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The computation of an order basis (also called sigma basis in [3]) is a fundamental tool for linear algebra
with polynomial coefficients. Such computation is one of the key ingredient to provide algorithms which
reduce to polynomial matrix multiplication. This has been the case for column reduction [3] or minimal
nullspace basis [12] of polynomial matrix over a field. In this poster, we are interested in the application
of order basis to compute minimal matrix generators of a linear matrix sequence (see [10]). In particular,
we focus on the linear matrix sequence used in Block Wiedemann algorithm [1].

As of today, the fast order basis algorithm PM-Basis from [3] suffers from two issues. In our applications,
the bound σ on its degree may be pessimistic and therefore we need to use early termination. However
the recursive aspect of PM-Basis is unhelpful to implement such an early termination. Also PM-Basis may
require to know more coefficients of F than necessary. This can hinder the complexity when the cost of
computing coefficients of the entry is dominant. This is the case for instance for the block Wiedemann
algorithm which motivates this work.

Main results In this work we propose a relaxed variant of the PM-Basis algorithm. The property of
relaxed algorithms is that they do not require more knowledge on the input than necessary while keeping
a quasi-optimal complexity in the order σ.
We first propose an iterative variant Iterative-PM-Basis of PM-Basis which is more suited to the relaxed
model and also to early termination. Then we show how to relax Iterative-PM-Basis via the use of a relaxed
polynomial matrix multiplication algorithm. Thus we obtain our relaxed order basis computation within
the complexity of PM-Basis with only an extra logarithmic factor in σ. Finally, we show the benefit of this
algorithm to gain a constant factor on average on the block Wiedemann algorithm.

Order basis algorithms Let K be a field, F =
∑

i>0 Fix
i ∈ K[[x]]m×n a matrix of power series, σ a

positive integer and (F, σ) be the K[x]-module defined by the set of v ∈ K[x]1×m such that vF ≡ 0 mod xσ.
A polynomial matrix P is a (left) order basis of F of order σ and shift ~s if the rows of P form a basis
of (F, σ) and P is ~s-row reduced (see [11] for details). Without loss of generality we only consider in this
poster the case n = O(m) with a balanced shift ~s as in [3]. Indeed the techniques of [11] allow to reduce
the general case to our particular case.

Two different algorithms presented in [3] compute an order basis P of F . The M-Basis algorithm
works iteratively on the order σ to compute the order basis P . It is a lazy algorithm that costs O(mωσ2)
arithmetic operations in K, i.e. it only requires the coefficients Fj of F for 0 6 j 6 (i− 1) for computing
the intermediate order basis of order i. The PM-Basis algorithm uses a divide-and-conquer approach on
the order σ to reduce the arithmetic complexity to O(mωM(σ) log(σ)) = O (̃mωσ), where M denotes the
arithmetic complexity of polynomial multiplication. Roughly speaking, the algorithm is made of four steps:
1) a recursive call to compute an order basis Plow of F of order σ/2, 2) an update of the problem via the
middle product F ′ := (x−σ/2PlowF ) mod xσ/2, 3) a recursive call to compute an order basis Phigh of F ′ of
order σ/2 and 4) return the order basis PhighPlow of F of order σ. Step 2) implies that one may need at
most twice as much coefficients of the input series than necessary to go from an intermediate order basis
of order i to i+ 1.
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Fast iterative order basis Let us give an iterative version of PM-Basis. Our algorithm performs
exactly the same operations on matrices as PM-Basis when σ is a power of two. This iterative presentation
of PM-Basis is original. Let us denote ν2(k) the valuation in 2 of any integer k and index our lists from 1.

Algorithm 1: Iterative-PM-Basis

Input: F ∈ K[[x]]m×n, σ > 0, ~s ∈ Nm
Output: P ∈ K[x]m×n such that P is a ~s-row reduced order basis of (F, σ)

1: P0, ~u := M-Basis(F mod x, 1, ~s ); P := [P0]; S := [0, . . . , 0, F ] with dlog2(σ)e zeros
2: for k = 1 to σ − 1 do

3: ` := ν2(k); `′ :=

{
dlog2(σ)e if k = 2`

ν2(k − 2`) otherwise

4: Update P by merging its first `+ 1 elements by multiplication //Product tree of step 4)

5: S[`+ 1] := MiddleProduct(P [1], S[`′ + 1], 2`) //Update of the series of step 2)
6: Pk, ~u := M-Basis(S[`+ 1] mod x, 1, ~u ) //Recursive calls on leafs of steps 1) and 3)
7: Insert Pk at the beginning of P

8: return
∏
i P [i]

Relaxing order basis algorithm In algorithm PM-Basis, we have noticed that only the middle prod-
uct of step 5 reads more entries of F than necessary at step k. Let us perform this step differently

a

b

Figure 1: Relaxed middle product

so that it reads at most the coefficients F0, . . . , Fk−1 of F at step k.
This property is called a relaxed (or on-line) algorithm w.r.t. F .

A naive approach would be to compute a full 2n × n product
using a relaxed multiplication algorithm on polynomial of matri-
ces ([2, 6, 5, 7, 9]) in time R(n) = O(M(n) log(n)) [2]. We propose
another relaxed algorithm that gains asymptotically a factor 2 com-
pared to the full 2n×n relaxed product. We illustrate our algorithm
in Figure 1. We decompose the relaxed middle product in a normal
high product (in black) followed by a multiplication (in white and
gray) relaxed w.r.t. only b using [7] in this example.

Using this relaxed middle product algorithm within Iterative-
PM-Basis we obtain an order basis algorithm Relaxed-PM-Basis relaxed w.r.t. F . This relaxed order basis
algorithm costs O(kωR(σ) log(σ)) = O(kωM(σ) log2(σ)) operations in K.

Application to block Wiedemann algorithm Let A ∈ GLN (K) with O(N) non-zero elements. Block
Wiedemann approach uses a minimal matrix generator of the matrix series S =

∑
i∈N UA

iV xi for any
random U, V T ∈ Km×N in order to solve a linear system Ax = b ∈ KN . As described in [10], this matrix
generator can be obtained from an order basis of F = [S | Im]T ∈ K[[x]]2m×m. We can derive a bound on
the maximal degree δ of this order basis using the stopping criteria of [8, Th. 4.19]. Since this bound may
be loose, a constant factor in the complexity can often be saved using an early termination in the order
basis algorithm.

We compare the complexity of Iterative-PM-Basis and Relaxed-PM-Basis in this setting. Computing S
at precision σ costs O(kω−1Nσ). In practice k � N so that the cost of computing S always dominates the
cost of (relaxed) order basis algorithm.

Assume that δ is uniformely distributed between 2p + 1 and 2p+1 for p ∈ N. Iterative-PM-Basis requires
the coefficients F0, . . . , F2p+1−1 whereas Relaxed-PM-Basis only asks for F0, . . . , Fδ−1. Therefore our relaxed
approach improves the dominant cost of computing F in block Wiedemann by a factor 2 at most and 4/3
on average.
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