
ASI Chapitre 3 : Structure des ordinateurs 40

3. Structure des ordinateurs

Le modèle d'architecture de la plupart des

ordinateurs actuels provient d'un travail effectué

par John Von Neumann en 1946.

Le modèle de Von Neumann

Principes du modèle de programmation :

- code = séquence d'instructions en MC ;

- données stockées en MC ;

Actuellement, d'autres types d'architecture (5°

génération, machines systoliques, …) utilisant

massivement le parallélisme permettent

d'améliorer notablement la vitesse des calculs.

On peut conjecturer que dans l'avenir, d'autres

paradigmes de programmation spécifiques à

certaines applications induiront de nouvelles

architectures.

Unité Centrale

Unité de Commande

Unité Arith. et Log.

Registres

Mémoire Centrale

Bus (données, adresses, contrôle)

Périphériques

ASI Chapitre 3 : Structure des ordinateurs 41

3.1 L' Unité Centrale (UC)
ou processeur (Central Processing Unit CPU)

Cerveau de l'ordinateur, l'UC exécute

séquentiellement les instructions stockées en

Mémoire Centrale. Le traitement d'une instruction

se décompose en 3 temps : chargement,

décodage, exécution. C'est l'unité de commande

qui ordonnance l'ensemble, tandis que l'UAL

exécute des opérations telles que l'addition, la

rotation, la conjonction…, dont les paramètres et

résultats sont stockés dans les registres (mémoires

rapides).

3.1.1.1 Les registres

Certains registres spécialisés jouent un rôle

particulièrement important. Le Compteur Ordinal (CO)

Instruction Pointer IP, Program Counter PC pointe sur

la prochaine instruction à exécuter; le Registre

Instruction (RI) contient l'instruction en cours

d'exécution; le registre d'état Status Register, Flags,

Program Status Word PSW contient un certain nombre

d'indicateurs (ou drapeaux ou bits) permettant de

connaître et de contrôler certains états du processeur; Le

pointeur de pile Stack Pointer permet de mémoriser

l'adresse en MC du sommet de pile (structure de données

Last In First Out LIFO indispensable pour les appels

procéduraux); Des registres d'adresse (index ou bases)

permettent de stocker les adresses des données en

mémoire centrale tandis que des registres de travail

permettent de stocker les paramètres et résultats de

calculs.

ASI Chapitre 3 : Structure des ordinateurs 42

3.1.1.2 L'Unité de Commande

Celle-ci exécute l'algorithme suivant :

répéter

1.charger dans RI l'instruction stockée en MC à

l'adresse pointée par le CO;

2.CO:=CO+taille(instruction en RI);

3.décoder (RI) en micro-instructions;

4.(localiser en mémoire les données de

l'instruction;)

5.(charger les données;)

6.exécuter l'instruction (suite de micro-instructions);

7.(stocker les résultats mémoires;)

jusqu'à l'infini

Lors du démarrage de la machine, CO est

initialisé soit à l'adresse mémoire 0 soit à l'adresse

correspondant à la fin de la mémoire (2m-1). A

cette adresse, se trouve le moniteur en mémoire

morte qui tente de charger l'amorce "boot-strap"

du système d'exploitation.

Remarquons que cet algorithme peut parfaitement

être simulé par un logiciel (interprèteur). Ceci

permet de tester des processeurs matériels avant

même qu'il en soit sorti un prototype, ou bien de

simuler une machine X sur une machine Y

(émulation).

ASI Chapitre 3 : Structure des ordinateurs 43

3.1.1.3 L'Unité Arith. et Log.

Celle-ci exécute des opérations :

- arithmétiques : addition, soustraction, C2,

incrémentation, décrémentation, multiplication,

division, décalages arithmétiques (multiplication

ou division par 2n).

- logiques : et, ou, xor, non, rotations et

décalages.

Selon le processeur, certaines de ces opérations

sont présentes ou non. De plus, les opérations

arithmétiques existent parfois pour plusieurs

types de nombres (C2, DCB, virgule flottante) ou

bien des opérations d'ajustement permettent de les

réaliser.

