN , also invertible in
Mn(K[[x]]), in time O(nωM(N) + nω log(n)N).

Algorithm 4: Solving Eq. (10) when k = 1 or q 6= 1

DiffSylvester(Γ,m,N)

input : Γ ∈ xmMn(K[[x]]),m ∈ N \ {0}, N ∈ N \ {0}
output: U ∈ xm−kMn(K[x]) solution of (10).
for i = m, . . . , N − 1 do

C := (B1q
i−1Ui−1 + · · ·+Bk−1q

i−k+1Ui−k+1)
−(Ui−1B1 + · · ·+ Ui−k+1Bk−1) + Γi

if k = 1 then
Ui := Sylvester(XB0 + (γiId− qiB0)X = C)

else
Ui := Sylvester(XB0 − qiB0X =

C − γi−k+1Ui−k+1)
end

end

return Umx
m + · · ·+ UN−1x

N−1

Before proving this result, we show how to solve yet an-
other type of equations that appear in an intermediate step:

xkδ(U) = Bσ(U)− UB + Γ mod xN , (10)

where all matrices involved have size n×n, with Γ = 0 mod
xm. This is dealt with by Algorithm 4 when k = 1 or q 6= 1
and Algorithm 5 otherwise.

For Algorithm 4, remember that B = A mod xk. The al-
gorithm uses a routine Sylvester solving Sylvester equations.
Given matrices Y, V, Z in Mn(K), we are looking for X in
Mn(K) such that Y X−XV = Z. When (Y, V ) have disjoint
spectra, this system admits a unique solution, which can be
computed O(nω log(n)) operations in K [26].

Lemma 5. Suppose that k = 1 or q 6= 1 and that A0 has
good spectrum at precision N . If Γ = 0 mod xm, with k ≤
m < N , then Algorithm 4 computes a solution U to Eq. (10)
that satisfies U = 0 mod xm−k+1 in time O(nω log(n)N).

Proof. Extracting the coefficient of xi in (10) gives

γi−k+1Ui−k+1 = qiB0Ui − UiB0 + C,

with C as defined in Algorithm 4. In both cases k = 1
and k > 1, this gives a Sylvester equation for each Ui, of
the form given in the algorithm. Since B0 = A0, the spec-
trum assumption on A0 implies that these equations all have
a unique solution. Since Γ is 0 mod xm, so is U (so we
can start the loop at index m). The total running time is
O(nω log(n)N) operations in K.

This approach fails in the differential case (q = 1) when
k > 1, since the corresponding Sylvester systems are all
singular. Algorithm 5 deals with this issue, using the fact
that in this case, B is diagonal, and satisfies the conditions
of Lemma 4.

Lemma 6. Suppose that k > 1, q = 1 and that A0 has
good spectrum at precision N . If Γ = 0 mod xm, with k ≤
m < N , then Algorithm 5 computes a solution U to Eq. (10)
that satisfies U = 0 mod xm−k+1 in time O(n2N).

Proof. Since B is diagonal, the (i, j)th entry of (10) is

xkδ(U (i,j)) = (B(i,i) −B(j,j))U (i,j) + Γ(i,j) mod xN .

When i = j, B(i,i) − B(j,j) vanishes. After dividing by xk,
we simply have to compute an integral, which is feasible



Algorithm 5: Solving Eq. (10) when k > 1 and q = 1

DiffSylvesterDifferential(Γ,m,N)

input : Γ ∈ xmMn(K[[x]]),m ∈ N \ {0}, N ∈ N \ {0}
output: U ∈ xm−kMn(K[x]) solution of (10).
for i = 1, . . . , n do

for j = 1, . . . , n do

if i = j then U (i,i) := xk
∫

(x−kΓ(i,i)) mod xN

else

U (i,j):= PolCoeffsDE(B(i,i)−B(j,j),Γ(i,j), k,N)
end

end

end
return U

Algorithm 6: Newton iteration for Eq. (8)

NewtonAE(V,N)

input : V ∈Mn(K[x]) solution of (8) modxk

invertible in Mn(K[[x]]), N ∈ N \ {0}
output: W ∈Mn(K[x]) solution of (8) modxN

invertible in Mn(K[[x]]), with W = V mod xk

if N ≤ k then return V
else

m := dN+k−1
2
e

H := NewtonAE(V,m)
R := xkδ(H)−Aσ(H) +HB
if k = 1 or q 6= 1 then

U := DiffSylvester(−H−1R,m,N)
else

U := DiffSylvesterDifferential(−H−1R,m,N)
end
return H +HU

end

under the good spectrum assumption (we have to divide by
the non-zero γ1 = 1, . . . , γN−k = N − k). When i 6= j, the
conditions ensure that Lemma 3 applies (and since k > 1,
the solution is unique, as pointed out in its proof).

