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3. Structure des ordinateurs 

Le modèle d'architecture de la plupart des 

ordinateurs actuels provient d'un travail effectué 

par John Von Neumann en 1946.  

 
Le modèle de Von Neumann 

 

 

Principes du modèle de programmation : 

- code = séquence d'instructions en MC ; 

- données stockées en MC ; 
 

Actuellement, d'autres types d'architecture (5° 

génération, machines systoliques, …) utilisant 

massivement le parallélisme permettent 

d'améliorer notablement la vitesse des calculs.  
 

On peut conjecturer que dans l'avenir, d'autres 

paradigmes de programmation spécifiques à 

certaines applications induiront de nouvelles 

architectures. 

Unité Centrale 
 

Unité de Commande 
 

Unité Arith. et Log. 
 

Registres

Mémoire Centrale

Bus (données, adresses, contrôle)

Périphériques
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3.1 L' Unité Centrale (UC) 
ou processeur (Central Processing Unit CPU) 

 

Cerveau de l'ordinateur, l'UC exécute 

séquentiellement les instructions stockées en 

Mémoire Centrale. Le traitement d'une instruction 

se décompose en 3 temps : chargement, 

décodage, exécution. C'est l'unité de commande 

qui ordonnance l'ensemble, tandis que l'UAL 

exécute des opérations telles que l'addition, la 

rotation, la conjonction…, dont les paramètres et 

résultats sont stockés dans les registres (mémoires 

rapides).  
 

3.1.1.1 Les registres 

Certains registres spécialisés jouent un rôle 

particulièrement important. Le Compteur Ordinal (CO) 

Instruction Pointer IP, Program Counter PC  pointe sur 

la prochaine instruction à exécuter; le Registre 

Instruction (RI) contient l'instruction en cours 

d'exécution; le registre d'état Status Register, Flags, 

Program Status Word PSW contient un certain nombre 

d'indicateurs (ou drapeaux ou bits) permettant de 

connaître et de contrôler certains états du processeur; Le 

pointeur de pile Stack Pointer permet de mémoriser 

l'adresse en MC du sommet de pile (structure de données 

Last In First Out LIFO  indispensable pour les appels 

procéduraux); Des registres d'adresse (index ou bases) 

permettent de stocker les adresses des données en 

mémoire centrale tandis que des registres de travail 

permettent de stocker les paramètres et résultats de 

calculs. 
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3.1.1.2 L'Unité de Commande 

Celle-ci exécute l'algorithme suivant : 

 
répéter 

1.charger dans RI l'instruction stockée en MC à 

l'adresse pointée par le CO; 

2.CO:=CO+taille(instruction en RI); 

3.décoder (RI) en micro-instructions; 

4.(localiser en mémoire les données de 

l'instruction;) 

5.(charger les données;) 

6.exécuter l'instruction (suite de micro-instructions); 

7.(stocker les résultats mémoires;) 

jusqu'à l'infini 

 

Lors du démarrage de la machine, CO est 

initialisé soit à l'adresse mémoire 0 soit à l'adresse 

correspondant à la fin de la mémoire (2m-1). A 

cette adresse, se trouve le moniteur en mémoire 

morte qui tente de charger l'amorce "boot-strap"  

du système d'exploitation. 

 

Remarquons que cet algorithme peut parfaitement 

être simulé par un logiciel (interprèteur). Ceci 

permet de tester des processeurs matériels avant 

même qu'il en soit sorti un prototype, ou bien de 

simuler une machine X sur une machine Y 

(émulation). 
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3.1.1.3 L'Unité Arith. et Log. 

Celle-ci exécute des opérations : 

- arithmétiques : addition, soustraction, C2, 

incrémentation, décrémentation, multiplication, 

division, décalages arithmétiques (multiplication 

ou division par 2n). 

- logiques : et, ou, xor, non, rotations et 

décalages. 

 

Selon le processeur, certaines de ces opérations 

sont présentes ou non. De plus, les opérations 

arithmétiques existent parfois pour plusieurs 

types de nombres (C2, DCB, virgule flottante) ou 

bien des opérations d'ajustement permettent de les 

réaliser. 

 

Enfin sur certaines machines (8086) ne possédant 

pas d'opérations en virgule flottante, des co-

processeurs arithmétiques (8087) peuvent être 

adjoint pour les réaliser. 

 

Les opérations arithmétiques et logiques 

positionnent certains indicateurs d'état du registre 

PSW. C'est en testant ces indicateurs que des 

branchements conditionnels peuvent être exécutés 

vers certaines parties de programme. 
 

Pour accélérer les calculs, on a intérêt à utiliser les 

registres de travail comme paramètres, 

notamment l'accumulateur (AX pour le 8086). 
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3.2 La Mémoire Centrale (MC) 

La mémoire centrale de l'ordinateur est 

habituellement constituée d'un ensemble ordonné 

de 2m cellules (cases), chaque cellule contenant un 

mot de n bits. Ces mots permettent de conserver 

programmes et données ainsi que la pile 

d'exécution.  

 

3.2.1 Accès à la MC 

La MC est une mémoire électronique et l'on accède 

à n'importe laquelle de ses cellules au moyen de 

son adresse comprise dans l'intervalle [0, 2m-1]. 

Les deux types d'accès à la mémoire sont : 

- la lecture qui transfère sur le bus de données, le 

mot contenu dans la cellule dont l'adresse est 

située sur le bus d'adresse. 

- l'écriture qui transfère dans la cellule dont 

l'adresse est sur le bus d'adresse, le mot contenu 

sur le bus de données. 

 

La taille n des cellules mémoires ainsi que la taille 

m de l'espace d'adressage sont des caractéristiques 

fondamentales de la machine. Le mot de n bits est 

la plus petite unité d'information transférable 

entre la MC et les autres composants. 

Généralement, les cellules contiennent des mots 

de 8, 16 ou 32 bits. 
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3.2.2 Contenu/adresse (valeur/nom) 

Attention à ne jamais confondre le contenu d'une 

cellule, mot de n bits, et l'adresse de celle-ci, mot 

de m bits même lorsque n=m. 

 

Parfois, le bus de données a une taille multiple de 

n ce qui permet la lecture ou l'écriture de plusieurs 

mots consécutifs en mémoire. Par exemple, le 

microprocesseur 8086 permet des échanges 

d'octets ou de mots de 16 bits (appelés "mots"). 

 

Exemple (cellules d'un octet) 
 

Adresse   Contenu bin   hexa. 

0 0 1 0 1 0 0 1 1 53H 

1 1 1 1 1 1 0 1 0 0FAH 

2 1 0 0 0 0 0 0 0 80H 

…          

32 0 0 1 0 0 0 0 0 20H (3210) 

…          

2m-1 0 0 0 1 1 1 1 1 1FH 

 
Parfois, une autre représentation graphique de l'espace mémoire 

est utilisé, en inversant l'ordre des adresses : adresses de poids 

faible en bas, adresses fortes en haut. Cependant, pour le 8086, 

lorsqu'on range un mot (16 bits) à l'adresse mémoire i, l'octet de 

poids fort se retrouve en i+1. Il est aisé de s'en souvenir 

mnémotechniquement via la gravité dans les liquides de densités 

différentes. 
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3.2.3 RAM et ROM 
Random Access Memory/ Read Only Memory 

 

La RAM est un type de mémoire électronique 

volatile et réinscriptible. Elle est aussi nommée 

mémoire vive et plusieurs technologies permettent 

d'en construire différents sous-types : statique, 

dynamique (rafraîchissement). La RAM constitue 

la majeure partie de l'espace mémoire puisqu'elle 

est destinée à recevoir programme, données et pile 

d'exécution. 

 

La ROM est un type de mémoire électronique non 

volatile et non réinscriptible. Elle est aussi 

nommée mémoire morte et plusieurs technologies 

permettent d'en construire différents sous-types 

(ROM, PROM, EPROM, EEPROM (Flash), …). La 

ROM constitue une faible partie de l'espace 

mémoire puisqu'elle ne contient que le moniteur 

réalisant le chargement du système d'exploitation 

et les Entrées/Sorties de plus bas niveau. Sur les 

PCs ce moniteur s'appelle le Basic Input Output 

System. Sur les Macintosh, le moniteur contient 

également les routines graphiques de base. C'est 

toujours sur une adresse ROM que le Compteur 

Ordinal pointe lors du démarrage machine. 

 

DDR SDRAM : Double Data Rate Synchronous 

Dynamic RAM est une RAM dynamique 

(condensateur) qui a un pipeline interne 

permettant de synchroniser les opérations R/W. 
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3.3 Les périphériques 

Les périphériques, ou organes d'Entrée/Sortie 

(E/S) Input/Output (I/O), permettent à 

l'ordinateur de communiquer avec l'homme ou 

d'autres machines, et de mémoriser 

massivement les données ou programmes dans 

des fichiers. La caractéristique essentielle des 

périphériques est leur lenteur : 

- Processeur cadencé en Giga-Hertz : instructions 

éxécutées chaque nano-seconde (10-9 s) ; 

- Disque dur de temps d’accès entre 10 et 20 ms 

(10-3 s) : rapport de 107 ! 

- Clavier avec frappe à 10 octets par seconde : 

rapport de 108 ! 

 

3.3.1 Communication 

L'ordinateur échange des informations avec 

l'homme à travers des terminaux de 

communication homme/machine : clavier ←, écran 

→, souris ←, imprimante →, synthétiseur (vocal) 

→, table à digitaliser ←, scanner ←, crayon 

optique ←, lecteur de codes-barres ←, lecteur de 

cartes magnétiques ←, terminaux consoles 

stations ↔ … 

Il communique avec d'autres machines par 

l'intermédiaire de réseaux ↔ locaux ou longue 

distance (via un modem). 
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3.3.2 Mémorisation de masse 
ou mémorisation secondaire 

 

Les mémoires électroniques étant chères et soit 

volatiles (non fiables) soit non réinscriptibles, le 

stockage de masse est réalisé sur d'autres 

supports. Ces autres supports sont caractérisés 

par : 

• non volatilité et réinscriptibilité 

• faible prix de l'octet stocké 

• lenteur d'accès et modes d'accès (séquentiel, 

séquentiel indexé, aléatoire, …) 

• forte densité 

• parfois amovibilité 

• Mean Time Between Failures plus important car 

organes mécaniques → stratégie de sauvegarde 

 
Supports Optiques 

Historiquement, les cartes 80 colonnes ont été 

parmi les premiers supports mais sont 

complètement abandonnées aujourd'hui. Les 

rubans perforés, utilisés dans les milieux à 

risque de champ magnétique (Machines Outils à 

Commande Numérique), sont leurs descendants 

directs dans le cadre des supports optiques. 

 
Supports Magnétique 

Aujourd'hui (années 90), les supports magnétiques 

constituent la quasi-totalité des mémoires de 

masse des ordinateurs à usage général. 
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Bandes magnétiques  
Ce sont des supports à accès séquentiel particulièrement 

utilisés dans la sauvegarde. On les utilise de plus en plus sous 

forme de cassettes. Les dérouleurs de cassettes sont appelés 

streamers. Les densités et vitesses sont variables : quelques 

milliers de bytes per inch (bpi)  et autour d'un Mo/s. Le temps 

d'accès dépendant de la longueur de la bande … 
 

schéma d'une bande magnétique  
bloc i bloc i+1

•••Pistes

1 

2 

3 

4 

5 

6 

7 

8 

9

gap  inter-blocbit de parité  
 

Disques magnétiques  
Ils constituent la majorité des mémoires secondaires. Durs ou 

souples, fixes ou amovibles, solidaires (Winchester) ou non 

(dispack) de leurs têtes de lecture/écriture, il en existe une très 

grande diversité. Les disques durs ont des capacités variant 

entre quelques dizaines à quelques centaines de Mo, des vitesses 

de transfert autour du Mo/s et des temps d'accès approchant les 

10 ms. 

schéma d'un disque magnétique 

tête de lecture/écriture

translation

rotation

face

0

1
2

3
4

5
6

7

•

rotation

trou d'index
secteurs 0, 1, …, 7

pistes

gap
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Composé de faces, de pistes concentriques, de 

secteurs "soft sectored", la densité des disques est 

souvent caractérisée par le nombre de "tracks per 

inch" (tpi) . Sur les disques durs, un cylindre est 

constitué d'un ensemble de pistes de même 

diamètre. 

Un contrôleur de disque (carte) est chargé de 

transférer les informations entre un ou plusieurs 

secteurs et la MC. Pour cela, il faut lui fournir : le 

sens du transfert (R/W), l'adresse de début en MC 

(Tampon), la taille du transfert, la liste des 

adresses secteurs (n° face, n° cylindre, n° secteur). 

La plus petite unité de transfert physique est 1 

secteur. 

 

Pour accéder à un secteur donné, le contrôleur doit 

commencer par translater les bras mobiles portes-

têtes sur le bon cylindre, puis attendre que le bon 

secteur passe sous la tête sélectionnée pour 

démarrer le transfert. Le temps d'accès moyen 

caractérise la somme de ces deux délais moyens. 

 

Exemple : TAmoyen et transfert d'1 secteur ? 

disque dur 8 faces, 50 cylindres, 10 secteurs/piste 

d'1 Ko, tournant à 3600 tours/mn, ayant une 

vitesse de translation de 1 m/s et une distance 

entre la 1° et la dernière piste de 5 cm. 

 

TAmoyen = (5 cm/2)/1 m/s + (1/60 t/s)/2= 25ms+8,3 ms 

Transfert d'1 secteur = (1/60)/10 = 1,66 ms 
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Supports optiques 

Supports optiques 
 

- unités de lecture fonctionnant au moyen d'un 

faisceau laser ; 

- densités de stockage supérieures au 

magnétique : de 102 à 104 fois plus ; 

-  temps d'accès plus longs : archivage de masse. 