Enfin sur certaines machines (8086) ne possédant

pas d'opérations en virgule flottante, des co-

processeurs arithmétiques (8087) peuvent être

adjoint pour les réaliser.

Les opérations arithmétiques et logiques

positionnent certains indicateurs d'état du registre

PSW. C'est en testant ces indicateurs que des

branchements conditionnels peuvent être exécutés

vers certaines parties de programme.

Pour accélérer les calculs, on a intérêt à utiliser les

registres de travail comme paramètres,

notamment l'accumulateur (AX pour le 8086).

ASI Chapitre 3 : Structure des ordinateurs 44

3.2 La Mémoire Centrale (MC)

La mémoire centrale de l'ordinateur est

habituellement constituée d'un ensemble ordonné

de 2m cellules (cases), chaque cellule contenant un

mot de n bits. Ces mots permettent de conserver

programmes et données ainsi que la pile

d'exécution.

3.2.1 Accès à la MC

La MC est une mémoire électronique et l'on accède

à n'importe laquelle de ses cellules au moyen de

son adresse comprise dans l'intervalle [0, 2m-1].

Les deux types d'accès à la mémoire sont :

- la lecture qui transfère sur le bus de données, le

mot contenu dans la cellule dont l'adresse est

située sur le bus d'adresse.

- l'écriture qui transfère dans la cellule dont

l'adresse est sur le bus d'adresse, le mot contenu

sur le bus de données.

La taille n des cellules mémoires ainsi que la taille

m de l'espace d'adressage sont des caractéristiques

fondamentales de la machine. Le mot de n bits est

la plus petite unité d'information transférable

entre la MC et les autres composants.

Généralement, les cellules contiennent des mots

de 8, 16 ou 32 bits.

ASI Chapitre 3 : Structure des ordinateurs 45

3.2.2 Contenu/adresse (valeur/nom)

Attention à ne jamais confondre le contenu d'une

cellule, mot de n bits, et l'adresse de celle-ci, mot

de m bits même lorsque n=m.

Parfois, le bus de données a une taille multiple de

n ce qui permet la lecture ou l'écriture de plusieurs

mots consécutifs en mémoire. Par exemple, le

microprocesseur 8086 permet des échanges

d'octets ou de mots de 16 bits (appelés "mots").

Exemple (cellules d'un octet)

Adresse Contenu bin hexa.

0 0 1 0 1 0 0 1 1 53H

1 1 1 1 1 1 0 1 0 0FAH

2 1 0 0 0 0 0 0 0 80H

…

32 0 0 1 0 0 0 0 0 20H (3210)

…

2m-1 0 0 0 1 1 1 1 1 1FH

Parfois, une autre représentation graphique de l'espace mémoire

est utilisé, en inversant l'ordre des adresses : adresses de poids

faible en bas, adresses fortes en haut. Cependant, pour le 8086,

lorsqu'on range un mot (16 bits) à l'adresse mémoire i, l'octet de

poids fort se retrouve en i+1. Il est aisé de s'en souvenir

mnémotechniquement via la gravité dans les liquides de densités

différentes.

ASI Chapitre 3 : Structure des ordinateurs 46

3.2.3 RAM et ROM
Random Access Memory/ Read Only Memory

La RAM est un type de mémoire électronique

volatile et réinscriptible. Elle est aussi nommée

mémoire vive et plusieurs technologies permettent

d'en construire différents sous-types : statique,

dynamique (rafraîchissement). La RAM constitue

la majeure partie de l'espace mémoire puisqu'elle

est destinée à recevoir programme, données et pile

d'exécution.

La ROM est un type de mémoire électronique non

volatile et non réinscriptible. Elle est aussi

nommée mémoire morte et plusieurs technologies

permettent d'en construire différents sous-types

(ROM, PROM, EPROM, EEPROM (Flash), …). La

ROM constitue une faible partie de l'espace

mémoire puisqu'elle ne contient que le moniteur

réalisant le chargement du système d'exploitation

et les Entrées/Sorties de plus bas niveau. Sur les

PCs ce moniteur s'appelle le Basic Input Output

System. Sur les Macintosh, le moniteur contient

également les routines graphiques de base. C'est

toujours sur une adresse ROM que le Compteur

Ordinal pointe lors du démarrage machine.

