
ACM Communications in Computer Algebra, TBA TBA

Root lifting techniques and applications to list decoding

Muhammad F. I. Chowdhury
The University of Western Ontario

London, Canada
mchowdh3@csd.uwo.ca

Romain Lebreton

École polytechnique
France

lebreton@lix.polytechnique.fr

Abstract

Motivatived by Guruswami and Rudra’s construction of folded Reed-Solomon codes, we
give algorithms to solve functional equations of the form Q(x, f(x), f(γx)) = 0, where Q is a
trivariate polynomial. We compare two approaches, one based on Newton’s iteration and the
second using relaxed series techniques.

1 Introduction

In a celebrated paper [6], Sudan introduced a list decoding algorithm for Reed-Solomon codes
based on bivariate interpolation and root finding techniques. The techniques were then refined by
Guruswami-Sudan [4], Parvaresh-Vardy [5] and in 2008, Guruswami and Rudra [3] achieved close
to the information-theoretic limit by means of folded Reed-Solomon codes. Let F be a finite field
and let γ be a primitive element of F. The message polynomial f(x) will be transmitted as the
sequence f(γi) for i ∈ {1, . . . , n}. Let y be the received set and let s ≥ 2 be a “folding” parameter;
then, the decoding algorithm does the following

1. (interpolation) Find a multivariate polynomial Q(x, z1, . . . , zs) (with suitable degree proper-
ties) such that Q(γsi, ysi+1, . . . , ysi+s) = 0 holds for all i, with multiplicity m;

2. (root-finding) Return the polynomials f(x) such that Q(x, f(x), f(γx), . . . , f (γs−1x)) = 0.

2 Lifting techniques

In this work we consider the second step, root-finding, by means of lifting techniques. For this first
study, we consider only situations in three variables (that is, s = 2), and we also assume that the
multiplicity m of each root is 1. The former assumption can easily be lifted; the latter would require
more work (since it requires some desingularization process).

Let Q(x, z1, z2) be the polynomial that we obtained during the interpolation step. Our goal here
is to construct a polynomial f(x) such that Q(x, f(x), f(γx)) = 0. We will assume that f(0) = 0;
this is actually not a real restriction, since we can impose it on our message polynomials without
loss of generality.

We present two algorithms: one using a suitable version of Newton’s iteration (similar to Augot-
Pequet’s approach for Sudan’s list decoding algorithm [1]), the other one using van der Hoeven’s
relaxed techniques.

1



Root lifting techniques for list decoding TBA

Newton iteration. The idea behind this approach is classical: assuming that we know f0 =
f mod x`, we want to compute f at a higher precision, about 2`, by solving a linearized equation.
This is done by means of a Taylor expansion: writing f = f0 + h, we obtain

∂Q

∂z2
(x, f0(x), f0(γx))h(γx) +

∂Q

∂z1
(x, f0(x), f0(γx))h(x) = −Q(x, f0(x), f0(γx)) mod x2`.

If we define the γ-derivative

E : f 7→ f(γx)− f(x)

x
,

the former equation takes the form A(x)E(h) + B(x)h = C(x), for some suitable A,B,C. The
similarity between this equation and first-order linear differential equations allows us to propose an
algorithm very close to Brent and Kung’s algorithm for differential equations [2]. By construction,
the equation is singular (that is, A(0) = 0), but it is possible to overcome this issue. The resulting
algorithm runs in time O(M(n)) to compute f mod xn, where M denotes as usual a function such
that degree-n polynomials can be multiplied in M(n) base field operations.

The relaxed algorithm. In [7], van der Hoeven introduced the relaxed model of multiplication,
that allows for “lazy” polynomial multiplication with an amortized quasi-linear complexity. This
model allows one to solve fixed-point equations of the form of f(x) = φ(f(x)) where φ is an operator
such that the first n coefficients of φ(f(x)) depend only on the first n− 1 coefficients of f(x).

We show how to transform the equation Q(x, f(x), f(γx)) into such a fixed-point equation.
As a result, we are able to compute f mod xn in time O(R(n)), where R is the cost of relaxed
multiplication. In general, we have R(n) = O(M(n) log(n)); for multiplication algorithms such as
Karatsuba’s, we have R(n) = O(M(n)), so that this approach is competitive with the one based on
Newton iteration.

References

[1] D. Augot and L. Pecquet. A Hensel lifting to replace factorization in list-decoding of algebraic-
geometric and Reed-Solomon codes. IEEE Trans. Inf. Theory, 46(7):2605–2614, 2000.

[2] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series. J. ACM,
25(4):581–595, 1978.

[3] V. Guruswami and A. Rudra. Explicit codes achieving list decoding capacity: Error-correction
with optimal redundancy. IEEE Trans. Inf. Theory, 54(1):135 –150, 2008.

[4] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraic-geometric
codes. IEEE Trans. Inf. Theory, 45(6):1757 – 1767, 1999.

[5] F. Parvaresh and A. Vardy. Correcting errors beyond the Guruswami-Sudan radius in polynomial
time. In FOCS’05, pages 285 – 294. IEEE Computer Society, 2005.

[6] Madhu Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound. J. Com-
plexity, 13:180–193, 1997.

[7] J. van Der Hoeven. Relax, but don’t be too lazy. J. Symbolic Computation, 34:479–542, 2002.

2