 

CDROM : disques compacts (même format que les 

CDs audio) pré-enregistrés par pressage en usine 

et non réinscriptibles : (logiciels, annuaires, 

encyclopédies, …).  

 

CDR : inscriptibles une seule fois ; 

 

CDRW : réinscriptibles (1000 fois) 

 

DVDR, DVDRW : idem CD mais avec des 

capacités plus importantes : 4,7 Go contre 700 Mo, 

double couches ... 

 

Magnéto-optiques : combinant la technologie 

optique (laser) et magnétique (particules 

orientées), ils sont réinscriptibles. Amovibles, plus 

denses que les disques magnétiques mais moins 

rapides, ils constituent un compromis pour les 

archivages et les fichiers rarement accédés. 
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3.4 Contrôleur d'E/S et IT 

A l’origine, l’UC gérait les périphériques en leur 

envoyant une requête puis en attendant leur 

réponse. Cette attente active était supportable 

en environnement monoprogrammé. 

 

Actuellement, l’UC délègue la gestion des E/S aux 

processeurs situés sur les cartes contrôleur 

(disque, graphique, …) : 

1. l’UC transmet la requête d’un processus à la 

carte contrôleur ; 

2. l’UC « endort » le processus courant et exécute 

un processus « prêt » ; 

3. le contrôleur exécute l’E/S ; 

4. le contrôleur prévient l’UC de la fin de l’E/S 

grâce au mécanisme d’interruption ; 

5. l’UC désactive le processus en cours d’exécution 

puis « réveille » le processus endormi qui peut 

continuer à s’exécuter. 

 

Grâce à ce fonctionnement, l’UC ne perd pas son 

temps à des tâches subalternes ! 

 

Généralement, plusieurs niveaux 

d'interruption plus ou moins prioritaires sont 

admis par l'UC 
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3.5 Le(s) Bus 

Le bus de données est constitué d'un ensemble 

de lignes bidirectionnelles sur lesquelles 

transitent les bits des données lues ou écrites par 

le processeur. (Data 0-31) 

 

Le bus d'adresses est constitué d'un ensemble de 

lignes unidirectionnelles sur lesquelles le 

processeur inscrit les bits formant l'adresse 

désirée. 

 

Le bus de contrôle est constitué d'un ensemble 

de lignes permettant au processeur de signaler 

certains événements et d'en recevoir d'autres. On 

trouve fréquemment des lignes représentant les 

signaux suivants : 

 

Vcc et GROUND : tensions de référence ← 

RESET   : réinitialisation de l'UC ← 

R/ W   : indique le sens du transfert → 

MEM/ IO   : adresse mémoire ou E/S → 
 
Technologiquement, les bus de PC évoluent 

rapidement (Vesa Local Bus, ISA, PCI, PCI 

Express, ATA, SATA, SCSI, …) 
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3.6 Améliorer les performances 

3.6.1 Hiérarchie mémoire et Cache 

Classiquement, il existe 3 niveaux de mémoire 

ordonnés par vitesse d'accès et prix décroissant et 

par taille croissante : 

- Registres ; 

- Mémoire Centrale ; 

- Mémoire Secondaire. 

 

Afin d’accélérer les échanges, on peut augmenter 

le nombre des niveaux de mémoire en introduisant 

des CACHE ou antémémoire de Mémoire Centrale 

et/ou Secondaire : Mémoire plus rapide mais plus 

petite, contenant une copie de certaines données : 

 
Fonctionnement : 

Le demandeur demande à lire ou écrire une 

information ; 

si le cache possède l’information, l’opération est 

réalisée, sinon, il récupère l’info. depuis le 

fournisseur puis réalise l’op. 

 

Le principe de séquentialité des instructions et 

des structures de données permet d’optimiser le 

chargement du cache avec des segments de la 

mémoire fournisseur. Stratégie de remplacement 

est généralement LRU (Moins Récemment Utilisée). 
3.6.1.1 Niveaux et localisation des caches 
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- Cache Processeur réalisé en SRAM 

 

- Niveau 1 (L1) : séparé en 2 caches (instructions, 

données), situé dans le processeur, communique 

avec L2 ; 

- Niveau 2 (L2) : unique (instructions et données) 

situé dans le processeur ; 

- Niveau 3 (L3) : existe parfois sur certaines 

cartes mères. 

 

Par exemple, Pentium 4 ayant un cache L2 de 

256 Ko. 

 

 
- Cache Disque 

 

De quelques Méga-octets, ce cache réalisé en 

DRAM est géré par le processeur du contrôleur 

disque. Il ne doit pas être confondu avec les 

tampons systèmes stockés en mémoire centrale 

(100 Mo). Intérêts de ce cache : 

 

- Lecture en avant (arrière) du cylindre ; 

- Synchronisation avec l’interface E/S (IDE, SATA, 

…) 

- Mise en attente des commandes (SCSI, SATA) 
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3.6.2 Pipeline 

Technique de conception de processeur avec 

plusieurs petites unités de commande placées en 

série et dédiées à la réalisation d’une tâche 

spécifique. Plusieurs instructions se chevauchent à 

l'intérieur même du processeur. 

 

Par exemple, décomposition simple d'une 

instruction en 4 étapes : 

 

6. Fetch : chargement de l'instruction depuis la 

MC ; 

7. Decode : décodage en micro-instructions ; 

8. Exec : exécution de l'instruction (UAL) ; 

9. Write Back : écriture du résultat en MC ou dans 

un registre  

Soit la séquence d'instruction : i1, i2, i3, ...  

sans pipeline : 

i1F, i1D, i1E, i1W, i2F, i2D, i2E, i2W, i3F, ...  

 

avec pipeline à 4 étages 

i1F i1D i1E i1W  

 i2F i2D i2E I2W 

  i3F i3D I3E 

   i4F i4D 
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Chaque étage du pipeline travaille « à la chaîne » 

en répétant la même tâche sur la série 

d’instructions qui arrive. 

 

Si la séquence est respectée, et s’il n’y a pas de 

conflit, le débit d’instructions (throughput) est 

multiplié par le nombre d’étages ! 

 

Problèmes et solutions :  

- Rupture de séquence : vidage des étages ! 

- Dépendance d’instructions : mise en attente forcée 

 
Architecture superscalaire : 

Plusieurs pipeline (2) dans le même processeur 

travaillent en parallèle (→instons indépendantes). 

 

Exemple : 

Pentium 4 : selon ses versions, de 20 à 31 étages ! 

 

3.6.3 SIMD 

Single Instruction Multiple Data désigne un 

ensemble d’instructions vectorielles permettant 

des opérations scientifiques ou multimédia.  Par 

exemple, l’AMD 64 possède 8 registres 128 bits et 

des instructions spécifiques utilisables pour le 

streaming, l’encodage audio ou vidéo, le calcul 

scientifique. 
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3.6.4 DMA et BUS Mastering 

L'accès direct mémoire ou DMA (Direct Memory 

Access) est un procédé informatique où des 

données circulant de ou vers un périphérique (port 

de communication, disque dur) sont transférées 

directement par un contrôleur adapté vers la 

mémoire centrale de la machine, sans intervention 

du microprocesseur si ce n'est pour initier et 

conclure le transfert. La conclusion du transfert ou 

la disponibilité du périphérique peuvent être 

signalés par interruption. 

 

La technique de Bus Mastering permet à 

n’importe quel contrôleur de demander et prendre 

le contrôle du bus : le maître peut alors 

communiquer avec n’importe lequel des autres 

contrôleurs sans passer par l’UC. 

Cette technique implémentée dans le bus PCI 

permet à n’importe quel contrôleur de réaliser un 

DMA. Si l’UC a besoin d’accéder à la mémoire, elle 

devra attendre de récupérer la maîtrise du bus. Le 

contrôleur maître lui vole alors des cycles 

mémoires. 
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4. La Couche Physique 

La couche physique est constituée de circuits 

électroniques complexes interconnectés. Ces 

circuits sont conçus à partir d'un nombre peu 

importants de circuits de base relativement 

simples. Seuls quelques uns de ces circuits seront 

décrits fonctionnellement ici. 

 

4.1 Portes logiques et Algèbre booléenne 

Nous ne nous intéresserons qu'aux 

caractéristiques essentielles des circuits et non à 

l'implantation électronique des réseaux de 

transistors sur les supports semi-conducteurs ! 
 

Une porte logique gate a un comportement binaire, 

"il faut qu'une porte soit ouverte ou bien fermée", 

et on lui associera la valeur 0 ou 1 selon le 

potentiel de sa sortie. 
 

Exemple : 
Volts

6

4

2

0

1 logique

0 logique
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Remarque 

Ce découpage des tensions de sortie des circuits en 

deux plages représentant le 0 et le 1 est tout à 

fait arbitraire et on a déjà envisagé d'autres 

découpages en 3, 4 et même 10 plages de 

potentiels. Avec 10 plages représentant les chiffres 

de 0 à 9, on obtient une machine travaillant 

directement en décimal ! Cependant ces 

architectures restent du domaine de la recherche 

en raison : 

1. de leur coût : il faut développer tous les circuits 

composant la machine … 

2. de leur fiabilité plus faible : les 10 plages étant 

plus "minces" et plus proches les unes des autres, 

des parasites peuvent plus facilement provoquer 

des erreurs. 

 
Technologie 

2 familles de transistors sont utilisés : 

• les transistors à jonctions (techno. bipolaire) 

utilisés en TTL (Transistor Transistor Logic) et 

en ECL (Emitter Coupled Logic). 

• TTL rapide, consommation élevée 

• ECL très rapide 10*TTL, consommation élevée 
 

• Les transistors à effet de champ (techno. 

unipolaire) utilisés en PMOS, CMOS, NMOS … 

• MOS lent TTL/10, consommation faible 

(portables) 

• HMOS, XMOS rapide 1*TTL, consommation 

faible 
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4.2 Algèbre booléenne 

Variable booléenne 

− un nom x, y, z 

− 2 valeurs possibles vrai (1), faux (0) 

 
Opérations booléennes 

− non noté x  

x 0 1 

x  1 0 

 

− et noté x.y ou plus simplement xy 

x\y 0 1 

0 0 0 

1 0 1 

 

− ou inclusif noté x+y 

x\y 0 1 

0 0 1 

1 1 1 

 

− ou exclusif noté x ⊕ y 

x\y 0 1 

0 0 1 

1 1 0 

 

− équivalence noté x ≡ y 

x\y 0 1 

0 1 0 

1 0 1 
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4.3 Propriétés des opérations 

− commutativités du et, du ou : 

xy=yx                x+y=y+x 

 

− associativités du et, du ou : 

x(yz)=(xy)z=xyz     x+(y+z)=(x+y)+z=x+y+z 

 

 

− distributivités 

x(y+z)=xy+xz avec la convention . prioritaire sur + 

x+(yz)=(x+y)(x+z) 

 

− lois de Morgan 

( )x y+ = x . y          ( . )x y = x + y  

 

− double négation : x x=  

 

− absorption : x.(x+y)=x=x+(x.y) 

 

− réduction : (x.y)+( x .y)=y=(x+y).( x +y) 

 

 

− complétude du {non, et} ou du {non, ou} 

toute fonction logique n-aire peut être réalisée par 

des combinaisons de ces 2 opérations. 

 

 

Exemple : implication binaire, ou ternaire ... 
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4.4 Circuits logiques de base 

4.4.1 L'inverseur not 

Ve

Vcc (+5 V)

Vs
R

base
émetteur

collecteur S=non(E)

 
 

Lorsque Ve est inférieur à la valeur critique du 

transistor, celui-ci est bloqué et est équivalent à 

un interrupteur ouvert : Vs est donc proche de 

Vcc. Lorsque Ve est supérieur à la tension critique, 

le transistor bascule (la porte se ferme) et 

équivaut à une résistance quasi-nulle : Vs est donc 

proche de 0. 

 

Remarquons que l'inversion de l'entrée sur la 

sortie n'est pas instantanée : selon les technologies 

d'intégration, elle tourne autour des quelques 

nano-secondes (10-9 s).  

 

On schématise une porte non not (inverseur) de la 

façon suivante : 

 
E S 
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4.4.2 Portes non-et, non-ou nand, nor 

NAND   

Vcc (+5 V)

Vs
V1

R

base
émetteur

collecteur S=non(E1 and E2)

V2

 

 

Si V1 < Vcritique ou V2 < Vcritique alors Vs=Vcc 

                                     sinon Vs=0 

 

On schématise une porte non-et nand de la façon 

suivante : 

SE1
E2  

 

 

En plaçant deux transistors en série, on obtient 

une porte nor schématisée de la façon suivante : 

 

NOR   

Vcc (+5 V)

Vs
V1

R S=non(E1 ou E2)

V2

E1 
E2

S
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Complétude 

Les portes NAND et NOR sont dites complètes 

car on peut câbler avec l’une ou l’autre n’importe 

quelle fonction booléenne n-aire. 

 
Exemple : Implication (A implique B) 

nonA ou B =non(A et nonB)=non(non(nonA ou B)) 

 

S
S

B

A A

B  
 
Rappel des lois de Morgan :  

non(A ou B)=nonA et non B 

non(A et B)=nonA ou non B 

 
Schémas : 

On schématise de la façon suivante les circuits 

logiques usuels réalisés à partir des portes de base 

: 

not

E S
A

B
S

nand

A

B
S

nor

A

B
S

and

A

B
S

or

A

B
S

xor  
 

4.4.3 Composants de base 

Les circuits intégrés logiques (puce, chip) 

permettent d’utiliser plusieurs fonctions logiques 

sur une plaquette de silicium (5mm*5mm). 