We now prove the correctness of Algorithm 6 for Newton
iteration. Instead of doubling the precision at each step,
there is a slight loss of k − 1.

Lemma 7. Let m ≥ k and let H ∈Mn(K[x]) be invertible
in Mn(K[[x]]) and satisfy (8) modxm. Let N be such that
m ≤ N ≤ 2m − k + 1. Let R and U be as in Algorithm 6
and suppose that A0 has good spectrum at precision N .

Then H+HU is invertible in Mn(K[[x]]) and satisfies the
associated equation modxN . Given H, U can be computed
in time O(nωM(N) + nω log(n)N).

Proof. By hypothesis, R = 0 mod xm. Then

xkδ(H +HU)−Aσ(H +HU) + (H +HU)B

= (xkδ(H)−Aσ(H) +HB)(Id + σ(U))

+H(xkδ(U) + UB −Bσ(U))

= R(Id + σ(U))−R mod xN = Rσ(U) mod xN .

Using either Lemma 5 or Lemma 6, U = 0 mod xm−k+1,
so σ(U) = 0 mod xm−k+1. Thus, the latter expression is 0,
since 2m− k + 1 ≥ N . Finally, since HU = 0 mod xm−k+1,

and m ≥ k, H +HU remains invertible in Mn(K[[x]]). The
various matrix products and inversions take a total number
of O(nωM(N)) operations in K (using Newton iteration to
invert H). Adding the cost of Lemma 5, resp. Lemma 6, we
get the announced complexity.

We can now prove Proposition 2. Correctness is obvious
by repeated applications of the previous lemma. The cost
C(N) of the computation up to precision N satisfies

C(N) = C(m) +O(nωM(N) + nω lognN), N > k.

Using the super-additivity properties of the function M as
in [17, Ch. 9], we obtain the claimed complexity.

We can now conclude the proof of Thm. 2. In order to
solve Equation (3), we first determine B and V as in §3.3;
the cost will be negligible. Then, we use Proposition 2 to
compute a matrix W that satisfies (8) modxN . Given C in
Mn,1(K[[x]]), we next compute Γ = W−1C mod xN . By the
previous lemma, we conclude by solving

xkδ(Y ) = Bσ(Y ) + Γ mod xN .

Lemma 3 gives us generators of the solution space of this
equation mod xN . If it is inconsistent, we deduce that Eq. (3)
is. Otherwise, from the generators (Y,M) obtained in Lemma 3,
we deduce that (WY,WM) mod xN is a generator of the so-
lution space of Eq. (3) mod xN . Since the matrix M has few
columns (at most n), the cost of all these computations is
dominated by that of Proposition 2, as reported in Thm. 2.

4. IMPLEMENTATION
We implemented the divide-and-conquer and Newton it-

eration algorithms on top of NTL 5.5.2 [29], together with
a naive algorithm of quadratic complexity.

Our implementation uses NTL’s built-in zz_pX polyno-
mial arithmetic, that is, works with “small” prime fields (of
size about 230 over 32 bit machines, and 250 over 64 bits
machines). For this data type, NTL’s polynomial arithmetic
uses a combination of naive, Karatsuba and FFT arithmetic.

There is no built-in NTL type for polynomial matrices,
but a simple mechanism to write one. Our polynomial ma-
trix product is naive, doing n3 polynomial multiplications
in size n. For very small sizes such as n = 2 or n = 3, this
is probably sufficient; for larger n, one should employ im-
proved multiplication schemes (such as Waksman’s [32], see
also [15]) or evaluation-interpolation techniques [9].

Our implementation follows the descriptions given above,
up to a few optimizations for algorithm NewtonAE (which
are all classical in the context of Newton iteration). For
instance, the inverse of H should not be recomputed at every
step, but simply updated; some products can be computed
at a lower precision than it appears (such as H−1R, where
R is known to have a high valuation).

In all our experiments, the base field was K = Z/pZ, with
p a 28 bit prime; the systems were drawn at random. All
timings are in seconds, averaged over 50 runs; they are ob-
tained on a single core of a 2 GHz Intel Core 2 processor.

In Fig. 1, we give timings for the scalar case, with k = 1
and q 6= 1. Clearly, the quadratic algorithm is outperformed
for almost all values of N ; Newton iteration performs better
than the divide-and-conquer approach, and both display a
subquadratic behavior. Fig. 2 gives timings when n varies,
taking k = 1 and q 6= 1 as before. For larger values of n,
the divide-and-conquer approach become much better for
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this range of values of N , since it avoids costly polynomial
matrix multiplication (see Thm. 1).

The running times for other values of q or k are very close
to these ones. In all cases, the experimental results confirm
to a very good extent the theoretical cost analyses.
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