Différents procédés technologiques permettent 

cette intégration à plus ou moins forte densité. La 

densité est calculée en nombre de portes ou de 

transistors par mm2 ou par circuit. Ensuite, 
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chaque plaquette est encapsulée dans un boîtier 

(noir) rectangulaire en plastique ou en céramique, 

d’où sortent des broches (pattes) de connexion. 

 

Il existe 4 classes de produits classées selon leur 

densité d’intégration : 

 

SSI (Small Scale Integration)  1 à 10 portes/circuit 

MSI (Medium   “   “  “  )      10 à 100  “    “ 

LSI (Large   “    “    “ )       100 à  100 000  “ 

VLSI (Very Large   “  “  )     plus de 100 000  “ 

 

Exemple : SSI 7400 TTL (Vcc=5V) Texas Instr. 

 

14 13 12 11 10 9 8

1 2 3 4 5 6 7

Vcc

GND

7400

 
 

Ce circuit très utilisé permet de câbler 4 nands 

binaires. 
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4.5 Circuits logiques combinatoires 

Ces circuits plus ou moins complexes sont 

caractérisés par le fait que leur sortie s’exprime 

uniquement par une fonction logique de leurs 

entrées. Ils sont différentiables des circuits 

mémoires dont la sortie dépend également de leur 

état antérieur.  

 

4.5.1 Multiplexeur (Mux) 

C'est un cas typique de circuit MSI permettant 

d'aiguiller une entrée parmi 2n sur son unique 

sortie grâce à n lignes de sélection. 

 
Exemple : Mux à 4 entrées, 1 sortie 

 

D0 
D1 
D2 
D3

S1         S0 
(2)        (1)

F

MUX 1/4 entrées

D0 
D1 
D2 
D3

S1   S0

F

 
 
Ce type de circuit est notamment utilisé pour multiplexer le bus 

d'adresses et le bus de données du 8086. Associé à un compteur, 

il permet également la conversion parallèle/série. Le 

démultiplexeur réalise la fonction inverse en aiguillant une 

entrée unique vers l'une des 2n lignes de sorties (série/parallèle). 
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4.5.2 Décodeur 

Ce MSI dispose de n lignes d'entrées et de 2n 

lignes de sortie. Selon le nombre x en RBNS 

présent sur les n entrées, seule la sortie d'indice 

égal à x est sélectionnée (active) tandis que les 

autres sont au repos. Selon les circuits, l'état actif 

peut être représenté par 1 ou bien par 0 (actif à 

l'état bas). 

 
Exemple : décodeur 2 entrées actif à l'état 1 
 

Décodeur 2 entrées

D3

S0 
 
S1

D0

D1

D2

 
 

Remarques 

Ce type de circuit permet de sélectionner les 

différents circuits mémoires de la MC. En effet, on 

utilise certaines lignes de poids forts du bus 

d'adresses comme entrées du décodeur et les 

sorties comme sélecteurs de boîtiers (Chip Select 

CS  ). 
 

Les circuits décodeurs du commerce sont de type 4 

vers 16, 3 vers 8, ou contiennent plusieurs 2 vers 

4. Il existe aussi des circuits spéciaux 4 vers 10 

pour le DCB. Le circuit inverse nommé codeur 

permet de donner l'indice de l'unique ligne 

d'entrée active. 
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4.5.3 Autres circuits 

Bien entendu, une multitude d'autres types de 

circuits combinatoires sont nécessaires. Afin de 

permettre la réalisation de fonctions logiques 

spécifiques, des circuits programmables existent. 

Les réseaux logiques programmables 

(Programmable Logic Array ou PLA) sont 

constitués d'un réseau de portes Not, And et Or, 

dont les entrées sont des fusibles. La 

programmation d'un PLA consiste à faire "griller" 

un certain nombre de ces fusibles afin de réaliser 

la fonction logique désirée. 
 

Exemple : 
PLA 3 entrées (3 not), 2 sorties (2 or), 5 and 

1° sortie : a   or b c   ;  2° sortie : majorité 

a

b

c

a or b c

majorité

 

ASI  Chapitre 4 : La couche physique 70 

4.6 Circuits de calcul 

Ces circuits MSI permettent d’effectuer les 

opérations arithmétiques et logiques. 

 

4.6.1 Décaleur 

Ce circuit permet de décaler un registre du processeur d’un ou 

plusieurs bits vers la droite ou la gauche. Il existe des décaleurs 

logiques (introduction de 0 sur le bit entrant), des décaleurs à 
droite arithmétiques (recopie du bit le plus significatif), et des 

“rotateurs” (recopie du bit sortant sur le bit entrant). 
 

Exemple : Décaleur 1 position sur 3 bits  
 

Right

D0 D1 D2

S1S0 S2  
 

Remarque :  

Décalage à gauche = multiplication par 2 

Déc. arithmétique à droite = division par 2 

ASI  Chapitre 4 : La couche physique 71 

4.6.2 Additionneur 

Un demi-additionneur est constitué d’un XOR 

(même table de vérité addition) associé à un AND 

pour la retenue de sortie. Pour obtenir un 

additionneur, il faut rajouter un autre demi-

additionneur pour la retenue d’entrée. 

 
Exemple : additionneur 1 bit 

 

Ai 
Bi

Ri-1

Ri

Si

 
 

Remarque : 

l’additionneur est le circuit de base pour 

l’arithmétique binaire signée et non signée. En 

effet, toutes les autres opérations peuvent être 

obtenues logiciellement si on a un additionneur et 

un inverseur. 
 

Question : OR de la retenue sortante Ri peut il 

être remplacé par un XOR?               (oui) 
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4.6.3 U.A.L. 

A partir des circuits de calcul précédents et de 

quelques circuits combinatoires, tels que des 

décodeurs, il est aisé d’imaginer la construction 

d’Unité Arithmétique et Logique ayant  

 

• en entrée : 2 mots de données de n bits, un mot 

de sélection de k bits 

• en sortie, un mot de données de n bits résultant 

de l’une des 2k opérations exécutée sur les 2 

mots d’entrée ou sur un seul. 

 

 
Exercice : 

Construisez (schéma de câblage) une UAL 

réalisant l’addition, la soustraction, les décalages 1 

bit, le C2, l’inversion sur des mots de 2 bits. 
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4.7 Horloge 

L’horloge est la base de temps de l’UC. Celle-ci 

émet une suite d’impulsions calibrées. L’origine 

de ces impulsions est un quartz qui, soumis à une 

différence de potentiel, bat à une fréquence de 

quelques dizaines de MégaHertz (MHz). Le temps 

de cycle ou période de l’horloge varie donc entre 

10 ns (100 Mhz) et 1 µs (1 MHz). 

 

Exemple : diagramme temporel d’une horloge 

 

1 cycle 

Front descendant Front montant  
 

Il est parfois impératif de diviser le cycle de temps 

de l’horloge principale en plusieurs intervalles. On 

utilise alors d’autres horloges déphasées par 

rapport à l’horloge principale (circuit de 

retardement). Le plus souvent, ces horloges 

délivrent des signaux symétriques et de même 

cycle (période). 

Le cadencement des actions à l’intérieur de l’UC 

est toujours déclenché soit sur front montant, 

soit sur front descendant. 
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4.8 Circuits de mémorisation 

Des circuits mémoires sont nécessaires dans 

toutes les parties d’une machine (UC, MC, 

périph.). A l’inverse d’un circuit combinatoire, la 

sortie d’un circuit mémoire ne dépend pas que de 

ses entrées mais aussi de son état précédent. Tous 

les circuits mémoires sont des dérivations de la 

bascule RS dont voici le schéma : 

 

Q

Q

S

R

NOR

S A Q 
0 0 1 
0 1 0 
1 0 0 
1 1 0  

 

On remarque que les deux sorties Q et Q   sont 

rarement (S=R=1) simultanément égales et que 

leur état est stable (bascule) tant que les deux 

entrées ne varient pas. L’activation de S (Set) à 1 

provoque le positionnement de Q à 1. Ensuite, les 

variations de S sont inopérantes. Inversement, 

l’activation de R (Reset) bascule Q à 0 . La bascule 

RS se “souvient” donc de la dernière activation 

d’une entrée. 

 

Des améliorations de ce circuit permettent de 

construire des bascules stables et sans ambiguïtés 

de fonctionnement (bascules JK, D). En associant 

n bascules, on construit des registres n bits. 
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4.8.1 Organisation de la mémoire 

L’évolution technologique a provoqué une 

augmentation importante du nombre de bits 

stockés par boîtier. Années 70 : 1Kbit puis 

16Kbits,…actuellement : 1Mbit. On peut 

schématiser un boîtier mémoire (RAM) de la 

manière suivante : 

 
A0 
A1 
A2 
A3 
… 
 
 
… 
An

D0 
D1 
D2 
… 
 
 
… 
Dm

OE  RD  CS

2  mots  
de m bits

n

 
 

OE   Output Enable  active les lignes de sortie 

D0…m, tandis que RD   sélectionne la lecture ou 

l’écriture et que CS   Chip Select sélectionne le 

boîtier. OE   est nécessaire car lors d’une lecture, 

il synchronise la recopie du mot sélectionné sur les 

lignes D0…m.  

Une mémoire 16 Kbits peut être constituée de 2 

boîtiers de 8 Kbits ou de 4 * 4 Kbits ou de 16 * 

1Kbits … 
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5. La Couche Microprogrammée 

La couche microprogrammée dépend complète-

ment de la couche physique sous-jacente. En 

fonction de l’architecture interne de l’UC, elle 

permet de coder chaque instruction du niveau 

Machine en une suite de micro-instructions 

élémentaires. 

 

Chaque micro-instruction est codée sur un certain 

nombre de champs, chaque champ indiquant 

l’activité d’un signal interne à l’UC. Dans l’UC, 

une mémoire de commande (ROM) (invisible à 

l’utilisateur) contient le texte correspondant à 

toutes les instructions machine. L’exécution d’une 

micro-instruction nécessite l’existence de plusieurs 

sous-cycles permettant de synchroniser les 

différentes actions. Ces sous-cycles sont obtenus 

grâce à des circuits retards internes. 

 

L’enchaînement des micro-instructions est 

semblable à l’enchaînement des instructions 

machine ! La règle générale est la séquence mais 

des ruptures conditionnelles ou non peuvent 

intervenir. Une micro-instruction spéciale de fin 

permet au micro-séquenceur d’exécuter 

l’instruction suivante. 
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6. La Couche Machine 

Elle constitue le niveau le plus bas auquel 

l’utilisateur a accès. 

 
Types d’ordinateurs (évolution constante !) 

 

- les ordinateurs personnels (PC ou Macintosh) ; 

- les ordinateurs de bureau ; 

- les ordinateurs portables ; 

- les assistants personnels (ou PDA) ; 

 

- les moyens systèmes (midrange) (ex IBM 

AS/400-ISeries, RISC 6000...)   

 

- les mainframes (serveurs centraux) (ex. : IBM 

zSeries 64 bits, Siemens SR2000 et S110 ...) ; 

 

- les superordinateurs (Blue Gene machine IBM 

utilisant 65536 Power PC réalisant 136,8 

TFlops); 

 

 

- les stations de travail (PC puissants pour CAO, 

…) ; 
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6.1 Exemples 

Pentium 4 (x86 CPU) 

- 8 registres 32 bits (AL, AH, AX, EAX); 

- Espace adrs : 4 Go ; 

- Mémoire virtuelle segmentée (CS code, DS data, 

SS stack) avec un sélecteur de segment 16 bits + 

adrs virtuelle 32 bits ; 

- (x87) coprocesseur arithmétique flottante (FPU) 

32, 64 ou 80 bits 

 
AMD 64 

- 16 registres 64 bits (AL, AH, AX, EAX, RAX) 

- Espace adrs : 256 To 

- Mémoire virtuelle non segmentée sur 64 bits 

- SIMD avec registres 128 bits 

 
Big endian                              Little endian  

En Little endian, mnémotechniquement, la "gravité" est orientée vers 

le bas de la mémoire (adresses supérieures). Les Power PC d’IBM 

sont bi-endian. 

 

0
1
2
3
4
5
6
7
8
… …

Adr
 

mot 
 

double  mot 0 

MS
 

LS

 

MSW 

 
 
 
LSW

mot 
 

double mot 8 

0
1
2
3
4
5
6
7
8
… … 

mot 
 

double  mot 0 

LS

 MS
 

x86, AMD 

 

LSW 

  
MSW

mot 
 

double mot 4 

0000 11110000 1111 

IBM 370, Motorola 68000 
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6.2 Format des instructions 

Programme = suite d'instructions machines 
 

Une instruction est composée de plusieurs champs : 

• 1 champ obligatoire : le code opération désigne 

le type d'instruction. Sa longueur est souvent 

variable afin d'optimiser la place et la vitesse 

utilisée par les instructions les plus fréquentes 

(Huffman). 

• 0 à n champs optionnels : les opérandes 

désignent des données immédiates ou stockées 

dans des registres ou en MC. Le type de 

désignation de ces données est nommé mode 

d'adressage. 
 

Exemple : 

Code Opération Opérande1 Opérande2 

De plus, la taille des cases et mots mémoires doivent 

être des multiples de la taille d'un caractère afin 

d'éviter le gaspillage de place ou des temps de 

recherche prohibitifs. Les codes alphanumériques 

usuels étant sur 8 bits (EBCDIC) ou 7+1 bits 

(ASCII), c'est la raison du découpage des MC en 

octets. 
 

Enfin, des adresses devant également être stockées 

en MC, c'est la raison pour laquelle la taille de 

l'espace d'adressage est généralement un multiple 

de 28 octets (64 Ko, 16 Mo, 4 Go). Sauf lorsque la 

technique d'adressage utilise des segments 

recouvrants : 8086 : 1Mo = 220 o; 1 adrs = 2 mots. 
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6.3 Modes d'adressage 

Remarque : pour simplifier, nous utiliserons 

dorénavant la notation mnémonique des 

instructions machines, notation alphanumérique 

qui correspond à la couche 4 du langage 

d'assemblage. 

 
Types de donnée représentés par les opérandes : 

• donnée immédiate stockée dans l'instruction 

machine 

• donnée dans un registre de l'UC 

• donnée à une adresse en MC 

 
Nombres d'opérandes : 

Nous supposerons un nombre maximal de 2 

opérandes, ce qui représente le cas général. 

Souvent, un opérande implicite n'est pas désigné 

dans l'instruction : c'est l'accumulateur qui est 

un registre de travail privilégié; le Z80 a au 

maximum un opérande explicite (et A comme 

opérande implicite). 
 

Source et Destination : 

Lorsque 2 opérandes interviennent dans un 

transfert ou une opération arithmétique, l'un est 

source et l'autre destination de l'instruction. 

L'ordre d'apparition varie suivant le type d'UC : 

IBM 370, 8086 : ADD DST, SRC DST := DST+SRC 

PDP-11, 68000 : ADD SRC, DST DST := DST+SRC 
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6.3.1 Adressage immédiat 

La valeur de la donnée est stockée dans 

l'instruction. Cette valeur est donc copiée de la MC 

vers l'UC lors de la phase de chargement (fetch) de 

l'instruction. 

 

Avantage : pas d'accès supplémentaire à la MC 

Inconvénient : taille limitée de l'opérande 

 
Exemples : Z80 

(1) ADD A, <n> ;  Code Op. 8 bits, n sur 8 bits en C2 

(2) LD <Reg>, <n> ; Code Op 5 b., Reg 3 b., n 8 b. 

 

6.3.2 Adressage registre 

La valeur de la donnée est stockée dans un 

registre de l'UC. La désignation du registre peut 

être explicite (2) ou implicite (1) (A sur Z80). 

 

Avantage : accès rapide % MC 

Inconvénient : taille limitée de l'opérande 

 

Selon le nombre de registres de travail de l'UC, la 

taille du code des instructions varie : 

8 registres nécessitent 3 bits  (Z80) 

16 registres nécessitent 4 bits (68000) 
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6.3.3 Adressage direct 

La valeur de la donnée est stockée à une adresse 

en MC. C'est cette adresse qui est représentée 

dans l'instruction. 

 

Avantage : taille quelconque de l'opérande 

Inconvénient : accès mémoire supplémentaire, 

taille importante de l'instruction  

 

Selon le type d'implantation mémoire requis par 

l'UC, plusieurs adressages directs peuvent 

coexister. 

 
Exemples : 8086 

MOV AL, <dis> ;    déplacement intra-segment (court) 

transfère dans le registre AL, l'octet situé à 

l'adresse dis dans le segment de données : dis est 

codé sur 16 bits, Data Segment est implicite. 

 

ADD BX, <aa> ;    adresse absolue aa= S,D     (long) 

ajoute à BX, le mot de 16 bits situé à l'adresse D 

dans le segment S : D et S sont codés sur 16 bits. 

 

 

L'IBM 370 n'a pas de mode d'adressage direct, 

tandis que le 68000 permet l'adressage direct 

court (16 bits) et long (32 bits). 
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6.3.4 Adressage indirect 

La valeur de la donnée est stockée à une adresse 

m en MC. Cette adresse m est stockée dans un 

registre r ou à une adresse m'. C'est r ou m' qui est 

codé dans l'instruction (m' est appelé un 

pointeur). L'adressage indirect par registre est 

présent dans la totalité des UC, par contre, 

l'adressage indirect par mémoire est moins 

fréquent. Il peut cependant être simulé par un 

adressage direct dans un registre suivi d'un 

adressage indirect par registre. 

Peu de machines disposent de mode d'adressage 

indirect à plusieurs niveaux d'indirection !  

 

Avantage : taille quelconque de l'opérande 

Inconvénient : accès mémoire supplémentaire(s), 

taille importante de l'instruction (pas par registre) 

 

Exemples : Z80 indirection seulement par HL 

ADD A, (HL) ; adressage indirect par registre 

codage de l'instruction sur 8 bits (code op.) : A et 

HL sont désignés implicitement 

 

LD (HL), <reg> ; adressage indirect par registre 

code op. sur 5 bits et reg sur 3 bits; HL implicite 
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6.3.5 Adressage indexé (ou basé) 

Il est parfois nécessaire d'accéder à des données 

situées à des adresses consécutives en MC. En 

adressage indexé, on charge un registre d'index 

avec l'adresse de début de cette zone de données, 

puis on spécifie dans l'instruction, le déplacement 

à réaliser à partir de cet index. L'adresse réelle de 

la donnée accédée est donc égale à l'adresse de 

l'index ajoutée au déplacement. 

Certaines UC exécutent automatiquement 

l'incrémentation ou la décrémentation de leurs 

registres d'index ce qui permet, en bouclant, de 

réaliser des transferts ou d'autres opérations sur 

des zones (chaînes de caractères). 

 

Avantage : taille importante de la zone (256 

octets si déplacement sur 8 bits) 

Inconvénient : taille importante de l'instruction 

(si codage du déplacement) 

 

Exemple : Z80 indexation par IX et IY 

LD (IX+<dépl>), <reg> ; adressage indexé par IX 

codage de l'instruction : code op. sur 12 bits, IX sur 

1 bit, reg sur 3 bits, dépl sur 8 bits. 

 

Sur le 8086, MOVSB (MOVe String Byte) permet 

de transférer l'octet en (SI) vers (DI) puis 

d'incrémenter ou décrémenter SI et DI. 

Remarquons que l'indexation sans déplacement 

équivaut à l'indirection. 
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6.3.6 Remarques 

Dans une instruction, lorsque deux opérandes sont 

utilisés, deux modes d'adressages interviennent. 

Souvent certains modes sont incompatibles avec 

d'autres pour des raisons de taille du code 

instruction ou de temps d'accès : par exemple en 

8086, jamais deux adressages directs. Par contre, 

un opérande fait parfois appel à la conjonction de 

deux modes d'adressage : mode indexé et basé + 

déplacement du 8086 ! 

 

 
Schéma des différents modes d'adressage 

 

102 
 
104 
 
35

100 
 
102 
 
104

MC

LDIMM R, 100 
R := 100 
 
LDDIR R, (100) 
R := 102 
 
LDIND R, ((100)) 
R := 104   rare

LDIMM R, 100 
LDIND   R, (R) 
LDIND   R, (R) 
R := 104 
 
LDIMM RX, 100 
LDIX      R, (RX+4) 
R := 35

 
 

 

Toute indirection à n niveaux peut être simulée 

dès lors qu'on possède une instruction à 

indirection simple. 
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6.3.7 Adressage par pile 

La pile d'exécution de l'UC est constituée d'une 

zone de la MC dans laquelle sont transférés des 

mots selon une stratégie Dernier Entré Premier 

Sorti (Last In First Out LIFO). Le premier 

élément entré dans la pile est placé à la base de la 

pile et le dernier élément entré se situe au 

sommet de la pile. 
 

70 
71 
72 
73 
74 
75 
76 
77 
78

Base

Sommet 0000 0011 
0000 0001 
1111 1111 
0000 0000

… 
PUSH 0 
PUSH 0FFH 
PUSH 1 
PUSH 3 
…

 
 

Les instructions d'entrée et de sortie de pile sont 

PUSH <n> et POP <reg>. Selon le type d'UC, la 

pile remonte vers les adresses faibles (voir 

schéma) ou bien descend vers les adresses fortes. 
 

L'adresse du sommet de pile est toujours 

conservée dans un registre nommé pointeur de 

pile (Stack Pointer SP). Sur certaines machines, 

un registre général peut servir de SP. Certaines 

UC utilisent également un pointeur de base de 

pile (Base Pointer BP). 
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6.3.8 Utilisations de la pile 

Avantages : 

• structure de données LIFO et opérations de 

manipulation physiquement implantées : vitesse 

• instructions courtes car opérandes implicites 

 
Inconvénients : 

• pas toujours dans une zone MC protégée 

• sa cohérence nécessite égalité du nombre 

d'empilages et de dépilages (programmeur). 

• capacité souvent limitée (par exemple 1 segment) 

 
L'appel procédural 

 

L'intérêt de l'utilisation de sous-programmes 

nommés procédures lors de l'écriture de gros 

programmes a été démontré : concision, 

modularité, cohérence, … Le programme 

principal (PP) fait donc appel (CALL) à une 

procédure P1 qui exécute sa séquence d'instructions 

puis rend la main, retourne (RET) à l'instruction du 

PP qui suit l'appel. Cette rupture de séquence avec 

retour doit également pouvoir être réalisée dans le 

code de la procédure appelée P1, soit récursivement, 

soit vers une autre procédure P2. Ces appels 

imbriqués, en nombre quelconque, rendent 

impossible l'utilisation d'une batterie de registres 

qui sauveraient les valeurs de retour du CO ! 
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Exemple d'appels procéduraux imbriqués 
 

PP
… 
ADD   AX, 2 
MOV   BX, 6 
CALL  P1 
ADD    CX, 12 
CALL  P3 
ROTL  AX 
…

ADD   AX,BX 
CALL  P2 
MOV   AX, CX 
RET

P1

MUL   AX, BX 
DIV     AX, CX 
RET

P2

DEC          CX 
CMP         CX, 0 
CALLNZ  P3 
RET

P3

a1 :

a2 :

b1 :

c1 :  
 

Les appels procéduraux imbriqués nécessitent 

l'utilisation de la pile de la manière suivante : 

 

CALL <adrs> génère automatiquement (couche 1) : 

1. PUSH CO ; le compteur ordinal pointe toujours 

sur l'instruction suivante 

2. JMP <adrs> ; jump = goto 

 

RET génère automatiquement : 

1. POP CO ; branchement à l'adresse de retour 

 
Exemple d'évolution de la pile 

 

a1

b1 
a1 a1 a2

c1 
a2

c1 
c1 
a2

c1 
… 
c1 
a2

c1 
a2 a2

 
 

Attention aux appels récursifs mal programmés qui 

provoquent des débordements de pile (Stack 

Overflow) ! P3 : 2n appels maximum (mots de n bits). 
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Paramètres et Variables locales 

 

La plupart des langages de programmation 

évolués (Pascal, c, …) permettent le passage de 

paramètres et l'utilisation de variables locales 

aux procédures. Les paramètres sont passés soit 

par valeur, soit par adresse. Les variables 

locales sont créées à l'activation de la procédure et 

détruites lors de son retour (durée). D'autre part, 

leur visibilité est réduite aux instructions de la 

procédure. 

 
Passage de paramètre 

 

Dans les programmes écrits en langage machine, 

la gestion des paramètres d'appel et de retour est 

à la charge du programmeur (registres, MC, pile). 

Par contre, un compilateur doit fournir une 

gestion générique des paramètres quel que soit 

leur nombre et leur mode de passage. La plupart 

du temps, la pile est utilisée de la façon suivante : 

Dans l’appelant, juste avant l'appel (CALL), le 

compilateur génère des instructions d'empilage 

(PUSHs) des paramètres d'appel et de retour. 

Juste après le CALL, il génère le même nombre de 

dépilage afin de nettoyer la pile. Dans le corps de 

la procédure appelée, la première opération 

consiste à affecter à un registre d'index ou de base 

(BP) la valeur du sommet de pile ± taille adresse 

de retour. Par la suite, les références aux 

paramètres sont effectuées via ce registre 

(BP±0..n) ! 
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Exemple de passage de paramètres : 

 

 

 
Variables locales 

L'implémentation de l'espace dédié aux variables 

locales est réalisé dans la pile d'exécution. Les 

premières instructions machines correspondant à 

la compilation d'une procédure consistent toujours 

à positionner les variables locales dans la pile, 

juste au dessus de l’adresse de retour. Dans 

l’exemple précédent, il suffit de rajouter autant de 

PUSH, après le MOV BP,SP, que nécessaires. Ces 

variables locales seront ensuite accédées via des 

adressages (BP-i) générés par le compilateur. Ce 

type d’implémentation permet l’appel procédural 

ainsi que la récursivité. 

Appelant

… 
PUSH <param1> ; param de retour 
PUSH <param2> ; param d'appel 
… 
PUSH <param n> ; param d'appel 
CALL <appelée> 
POP     <reg> 
… 
POP     <reg>  ; résultat (retour) 
…

n 

Appelée

PUSH  BP; de l'appelant 
MOV   BP, SP 
MOV   AX, (BP+2) ; param n 
MOV   BX, (BP+3) ; param n-1 
MOV   CX, (BP+4) ; param n-2 
… 
MOV   (BP+n+1), AX ; résultat  
POP     BP 
RET

a0 : 

param  n 
param n-1 
… 
param1

a0 
param  n 
param n-1 
… 
param1

BP appelant 
a0 
param  n 
param n-1 
… 
param1

a0 
param  n 
param n-1 
… 
param1

param  n 
param n-1 
… 
param1  
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Paramètres et variables locales 

Finalement, chaque instance d’appel de procédure 

possède un espace d’adressage local composé : 

• d’une part, des paramètres d’appel et de retour 

localisés dans la pile à (BP+2..n); 

• d’autre part, des variables locales localisées dans 

la pile à (BP+1..m). 

 
Exemple simple 

Nous considérerons une procédure récursive 

simple n’utilisant que des paramètres et variables 

locales codés sur un mot machine. La fonction 

mult est une procédure à un paramètre de retour 

réalisant la multiplication de 2 entiers positifs par 

additions successives. Nous ne traiterons pas des 

problèmes de dépassement de capacité ni de 

l’optimisation de l’algorithme (y=0). 

 

entierpositif mult(entierpositif x, entierpositif y) 

entierpositif i ;     // inutile dans l’algo. ! 

si x=0 alors retourne 0 

sinon début 

       i=y 

       retourne mult(x-1,i) + y 

       fin 

 

Etudions le code compilé de cette procédure et d’un 

appel initial avec des données en entrée : x=2, y=5. 
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Image du code compilé et de la pile 

 

 

Cet exemple illustre bien le danger de croissance 

de la pile lors d’appels récursifs mal programmés ! 

Remarquons que la dérécursivation évidente de 

mult peut être réalisée par le programmeur mais 

parfois aussi par le compilateur. 

 

Appelant 

…  
PUSH <multret> ; param de retour  
PUSH  x ; param d'appel 2  
PUSH  y ; param d'appel 5  
CALL  mult  

A0: POP     DX  
POP     DX  
POP     AX  ; résultat (retour)  
CALL  AFFICHEAX  
… 

Mult 

PUSH  BP                ; de l'appelant  
MOV   BP, SP  
PUSH  DX               ; i qcq en (BP-1)  
CMP    (BP+3), 0     ; x=0 ?  
JE         ZERO  
MOV   (BP-1),(BP+2)    ; i:=y  
MOV    AX, (BP+3)         ; x  
DEC     AX                       ; x-1  
PUSH   DX            ; retour qcq  
PUSH   AX            ; appel x-1  
PUSH   (BP-1)       ; appel i  
CALL  mult             ; récursif  

A1: POP     DX     ; dépile 
POP     DX     ; dépile appel  
POP     AX     ; résultat (retour)  
ADD    AX, (BP+2)    ; résult + y  
MOV   (BP+4), AX     ; range résultat  
JMP     FIN  
ZERO : MOV (BP+4),0 ; range rés.=0  
FIN :     POP DX ; var locale i  
POP     BP            ; BP appelant  
RET 

?  
BP0  
A0  
5  
2  
? 

?  
BP1  
A1  
5  
1  
?  
5  

BP0  
… 

BP1 

?  
BP2  
A1  
5  
0  
?  
5  

BP1  
… 

BP2 BP3 

1° appel 2° appel 3° appel 

0   
5  

BP1  
A1  
5  
1  
5   
5  

BP0  
… 

1° retour 

5  
5  

BP0  
A0  
5  
2  
10 

2° retour 

BP2 

5  
2  
10 

3° retour  
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Autres utilisations de la pile 

 

Cette structure de données LIFO est massivement 

employée dans le cadre d’algorithmes divers et 

variés.  

 
Exemples 
 

• dérécursivation automatique : dans l’exemple 

précédent, les CALL récursifs peuvent être évités 

en empilant successivement les valeurs des 

paramètres d’appels puis en réalisant des 

additions successives lors des dépilages. 

 

• évaluation d’expressions arithmétiques infixées 

et parenthésées : 3*(5+4*2) 

 
3*(5+4*2)

3 
( 
*

5 
3

+ 
( 
*

4 
5 
3

* 
+ 
( 
*

2 
4 
5 
3

* 
+ 
( 
*

) 
8=2*4

8 
5 
3

 
+ 
( 
*

13=8+5

3

13

*

39=13*3

39

 
 

• parcours d’arbre (préfixe, infixe, postfixe) 

 

• etc … 
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6.4 Types d’instructions 

Chaque catégorie d’Unité Centrale possède un jeu 

particulier d’instructions machines. Cependant, on 

peut classer les instructions de ces jeux en type 

d’instructions : transfert, opérations arith., … 

 

6.4.1 Transfert de données 

Ces instructions permettent de copier ou bien de 

déplacer une donnée d’un endroit source vers un 

emplacement destination. Les instructions de 

copie sont largement majoritaires par rapport aux 

instructions de déplacement ! Selon les UC, les 

termes suivants sont employés pour la copie : 

transfert, duplication, déplacement, mouvement, 

chargement, rangement ! On aperçoit donc 

souvent les mnémoniques : MOV, LOAD ou LD, 

STORE ou ST, PUSH.  

Remarquons que les instructions de déplacement 

avec destruction de la source sont la plupart du 

temps restreintes aux dépilages : POP. 

 

Ces instructions de transfert doivent préciser : 

source , destination (voir modes d’adressage), taille 

de la donnée. La taille de donnée  peut être codée 

dans le Code Opération mais peut également être 

implicite ou constituer un opérande à part entière. 
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6.4.2 Opérations arith. et logiques 

• Op. dyadiques (à deux opérandes) 

Un des 2 opérandes est souvent considéré comme 

destination de l’opération à moins que le résultat 

ne soit toujours transféré que dans l’accumulateur. 

Chaque machine a son type de représentation 

préféré des opérandes (C2, DCB,…). 
 

Addition et Soustraction (toujours) : ADD SUB 

Multiplication et Division (parfois) : MUL DIV 

ET, OU, OUeXclusif : AND OR XOR 
 

Remarques : 
 

• masquage par ET : AND R1, 00FH ; permet de 

ne conserver dans R1 que le quartet de poids 

faible ! 

• inversion par OUX : XOR R1, 0F0H; permet 

d’inverser le quartet de poids fort de R1 ! 

• raz par OUX : XOR R1,R1; <=> R1:=0 et plus 

rapide (adressage registre à registre) ! 
 

 

Les opérations en virgule flottante (simple ou 

multiple précision) peuvent être câblées dans l’UC 

ou câblées dans un co-processeur arithmétique ou 

exécutées logiciellement par des sous-programmes. 
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• Opérations monadiques (1 seul opérande) 

L’unique opérande source et destination peut 

parfois être implicite (accumulateur). 

 

• Décalages et rotations : SHL=SAL, SHR, SAR, 

ROL, ROR, RCL, RCR  

• Inc. et décrémentations : INC DEC  

• Négations log. et (arith.) : NOT (NEG) 

• raz : CLEAR  

 
Remarques 

• test d’un bit par rotation : RCL R1; JC toto; 

positionne R1n-1 dans le Carry Flag. 

• décalage multiple → dyadique : 2° opérande 

immédiat ou dans un registre compteur :  

MOV CX, 4; SHL R1,CX ou bien SHL R1, 4 

• négation C2 : NEG R1 ou NOT R1; INC R1 

• mult. et div. : R1*19= R1*24+R1*21+R1*20 → 2 

décalages (dont un multiple) et 3 additions. 

 

 

6.4.3 Branchements et comparaisons 

Pour réaliser des ruptures de séquence, des 

instructions de branchement, ou de saut, 

permettent de modifier la valeur du Compteur 

Ordinal. Ces instructions sont soit 

inconditionnelles (GOTO, BRANCH, JUMP), soit 

conditionnées par certaines valeurs des 

indicateurs du registre d’état (PSW ou Flags). 
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• Branchements inconditionnels : 

JUMP adrs → CO := adrs 

 
• Branchements conditionnels 

JNC adrs → si CF=0 alors CO:=adrs 

 

Il existe différents indicateurs dans le registre 

d’état : Carry Flag, Overflow F., Zero F., Neg. F., … 

 

Ces indicateurs sont positionnés à la suite de 

l’exécution d’une opération arith. ou logique et 

sont plus ou moins rémanents ! Afin d’éviter une 

affectation inutile, une instruction particulière de 

comparaison (CMP) permet de simuler la 

soustraction :  

CMP R1, R2 → PUSH R1; SUB R1,R2; POP R1 

 

A la suite de la comparaison, les indicateurs sont 

positionnés et permettent donc d’effectuer un 

branchement conditionnel :  

CMP R1,R2; JAE adrs3 

 
Remarque :  

il existe des UC ayant des instructions à 3 

adresses permettant le branchement conditionnel 

en une instruction :  

 

CMP adrs1, adrs2, adrs3, c’est-à-dire si (adrs1)-

(adrs2)=0 alors JMP adrs3 sinon <continuer en 

séquence> 
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6.4.4 Procédures 

Une procédure, ou routine ou sous-programme, est 

constituée d’une suite d’instructions réalisant un 

traitement particulier. L’appel à cette procédure 

est généralement réalisé par une instruction 

CALL adrsproc. Le retour à l’appelant s’effectue 

dès que l’on exécute un RET dans la procédure 

appelée. 

 

La récursivité d’une procédure est une propriété 

permettant à celle-ci de s’appeler elle-même. La 

mise en œuvre de la récursivité est permise par la 

sauvegarde dans la pile de l’adresse de retour, des 

paramètres d’appels ainsi que des variables locales 

à la procédure. 

 

6.4.5 Itérations 

L’exécution répétée d’une suite d’instruction, ou 

boucle, est permise grâce à certaines instructions 

de branchements conditionnels à 3 adresses : 

LOOP CX, 0, adrs ; permet de décrémenter le 

registre CX (compteur), de comparer CX avec 0, 

enfin si CX?0 de boucler sur adrs (branchement). 

 

Sur certains processeurs, le compteur est implicite 

et la valeur immédiate (0) également : LOOP adrs 

ASI  Chapitre 6 : La couche Machine  99 

6.4.6 Les Entrées/Sorties 

I) Ces instructions sont très fortement liées au 

matériel et varient donc énormément en fonction 

de l’UC considérée. Considérons d’abord les UC 

pourvues d’instructions d’E/S spécifiques : 

 

1) L’UC exécute les instructions d’E/S et gère le 

périphérique : l’UC passe son temps à attendre … 

 

2) L’UC délègue sa responsabilité à une Unité 

d’E/S (ou d’échange) qui effectue le contrôle du 

transfert des données. Paramètres : Nom périph., 

sens transfert, adrs MC début (tampon ou buffer), 

nb de mots. Une fois le transfert initialisé par une 

instruction spécifique, l’Unité d’E/S réalise ce 

transfert de façon autonome en accédant 

directement à la MC (Direct Memory Access). 

 
exemple d’Unité d’E/S : canal IBM 370  

1) l’UC crée un prg canal en MC (suite 

d’instructions spécifiques au canal considéré). 

2) l’UC charge à l’adrs MC 7210 l’adrs de ce prg. 

3) l’UC exécute l’inston START I/O n°canal, n°périph 

4) l’UC entreprend d’autres traitements 

4’) Le canal effectue le transfert en exécutant le 

prg stocké à l’adresse 72. 

5) l’UC peut tester ou stopper l’E/S : instructions 

TEST I/O, TEST CHANNEL ou STOP I/O. 
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II) l’UC ne possède pas d’instructions d’E/S 

spécifiques. Dans ce cas, l’UC communique avec 

les périphériques de la même façon qu’avec la MC. 

On dit que les E/S sont projetées (ou mappées) en 

mémoire. Certaines adresses sont attribuées aux 

divers registres internes des unités d’E/S 

(registres programme, d’état, tampon). L’UC écrit 

donc des informations à ces adresses pour 

demander à l’unité d’E/S correspondante 

d’entreprendre une E/S.  

 

• Le premier avantage des E/S projetées en MC 

consiste à réduire le jeu d’instructions de l’UC en 

n’ayant pas d’instructions spécialisées d’E/S. Mais 

l’intérêt primordial de cette méthode réside dans 

l’utilisation de la puissance du jeu d’instructions 

tout entier et des divers modes d’adressage pour 

accéder aux registres des unités d’E/S.  

 

• L’inconvénient principal est la diminution de 

l’espace allouable à la Mémoire Centrale. 

 
Exemple : 

Le PDP-11 a une imprimante standard projetée à 

l’adresse octale 777514 (registre d’état) et 777516 

(registre tampon). Lorsque le bit 7 du registre 

d’état est à 1 (bit ready) , cela signale que 

l’imprimante est prête à recevoir un car. dans son 

registre tampon. 
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6.5 Flux de commande 

Le flux de commande exprime l’ordre d’exécution 

des instructions par l’UC. Le flux de commande 

standard ou normal est la séquence. Les 

instructions de branchement (conditionnel/ 

inconditionnel) ou d’appel de procédures, ainsi que 

les déroutements et les interruptions modifient cet 

ordre. 

 

6.5.1 Sauts et appels procéduraux 

Tout d’abord, on rappellera la nocivité des 

instructions GOTO (Branch, Jump) dans le cadre 

de l’écriture de programmes sans erreur. Par 

conséquent, on essayera toujours : 

1) d’éviter d’écrire les programmes dans des 

langages sans structures de contrôle de haut 

niveau (while, for, repeat); 

2) de minimiser le nombre de saut dans les autres 

programmes (notamment ceux de la couche 

machine). 
 

On rappelle simplement ici le mécanisme d’appel 

(CALL) et de retour (RET) des procédures et 

l’utilisation implicite et explicite de la pile pour la 

conservation : des adresses successives de 

retour, des paramètres d’appel et de retour, 

enfin des variables locales à chaque appel. 
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6.5.2 Déroutements 

Un déroutement (ou trappe trap) pendant 

l’exécution d’un programme P consiste à stopper P 

et à appeler automatiquement une routine de 

traitement lorsque certaines conditions 

surviennent. Par exemple, un débordement de 

capacité survenu à la suite d’une opération 

arithmétique peut provoquer le déroutement du 

programme vers une routine de traitement de 

l’erreur.  

 

Remarquons qu’un déroutement est provoqué par 

l’exécution du programme lui-même, qui, en 

positionnant des indicateurs du mot d’état, 

déclenche, au niveau physique, un appel à la 

procédure appropriée. Tout déroutement pourrait 

être simulé par logiciel en testant le mot d’état 

puis en exécutant un appel conditionnel à la 

routine après chaque opération dangereuse.  
 

Le fait de traiter automatiquement les 

déroutements au niveau physique permet : 

• l’augmentation de la vitesse d’appel (couche 

physique) 

• la diminution de la taille du code 
 

Exemples : 

débordement, division par 0, débordement de pile, 

violation de protection, opération indéfinie… 

ASI  Chapitre 6 : La couche Machine  103 

6.5.3 Interruptions (IT) 

Evénement provoqué par une cause externe au 

programme et qui interrompt celui-ci pour 

exécuter une routine de traitement de 

l’interruption. A la fin de cette routine, le 

programme interrompu reprendra son exécution 

dans l’état exact où il l’avait laissée (sauf 

exception : chute alimentation !).  

 

Cette clause de reprise implique la sauvegarde du 

contexte du programme en début de routine d’IT 

et sa restauration à la fin. Le contexte du 

programme comprend en particulier l’ensemble 

des valeurs de tous les registres, y compris PSW. 

 

Les IT sont principalement utilisées dans la 

gestion des E/S pour signaler la fin des transferts 

réalisés de façon asynchrone, ce qui permet 

d’éviter l’attente active de l’UC. 

 
Remarques : 

• Les déroutements sont parfois nommés 

interruptions internes (8086). 

• La différence essentielle entre un déroutement et 

une IT est que le déroutement est synchrone 

avec le programme, alors que l’IT ne l’est pas. 

L’instant d’apparition d’une IT est indépendante 

du programme, pas le déroutement ! 



ASI  Chapitre 6 : La couche Machine  104 

Niveaux d’interruption 

En général, il existe plusieurs niveaux de priorités 

d’IT. En effet, différents périphériques étant 

connectés, il importe d’établir une politique de 

gestion des conflits. Différents algorithmes 

utilisant plusieurs files de priorités sont utilisés.  
 

Par exemple, chaque niveau de priorité est associé 

à un type de périph. et par conséquent à une 

routine de traitement correspondante. Le numéro 

de périph. communiqué lors de l’IT permettra de le 

distinguer des autres de même type. 

 
Transparence des IT imbriquées 

Le mécanisme de traitement des IT est 

transparent lorsqu’il s’apparente au mécanisme de 

l’appel procédural. On utilise la pile pour 

sauvegarder les contextes du programme et de la 

suite des routines d’IT interrompus. Attention à ne 

pas permettre de nouvelle IT pendant le 

chargement ou la sauvegarde d’un contexte 

(atomicité) ! 

 
Exemple : 

L’IBM 370 ne permet pas les IT imbriquées car un 

seul mot MC stocke le PSW du prog. interrompu. 

Pour éviter l’écrasement de ce mot, un indicateur 

de contrôle des IT du PSW de la routine est 

positionné afin d’interdire (masquer) toute 

nouvelle prise en compte d’une autre IT. 
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7. Perspectives et Conclusion 

7.1 Perspectives de l’ASI 

- Stratégie RISC/CISC : processeurs à jeu 

d’instruction de limité/complexe : qui va gagner ? 

 

- Nouveaux supports de mémoires de masse : 

optiques et magnétiques, DVD ... 

 

- Miniaturisation : on va atteindre une 

asymptote horizontale pour les composants 

électroniques actuels → changement de 

technologie 

- métaux supraconducteurs 

- ordinateurs biologiques (Science-Fiction ?) 

 

- Standardisation : vue de l’esprit puisque 

marché fortement concurrentiel et impératifs 

commerciaux prépondérants 

 

- Architectures parallèles de machines 

- multiprocesseurs à mémoire partagée 

- machines systoliques communicantes (réseaux 

quadratiques ou cubiques de processeurs) 
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7.2 Les autres couches : à suivre… 

 
Systèmes d’exploitation 

 

Etude des principes fondamentaux des systèmes 

d’exploitation : 

- fichiers, 

- processus,  

- mémoire. 

 

 

 

 
Assembleur 

 

- mise en œuvre d’algorithmes sur un jeu 

d’instructions assembleur particulier ; 

- écrire proprement dans un langage peu 

structuré ; 

- étudier concrètement des mécanismes 

d’adressage ; 

- (interfacer avec les autres couches : système 

d’exploitation et applications en langage évolué). 
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7.3 Conclusion 

Il est absolument indispensable de comprendre les 

concepts de base des machines matérielles afin : 

 

- d’évaluer correctement les résultats 

numériques fournis par les machines (précision). 

 

- de programmer intelligemment les algorithmes 

dont on a minimisé la complexité (des E/S 

fréquentes peuvent ruiner un algorithme d’une 

complexité inférieure à un autre). 

 

- de pouvoir optimiser les parties de programme 

les plus utilisées en les réécrivant en langage de 

bas niveau. 

 

- d’écrire des compilateurs ou des interpréteurs 

performants même si ceux-ci sont écrits en 

langage de haut niveau. 

 

- de se préparer à l’arrivée de nouveaux 

paradigmes de programmation 

(programmation parallèle). 

 

 

… et enfin d’obtenir une bonne note lors de 

l’évaluation ! 
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8. Les Systèmes de  
Gestion de Fichiers 

 

8.1 Les Fichiers 

8.1.1 Introduction 

Définition conceptuelle : 

Un fichier est une collection organisée 

d'informations de même nature regroupées en vue 

de leur conservation et de leur utilisation dans un 

Système d'Information. 

 
Remarque : 

inclut les SI non automatisés (agenda, catalogue 

de produits, répertoire téléphonique,…) 

 

 

 

 
Définition logique : 

C'est une collection ordonnée d'articles 

(enregistrement logique, item, "record"), chaque 

article étant composés de champs (attributs, 

rubriques, zones, "fields"). Chaque champ est 

défini par un nom unique et un domaine de 

valeurs. 
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Remarque : 

Selon les SE, la longueur, le nombre, la structure 

des champs est fixe ou variable. Lorsque l'article 

est réduit à un octet, le fichier est qualifié de non 

structuré. Au niveau logique, plusieurs modèles 

de base de données ont été définis : modèle 

relationnel [Codd 76], réseau, hiérarchique. 

 
Définition physique : 

Un fichier est constitué d'un ensemble de blocs 

(enregistrement physique, granule, unité 

d'allocation, "block", "cluster") situés en mémoire 

secondaire. Les articles d'un même fichier 

peuvent être groupés sur un même bloc (Facteur 

de groupage ou de Blocage (FB) = nb 

d'articles/bloc) mais on peut aussi avoir la 

situation inverse : une taille d'article nécessitant 

plusieurs blocs. En aucun cas, un article de taille ≤ 

taille d'un bloc n'est partitionné sur plusieurs 

blocs → lecture 1 article = 1 E/S utile. 

 
Remarque : 

les blocs de MS sont alloués à un fichier selon 

différentes méthodes liées au type de support qu'il 

soit adressable (disques, …) ou séquentiel (bandes, 

cassettes, "streamers"). Ces méthodes 

d'allocation sont couplées à des méthodes de 

chaînage des différents blocs d'un même fichier et 

seront étudiées dans le chapitre SGF. 
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8.1.2 Opérations et modes d'accès 

Un certain nombre d'opérations génériques 

doivent pouvoir être réalisées sur tout fichier : 

 

- création création et initialisation du 

noeud descripteur (i-node, File 

Control Block, Data Control 

Block) contenant taille, date 

modif., créateur, adrs bloc(s), … 

- destruction désallocation des blocs occupés et 

suppression du noeud descripteur 

- ouverture réservation de tampons d'E/S en 

MC pour le transfert des blocs 

- fermeture recopie des tampons MC vers MS 

(sauvegarde) 

 

- lecture  consultation d'un article 

- écriture insertion ou suppression d'un article 

 

La lecture et l'écriture constituent les modes 

d'accès et peuvent être combinés (mise à jour) 

lors de l'ouverture d'un fichier (existant). A la 

création, un fichier est toujours ouvert en écriture. 

Un SE multi-utilisateurs doit toujours vérifier les 

droits de l'utilisateur lors de l'ouverture d'un 

fichier. 
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8.1.3 Caractéristiques fonctionnelles 

Volume : taille d'un fichier en octets ou multiples. 

Si articles de longueur fixe alors taille article*nb 

articles. 

 

Taux de consultation/mise à jour pour un 

traitement donné : rapport entre le nombre 

d'articles intervenant dans le traitement et nb 

total d'articles. 

 

Exemple : fichier "personnel", traitement "paye" 

==> taux de consultation = 100% 

 

Remarque : un taux de consultation important 

implique souvent un traitement par lot avec une 

méthode d'accès séquentielle. 

 

Fréquence d'utilisation : nb de fois où le fichier 

est utilisé pendant une période donnée. 

 

Taux d'accroissement : pourcentage d'articles 

ajoutés pendant une période donnée. 

 

Taux de renouvellement/suppression : 

pourcentage d'articles nouveaux/supprimés pendant 

une période donnée. (TR=TS ==> volume stable) 
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Ces différentes caractéristiques ainsi que le type 

prépondérant d'utilisation (traitement par lot ou 

interactif) d'un fichier doivent permettre de 

décider de la structuration des articles, du type de 

support de stockage et des méthodes d'accès. 

 

On classe souvent les fichiers en différentes catégories :  

 

fichiers permanents : informations vitales de 

l'entreprise : Client, Stock, Fournisseurs... 

durée de vie illimitée, Fréquence d'Utilisation 

élevée, màj périodique par mouvements ou 

interactive. 

 

fichiers historiques : archives du SI : Tarifs, 

Prêts-Bibliothèque, journal des opérations… 

pas de màj, taux d'accroissement élevé, taux de 

suppression nul. 

 

fichiers mouvements : permettent la màj en 

batch des permanents afin d'éviter incohérences 

ponctuelles : Entrée/Sortie hebdomadaire stock, 

heures supplémentaires Janvier, … 

durée de vie limité, fréquence d'utilisation très 

faible. 

 

fichiers de manoeuvre : durée de vie très courte 

(exécution d'un programme) : spool, fichier 

intermédiaire. 
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8.1.4 Structure et Longueur des articles 

Articles de longueur fixe et de structure unique 

Dans la plupart des cas, chaque article d'un fichier 

contient le même nombre de champs chaque 

champ étant de taille fixe. Il existe un type unique 

d'articles. 

 

Exemple : fichier STOCK 

nom champ type taille exemple 

REF N 4 0018 

DESIGN A 15 VIS 8*20 

QTE N 7 550 000 

DATE D 6 23/09/92 

 
Articles de longueur fixe et de structure multiple 

Les articles peuvent varier de structure parmi 

plusieurs sous-types d'articles (record variant de 

Pascal, union de C, C++). La longueur fixe des 

articles d'un tel fichier correspond à la longueur 

maximale des différents sous-types. 

 

Exemple : fichier PERSONNE, articles de 42 octets 

 

NOM(20), PRENOM(15), SITUATION(1),  

  cas SITUATION=M alors DATE_MAR(6) 

  cas SITUATION=D alors DATE_DIV(6) 

  cas SITUATION=C alors rien 
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Remarque : les deux types d'articles précédents 

constituent la quasi-totalité des fichiers. La 

longueur fixe des articles permet de réaliser 

efficacement les calculs d'adresses de ceux-ci. 

 
Articles de longueur var. et de structure multiple 

L'intérêt principal de ce type d'articles consiste 

dans le gain de place (suppression des blancs) 

constitué par le compactage des fichiers concernés. 

L'inconvénient majeur réside dans la difficulté à 

calculer l'adresse d'un article. Ce type d'articles 

est particulièrement utilisé à des fins d'archivage 

sur support séquentiel et pour la téléinformatique. 

 

La séparation des articles et des champs est 

souvent effectuée par insertion de préfixes 

indiquant la longueur de l'article ou du champ. 

 

Exemple : fichier PERSONNE 

 

TailleArt(1), NOM(1+20), PRENOM(1+15), SIT(1),  

  cas SIT=M alors DATE_MAR(6) 

  cas SIT=D alors DATE_DIV(6) 

  cas SIT=C alors rien 

 

18,5,UHAND,4,PAUL,M,23/08/91, 

12,5,PETIT,4,JEAN,C, 

19,6,HOCHON,4,PAUL,D,10/10/89, 

… 
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8.1.5 Méthodes d'accès 

8.1.5.1 Accès Séquentiel 

Les articles sont totalement et strictement 

ordonnés. L'accès (lecture/écriture) à un article ne 

peut être réalisé qu'après l'accès à l'article 

précédent. Un pointeur d'article courant permet 

de repérer la position dans le fichier à un instant 

donné. L'ouverture en lecture positionne le 

pointeur sur le 1er article puis les lectures 

successives font progresser le pointeur jusqu'à la 

position End Of File (EOF). Selon les cas, 

l'ouverture en écriture positionne le pointeur en 

début de fichier (rewrite) ou en fin de fichier 

(append). Il existe une opération spécifique de 

remise à zéro du pointeur (retour en début de 

fichier, rembobinage, "reset", "rewind"). 

 

Historiquement lié au support bande magnétique et 

cartes perforées, cette méthode d'accès est la plus 

simple et de surcroît est universelle. Elle reste très 

utilisée notamment pour les fichiers non structurés 

(textes, exécutables,…) ou les fichiers historiques. 

Pour les fichiers permanents, si le taux de 

consultation ou de màj est important, la solution 

séquentielle doit être envisagée. Cependant, l'accès 

séquentiel est impensable pour un bon nombre d'op. 

interactives (réservations, op. bancaires, …) 
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8.1.5.2 Accès direct 

(ou sélectif, aléatoire, "random") 
 

Ce type d'accès nécessite un support adressable! 

Un ou plusieurs champs des articles servent 

d'expression d'accès (clé) pour "identifier" et 

accéder à un ou plusieurs articles. On peut 

directement lire ou écrire l'article grâce à une 

opération du type suivant : 

 

lire/écrire(fichier, valclé, adrsMCtransfert) 

 

On peut également vouloir accéder aux articles 

par l'intermédiaire de plusieurs clés : 
 

Exemple : fichier Personne; clé1 = N°SS; clé2 = Nom 
 

Par la suite, nous traiterons de la manière de 

réaliser l'accès direct sur un fichier à clé unique. 

Selon les cas, la transposition aux clés multiples 

est plus ou moins simple ! 

 
Adressage direct 

 

Ce type d'adressage est un cas d'école puisqu'il associe à chaque 

valeur de clé l'adresse physique du bloc contenant l'article. Il 

y a ainsi identité des valeurs de clé d'article et des adresses 

physiques de bloc. Un inconvénient évident est que le domaine 

des valeurs de clé doit correspondre exactement aux domaine des 

adresses physiques. De plus, l'espace adressable est très 

fortement sous-occupé (FB=1) et ne peut être partagé par 

plusieurs fichiers ayant des valeurs de clés conflictuelles ! Par 

contre, le temps d'accès à un article est minimal. La clé doit être 

identifiante ! 
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Adressage relatif 

 

La clé est un nombre entier correspondant au 

numéro logique (0..n-1) d'article dans le fichier. 

On obtient aisément l'adresse physique (bloc ; 

dépl.) de celui-ci : 
taille fixe : AdPhy:=(Orga(nl div FactBloq); taille*(nl mod FactBloq)) 

taille var. : il existe une table de correspondance [nl --> AdPhy] 

 

Si la numérotation logique n'est plus continue 

(suppressions), de l'espace inutile continue à être 

occupé par le fichier ! En effet, la compression 

après chaque suppression serait trop coûteuse. 

L'insertion suivante sera donc réalisée dans un 

trou. L'ordre des nl ne correspond donc pas 

forcément à l'ordre d'insertion !  

 
Adressage dispersé, calculé ("hash-coding") 

 

L'adressage dispersé consiste à calculer un 

numéro logique d'article à partir d'une valeur de 

clé et d'une fonction de hachage : nl:=f(c). 

 

f permet de réduire le domaine des nl par rapport 

au domaine des clés afin de donner un volume de 

fichier supérieur au volume utile mais inférieur à 

card(domaineClé)*tailleArt.  

 
Avantages : 

calcul en MC ==> accès très rapide 

clés quelconques : non identifiantes ==> collisions 
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exemple : 

 
Domaine Clé

0 
1 
2 
3 
4 
5 
… 

99998 
99999

Clés utilisées

 
1 
 

4 
 
 

99998

numéros logiques

0 
1 
2 
3 
4 
5 
6 
7 
8

f

 
 

Dans cet exemple, un domaine de 106 clés potentielles est réduit 

à un espace logique de 9 numéros logiques permettant de stocker 

les 3 articles réels. 

 

hachage parfait 

Une fonction de dispersion idéale est celle qui 

réalise une bijection de l'ensemble des clés 

existantes vers l'ensemble des numéros logiques. Il 

n'y a ainsi aucun espace perdu. La recherche d'une 

fonction idéale est calculable sur un ensemble 

statique de clés identifiantes mais impossible sur 

un ensemble dynamique  
 

Collisions ou conflits 

Il y a collision lorsque la fonction de hachage 

associe un numéro logique déjà utilisé à un nouvel 

article. Il faut alors traiter la collision pour insérer 

le nouvel article dans le fichier : 
- soit dans une zone de collision générale accédée soit 

séquentiellement, soit par une autre fonction f2 

- soit dans une zone de collision spécifique à chaque numéro 

logique. 
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La détermination d'une bonne fonction de hachage 

donnant un faible taux de collision est un gage 

de rapidité d'accès. Exemple : somme des entiers 

(16 bits) composant la clef modulo taille fichier. 

Avec une clé non identif., le taux de collision 

augmente. 

 

Lorsque le volume utile du fichier croît, il est 

nécessaire de réorganiser celui-ci, par exemple, en 

allouant un espace logique double du précédent, en 

modifiant f et en réorganisant les articles 

existants. 

 
inconvénients : 

collisions coûteuses 

pas d'accès séquentiel (accès calculés répétés) 

taux d'occupation mémoire <= 1 

taille du fichier connue à priori 

réorganisations coûteuses 

 
Adressage indexé 

 

Un index est une table de couples (valeur clé, nl) 

triée sur les valeurs de la clé. L'index est dense si 

toutes les clés du fichier y sont recensées. Sinon 

l'index est dit creux et une clé c présente dans le 

fichier et absente de l'index est dite couverte par la 

clé tout juste inférieure présente dans l'index. Un 

index creux implique une clé primaire, c'est à 

dire que le fichier soit trié sur cette clé. D'autres 

index secondaires doivent alors être dense ! 
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Exemple d'Index creux primaire : 

1,Dupont/5,Hochon/      /      /    

Index

( ,4) 
(6,0) 

(15,16) 
(46,12) 
(135,8)

6,Paul/13,Durand/14,Pierre/     

Blocs (FB=4)135,Michel/      /      /      /    

46,Potuit/49,Dru/      /      /    

15,Riton/      /      /      /    

0            1               2          3

numéros logiques

 
La recherche d'une clé d'un article est réalisée par 

dichotomie sur le fichier d'index. Lorsque le fichier 

atteint un volume important, son fichier d'index ne 

tient plus sur un seul bloc et on est alors forcé de 

parcourir séquentiellement les blocs d'index.  

 

Aussi, on préfère une organisation arborescente 

(b-arbre) de l'index dans laquelle existe une 

hiérarchie de sous-tables d'index creux permettant 

une bonne rapidité d'accès. En fait, on indexe 

chaque bloc d'index ! 

 
Contraintes sur un b-arbre d'ordre p (#ptrs/bloc 

index) 
• tout chemin (racine --> feuille) est de longueur 

identique = hauteur (exemple h=2) 

• chaque bloc d'index est toujours au moins à 

moitié plein (sauf la racine) : chaque bloc d'index 

contient k clés avec EntInf(p/2)≤k≤p-1 (ex. p=3). 
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Exemple d'index par b-arbre : 

 

14   22

10   18   20 30   

2     
Paul 
9  
Piera

10  
Ilot 

14  
Duri

18   
Py 
19  
Tota

20   
Rat

22   
Ture 
29 
Roit

30    
Pou

4 blocs 
d'index

1 bloc de fichier = 1 à 2 articles  
Afin de maintenir les contraintes lors des 

suppressions ou des insertions d'articles, on est 

parfois obligé de réorganiser l'arborescence ! 

Moins rapide que le hachage pour l'accès direct, 

l'adressage indexé permet cependant de traiter 

également l'accès séquentiel à moindre coût 

(index creux ou b-arbre). 

 
Remarques 

• Il existe toujours un compromis (place utilisée/temps d'accès). 

• Les insertions et suppressions d'articles provoquent des trous 

dans les blocs de données. L'index b-arbre gère ceux-ci mais les 

index linéaires (creux ou denses) ne le font pas… (voir SGF) 

• Pratiquement, les b-arbres et les index creux (ISAM) 

prédominent dans les SGBD (vitesse + accès séquentiel). 

• index multiples : on peut ajouter des index secondaires denses 

peu efficaces pour l'accès séquentiel. 
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8.2 Système de Gestion des Fichiers 

8.2.1 Organisation arborecente 

La quasi-totalité des SGF sont organisés en 

arborescence de répertoires (catalogue, 

"directory") contenant des sous-répertoires et 

fichiers. Suivant le cas, les répertoires sont 

considérés comme des fichiers (unix) ou bien 

demeurent dans des zones de MS spécifiques (MS-

DOS zone DIR). Le répertoire permet d'accéder au 

noeud descripteur d'un fichier qu'il contient. Ce 

noeud permettra de connaître la localisation et 

l'ordonnancement des blocs contenant les données 

de ce fichier. Par la suite, on supposera des 

répertoires de même nature que les fichiers. 

 

8.2.2 Allocation de mémoire secondaire 

8.2.2.1 Support séquentiel (bande) 

- pistes longitudinales (1 car/ 8|16 pistes //) 

- densité d'enregistrement en bpi (1600..6000) 

- blocs séparés par des gap inter-bloc (2 cm) 

- fichiers séparés par des gaps inter-fichier 

- entêtes de blocs et de fichiers permettant le positionnement. 

- on ne modifie jamais directement une bande. 

- les maj sont effectuées lors de la recopie sur une autre bande. 

- faible coût, accès lent ==> archives, copies, sauvegardes 
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8.2.2.2 Support adressable (disque) 

Espace adressable numéroté (0..b-1) de b blocs. 

L'accès à deux blocs consécutifs est peu coûteux 

(translation et rotation minimale de la tête de 

lecture/écriture). Remarquons que la numérotation 

logique des blocs ne correspond pas à la topologie 

(facteur d'entrelacement). 
 

 

2 problèmes :  

• disponibilité ou occupation d'un bloc 

• localisation et ordonnancement des blocs d'un fichier 

 

 
Gestion des blocs disponibles 

 

Une liste des blocs libres doit être maintenue afin 

de gérer les créations et destructions de fichiers. 

 
implémentations : 

• tableau de bits : 0100011111101…110 (mot de b bits) 

demande bloc : chercher le 1° 0 dans la liste puis 0 -> 1 

rejet bloc : 1 -> 0 

 

• considérer cette liste des blocs libres comme un 

fichier, donc utiliser une des méthodes d'allocation 

suivantes. 
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Allocation contigüe 

 

Ex : fic1 (b0..b3); fic2(b9..b12); …; fick(b5..b6) 
 

• temps d'accès séquentiel et direct optimal 

• noeud descripteur contenant blocDebut, nbBlocs 

• peu utilisé car les fichiers ont des tailles 

dynamiques ==> surévaluation a priori des 

volumes fichiers, réorganisations fréquentes et 

coûteuses lors des augmentations de volume. 

• utilisation pour les tables systèmes de taille fixe : 

MS-DOS : boot, FAT1, FAT2, DIR 

Unix : boot, SF type, i-node table 
 

Problème de l'allocation dynamique (=new, malloc) 

lors d'une demande de n blocs libres, le système 

doit chercher un trou (suite de blocs libres) 

suffisament grand parmi les trous de l'espace 

disque. 
 

Stratégies 

• Premier trouvé ("First-Fit") : on parcours la 

liste des trous jusqu'à en avoir trouvé un assez 

grand. 

• Plus Petit ("Best-Fit") : on cherche dans toute 

la liste la borne supérieure des trous => parcours 

intégral ou liste des trous triée et recherche dicho. 

• Plus Grand ("Worst-Fit") : inverse de Best-Fit. 
 

Des simulations ont prouvées la meilleure performance de BF et 

FF en temps et en espace utilisé. Lorsque l'espace libre est 

suffisant mais qu'il n'existe pas de trou assez grand, cette 

fragmentation externe implique un compactage des fichiers. 
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Allocation chaînée 

 

Les blocs de données d'un fichier contiennent un 

pointeur sur le bloc suivant. Le noeud descripteur 

contient, lui, la tête de liste. Lors de la création, la 

tête est mise à nil, puis, au fur et à mesure des 

demandes, une allocation contigüe (optimale en 

temps d'accès) est tentée. Si celle-ci ne peut avoir 

lieu, on choisit le(s) premier bloc disponible.  

 

 
Avantage 

• plus de fragmentation externe donc seule 

limitation = taille espace disque libre. 

 
Inconvénients 

• Accès séquentiel seulement ! 

 

• fragmentation interne des fichiers nécessitant 

de nombreux mouvements de tête. Des utilitaires 

de compactage permettent la réorganisation 

périodique des fichiers en allocation contigüe. 

 

• fiabilité : si un pointeur est détruit 

logiciellement ou matériellement (bloc illisible) on 

perd tout le reste du fichier. 

 

• encombrement disque dû aux pointeurs si blocs 

de petite taille 
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Allocation chaînée déportée 
 

On déporte le chaînage dans une table système 

(FAT pour MS-DOS) dont chaque entrée pointe 

sur le bloc de données suivant du fichier. La tête 

de liste est positionnée dans le noeud descripteur. 

Cette table de chaînage est chargée en MC 

(volume courant) afin de permettre des accès 

directs rapides. 

 
Avantage 

• Accès direct et séquentiel peu coûteux 

 
Inconvénients 

• fragmentation interne (compactages périodiques) 

• accès direct après parcours de la liste en MC 

 
Allocation indirecte (indexée) 

 

Un bloc d'index contient la liste des pointeurs sur 

les blocs de données du fichier. Ce bloc d'index est 

lui-même pointé par un champ du noeud 

descripteur de fichier. A la création le bloc d'index 

est initialisé à nil, nil, …, nil et lors des écritures 

successives, les premiers pointeurs sont affectés des 

adresses des blocs alloués par le gestionnaire de 

mémoire disponible. Ici encore la contiguïté est 

tentée ! A l'ouverture, le bloc index est chargé en 

MC afin de permettre les accès. 
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Avantage 

• accès direct et séquentiel rapide 

 
Inconvénients 

• fragmentation interne => compactages périodiques 

• taille gaspillée dans les blocs d'index >> taille 

des pointeurs en alloc chaînée. 

• petits fichiers : pour 2 ou 3 adresses de blocs, on 

monopolise un bloc index ! 

• très grands fichiers : un bloc index étant 

insuffisant, plusieurs blocs index peuvent être 

chaînés et un mécanisme de multiple indirection 

peut être utilisé. 

 

 
Allocation directe 

 

Le noeud descripteur contient tous les pointeurs 

sur les blocs de données. De taille fixe et petite, 

cette structure de données ne pourra être utilisée 

que pour des fichiers de faible volume. 

 
Avantage 

• accès direct et séquentiel très rapide 

• peut être mixtée avec indirection ou chaînage  

 
Inconvénients 

• taille limitée des fichiers 

• fragmentation interne 
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8.3 Exemples 

8.3.1 Le SGF MS-DOS 

Nous décrivons ci-après l'organisation physique 

d'un volume MS-DOS sous la forme d'une 

disquette 5,25 pouces. Les principes d'allocation de 

MS-DOS restent les-mêmes quel que soit le 

support adressable, seuls le nombre et la taille des 

champs varient. 

 
Une disquette, ou disque souple ou "floppy disk", est constituée 

d'un support plastique mince de forme discale d'un rayon de 5,25 

pouces (1 pouce = 2,54 cm) sur lequel a été déposé un substrat 

magnétique. Dans le cas de disquettes double face double 

densité, cette surface homogène de particules magnétisables est 

structurée en 2 faces de 40 pistes possédant chacune 9 

secteurs. Les pistes concentriques sont numérotées de 0 à 39 

depuis l'extérieur vers l'intérieur. Chaque secteur contient 512 

octets utiles. La capacité d'une disquette est donc de 2 * 40 * 9 * 

512 = 360 Koctets. 

 

 

L'unité d'allocation ("cluster"), ou bloc, est la plus petite partie 

d'espace mémoire allouable sur une disquette. Pour une 

disquette 5,25 pouces à 360 Ko, un bloc est constitué de deux 

secteurs consécutifs et a donc une capacité d'1 Ko. La 

numérotation des secteurs est effectuée de la façon suivante :  

 

Face 0 Piste 0 Secteurs 0 à 8 

Face 1  Piste 0 Secteurs 9 à 17 

Face 0  Piste 1 Secteurs 18 à 26 

Face 1  Piste 1 Secteurs 27 à 35 etc… 
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Fichier et catalogue 

 
Un fichier MS-DOS est une suite d'octets désigné par un 

identifiant composé d'un nom de 8 caractères et d'une 

extension de 3 caractères. Par exemple, COMMAND.COM, 

PRG1.PAS, SALAIRES.DBF, TEXTE1.DOC… 

 

Un catalogue ("directory") MS-DOS est un type de fichier 

particulier permettant de regrouper différents fichiers de 

données et/ou d'autres catalogues dans une même entité. 

L'architecture du Système de Fichiers est donc une arborescence 

dont toutes les feuilles sont des fichiers et tous les nœuds 

intermédiaires des catalogues. Le catalogue racine est désigné 

par un "backslash" \ et est stocké en début de disquette. 

 

 

Allocation 

 
Les fichiers sont fragmentés en allocation chaînée déportée 

et MS-DOS conserve dans une table l'adresse des différents 

fragments. Cette table s'appelle Table d'Allocation des Fichiers 

("File Allocation Table") et sera désignée par la suite par FAT. 

Deux copies de la FAT sont stockées sur la disquette (secteurs 

1,2 et 3,4) afin de garantir la sécurité des données en cas de 

destruction accidentelle d'une des deux copies. Le catalogue 

général (racine) de la disquette est lui situé sur les secteurs 5 à 

11. Le secteur 0, quant à lui, contient le programme d'amorçage 

sur les disquettes systèmes ("boot-strap"). Enfin les secteurs 12 

à 719 contiennent les données des différents fichiers. 

 

 
catalogue racine 

 
C'est une table dont les entrées ("File Control Block") ont une 

longueur de 32 octets qui décrivent les fichiers et les sous-

catalogues. Une entrée de répertoire peut être schématisée de la 

façon suivante : 
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FCB 
 

0..7 nom du fichier sur 8 octets 

8..15 extension sur 3 octets attrib

ut 

     réservé par MS-DOS 

16..23           réservé par MS-DOS heure 

modificat 
24..31 date 

modificat. 

1° entrée  

FAT 

Taille fichier (LSB, MSB) 

 

L'octet d'attribut permet de spécifier certaines protections : 

fichier caché, lecture seulement, archive, système, normal ou 

encore de préciser que le fichier est un catalogue. L'heure et la 

date de dernière modification permettent de retrouver la 

dernière version d'un fichier de travail. La taille du fichier est 

codé sur 32 bits ce qui permet une taille maximale de 4 Giga-

octets ! Ce qui est bien entendu impossible sur une disquette 

de 360 Ko. Enfin, la 1ère entrée dans la FAT permet d'indiquer le 

premier maillon du chaînage dans la FAT qui pointera lui-

même sur le second qui pointera sur le troisième etc… 

 

 

la FAT 12 bits 

 
C'est une table d'entrées d'une longueur de 12 bits (1,5 octets) 

qui spécifie le chaînage permettant de reconstituer un fichier 

fragmenté sur plusieurs blocs. Les deux premières entrées (0 et 

1) de cette table sont réservées par le système pour préciser le 

type de la disquette sur laquelle elle se trouve (simple/double 

face, simple/double densité). L'entrée numéro 2 correspond au 

premier bloc de la disquette non réservé au système, c'est-à-

dire le bloc n° 6 (secteurs 12 et 13). Ainsi le fichier dont le "1° 

entrée FAT" de son entrée de répertoire est 2 verra son premier 

bloc de données situé sur les secteurs 12 et 13. Dans cette 

première entrée FAT on trouve la valeur de l'entrée suivante, par 

exemple 005, qui correspond au bloc de données suivant. 
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exemple de FAT 

 
type 

disquette 

005 000  i  … FFF … 

  0    1      2      3     4      5     6     …     i 

        1° bloc du fichier   2° bloc du fichier     indique la fin  

         = bloc n° 6         = bloc n° 9         du chaînage 

 

Dans cet exemple, le fichier est contenu sur trois blocs (6, 9 et 

i+4). La fin du chaînage est indiqué par la valeur 0FFFH (nil) 

tandis qu'une valeur 000 indique un bloc libre. La gestion des 

blocs libres (table de "12 bits") est en effet couplé au mécanisme 

de FAT. 

 

Deux remarques 
- Les entrées du répertoire racine ne sont pas compactées et la 

valeur 0E5H située sur le premier octet d'un FCB signifie que 

cette entrée est libre. Soit cette entrée n'a jamais été utilisée 

pour décrire un fichier ou un catalogue, soit ce fichier ou ce 

catalogue a été détruit (delete ou rmdir) et le système a 

simplement surchargé le premier octet du nom du fichier par 

un code 0E5H. Par conséquent, la recherche d'un nom dans le 

catalogue général est effectuée séquentiellement sur toutes les 

entrées. On aurait pu tout aussi bien choisir de compacter les 

entrées du catalogue à chaque destruction de fichier, ce qui 

aurait diminué le temps de recherche d'un fichier n'existant pas ! 

Mais cela aurait interdit les utilitaires de récupération de 

fichiers détruits (undelete). 

- La seconde remarque concerne la fragmentation des fichiers 

sur la disquette. Au bout d'un certain nombre de créations et de 

destructions de fichiers et de répertoires, les différents blocs 

supportant les données d'un fichier se trouvent être disséminés 

sur la disquette. Or le transfert en mémoire centrale de tous les 

blocs de ce fichier va nécessiter un grand nombre de mouvements 

de translations du bras de lecture. C'est pourquoi il existe des 

utilitaires de compactage des blocs des fichiers d'une disquette 

permettant de minimiser les temps d'accès à un fichier. 
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La VFAT 32 
 

Nouveau standard de FAT permettant de gérer 

des disques durs de grande capacité (>2Go) : 

• Entrées de FAT sur 12, 16 ou 32 bits permettant 

des petits clusters ; 

• FCB sur 32, 37 ou 44 octets (FCB étendu). 

 

 
Exemple : disquette 1.4 Mo 

 
Volume : 

• 80 pistes/face : 160 pistes 

• 18 secteurs/piste : 2880 secteurs 

• 512 octets/secteurs : 1440 Ko soit 1.40 Mo 

• 1 secteur/cluster 

 
FAT 

• 1 FAT : 9 secteurs * 2 copies ; 

• Entrée de FAT : 12 bits ; 

• 3072 entrées (2880 clusters) 

 
Répertoire racine : 

• Répertoire racine sur 14 secteurs 

• FCB sur 32 octets 

• soit 224 entrées 

 

Taux de transfert : 500 Kbits/s 
 

Les noms longs de fichiers de WinX sont stockés 

dans le FCB suivant immédiat codé en Unicode. 
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8.3.2 Le SGF d'Unix 

Exemple d'une arborescence de fichiers Unix 

bin       usr    dev

10 14 7
3 12

ls    cat prt1   hda2dupont durand

15

data1      prg1 prg2  data2

19 18 13 11

2   /

6 5 8

 
 

• catalogues : bin, usr, dev, dupont, durant; 

• fichiers ordinaires : ls, cat , data1, prg1, prg2, data2; 

• fichiers périphériques : sous le catalogue dev ("device") : prt1, 

dsk2. 

 
Caractéristiques  
• Entrées/Sorties généralisées ou transparentes 

• désignation : chemin d'accès absolu /…, ou relatif 

• fichiers non structurés = suite d'octets numérotés logiquement 

de 0 à n-1 (n = longueur du fichier) : structuration à la charge des 

programmeurs 

• accès direct à une suite d'octet à partir d'une position i dans le 

fichier (0 ≤ i ≤ n-1) et/ou accès séquentiel 

• catalogues Unix = liste (nom de fichier, # i-node) 

• identification = # i-node 

• désignations multiples : compteurs de liens ou de références 

• système de protection : rwx rwx rwx propriétaire groupe 

autres  
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9. Les processus Unix 

9.1 Généralités 

Processus : suite temporelle d'exécutions 

d'instructions d'un programme par un processeur. 

(programme : données + suite d'instructions) 

 

La gestion des processus (pus) étant très 

dépendante du SE étudié, nous nous bornerons à 

définir quelques notions générales avant d'aborder 

plus particulièrement les pus Unix. 

 

nom d'un pus : où numéro d'identification du pus 

qui permet sa manipulation par le système et par 

l'utilisateur l'ayant créé. 

 

ressources : emplacements de mémoire centrale, 

périodes d'utilisation de l'UC, périphériques … 

nécessaires à un processus pour son évolution. 

 

état : un processus disposant de toutes les 

ressources (UC, MC, …) nécessaires à l'exécution 

de sa prochaine instruction est dans l'état actif. 

Dans tous les autres cas, il est bloqué sur la ou les 

ressources manquantes. 
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Remarque : l'observation des ressources 

courantes d'un processus actif ne peut être fait 

qu'entre deux instructions (atomicité). 

 

ressource locale à un pus i : si elle ne peut être 

utilisée que par le pus i. ex : variables du prog. 

 

ressource commune : si elle n'est locale à aucun 

pus. ex : tube 

 

partageabilité : une ressource commune est 

critique (resp. partageable à n=2 points d'accès) 

si sur un point observable elle ne peut être 

détenue que par un (resp. n) pus au plus. ex : l'UC 

est critique; une zone mémoire tube est 

partageable à 2 points d'accès. 

 

Plusieurs pus sont dits en exclusion mutuelle sur 

r lorsque ils utilisent cette ressource critique r. 

 

mode : niveau de pouvoir (droits) dans lequel 

s'exécute le pus lui permettant ou non d'accéder à 

certaines ressources et/ou d'exécuter certaines 

instructions privilégiées de l'UC. ex : dans de 

nombreux systèmes deux modes (seulement) 

existent : mode maître (ou système ou 

noyau)/mode esclave (ou utilisateur). Le mode 

d'un pus peut être statiquement donné à la 

création ou évoluer dynamiquement (Unix). 
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durée de vie : un pus naît, après chargement en 

MC, lors du lancement du programme par le SE et 

meurt à la fin de l'exécution de ce programme lors 

du retour au SE. 

 

Les mécanismes de synchronisation permettent 

notamment l'activation d'un pus bloqué sur une 

ressource ou au contraire le blocage d'un pus actif. 

ex : l'accès de 2 pus à une ressource critique 

nécessite leur synchronisation afin qu'un seul 

d'entre eux n'obtienne la ressource. 

 

Les mécanismes de communication permettent 

à plusieurs pus de se transmettre des données. 

Afin d'éviter la communication par fichier (E/S 

lentes) on utilise des structures de données en 

mémoire centrale : variables partagées, tubes, 

signaux, files de messages, sockets,… 

 

Le recouvrement (overlay) est une technique qui 

permet de remplacer une partie de la mémoire 

centrale par une autre. ex : un programme très 

long peut être décomposé en parties se recouvrant 

pour diminuer l'espace utilisé (quasiment plus 

utilisé car grande mémoires et pagination). 
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9.2 Description des processus 
Unix 

image mémoire d'un pus : ensemble des zones 

mémoires utilisées par un pus : 

 

 

zone Système          zone Utilisateur 

segment 

de code

segment de 

données 

statiques

segment de 

données  

dynamiques

… 

ADD AL,'X' 

…

allocation 

stat/extern 

3.14159 

tas

pilevar locales

var dynam. 

new, malloc

pid, ppid, état 

utilisateurs (2) 

valeurs reg. 

descripteurs 

adresses segm. 

……

 
 

Un processus Unix réalise ses instructions 

normales en mode utilisateur puis commute en 

mode système lors d'un appel au noyau, d'une 

interruption, ou d'un déroutement. 

 

La commutation de pus est toujours effectuée en 

mode système par le pus "partant" (pas de 

préemption). 
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10. Assembleur 