DDR SDRAM : Double Data Rate Synchronous

Dynamic RAM est une RAM dynamique

(condensateur) qui a un pipeline interne

permettant de synchroniser les opérations R/W.

ASI Chapitre 3 : Structure des ordinateurs 47

3.3 Les périphériques

Les périphériques, ou organes d'Entrée/Sortie

(E/S) Input/Output (I/O), permettent à

l'ordinateur de communiquer avec l'homme ou

d'autres machines, et de mémoriser

massivement les données ou programmes dans

des fichiers. La caractéristique essentielle des

périphériques est leur lenteur :

- Processeur cadencé en Giga-Hertz : instructions

éxécutées chaque nano-seconde (10-9 s) ;

- Disque dur de temps d’accès entre 10 et 20 ms

(10-3 s) : rapport de 107 !

- Clavier avec frappe à 10 octets par seconde :

rapport de 108 !

3.3.1 Communication

L'ordinateur échange des informations avec

l'homme à travers des terminaux de

communication homme/machine : clavier ←, écran

→, souris ←, imprimante →, synthétiseur (vocal)

→, table à digitaliser ←, scanner ←, crayon

optique ←, lecteur de codes-barres ←, lecteur de

cartes magnétiques ←, terminaux consoles

stations ↔ …

Il communique avec d'autres machines par

l'intermédiaire de réseaux ↔ locaux ou longue

distance (via un modem).

ASI Chapitre 3 : Structure des ordinateurs 48

3.3.2 Mémorisation de masse
ou mémorisation secondaire

Les mémoires électroniques étant chères et soit

volatiles (non fiables) soit non réinscriptibles, le

stockage de masse est réalisé sur d'autres

supports. Ces autres supports sont caractérisés

par :

• non volatilité et réinscriptibilité

• faible prix de l'octet stocké

• lenteur d'accès et modes d'accès (séquentiel,

séquentiel indexé, aléatoire, …)

• forte densité

• parfois amovibilité

• Mean Time Between Failures plus important car

organes mécaniques → stratégie de sauvegarde

Supports Optiques

Historiquement, les cartes 80 colonnes ont été

parmi les premiers supports mais sont

complètement abandonnées aujourd'hui. Les

rubans perforés, utilisés dans les milieux à

risque de champ magnétique (Machines Outils à

Commande Numérique), sont leurs descendants

directs dans le cadre des supports optiques.

Supports Magnétique

Aujourd'hui (années 90), les supports magnétiques

constituent la quasi-totalité des mémoires de

masse des ordinateurs à usage général.

ASI Chapitre 3 : Structure des ordinateurs 49

Bandes magnétiques
Ce sont des supports à accès séquentiel particulièrement

utilisés dans la sauvegarde. On les utilise de plus en plus sous

forme de cassettes. Les dérouleurs de cassettes sont appelés

streamers. Les densités et vitesses sont variables : quelques

milliers de bytes per inch (bpi) et autour d'un Mo/s. Le temps

d'accès dépendant de la longueur de la bande …

schéma d'une bande magnétique
bloc i bloc i+1

•••Pistes

1

2

3

4

5

6

7

8

9

gap inter-blocbit de parité

Disques magnétiques
Ils constituent la majorité des mémoires secondaires. Durs ou

souples, fixes ou amovibles, solidaires (Winchester) ou non

(dispack) de leurs têtes de lecture/écriture, il en existe une très

grande diversité. Les disques durs ont des capacités variant

entre quelques dizaines à quelques centaines de Mo, des vitesses

de transfert autour du Mo/s et des temps d'accès approchant les

10 ms.

schéma d'un disque magnétique

tête de lecture/écriture

translation

rotation

face

0

1
2

3
4

5
6

7

•

rotation

trou d'index
secteurs 0, 1, …, 7

pistes

gap

ASI Chapitre 3 : Structure des ordinateurs 50

Composé de faces, de pistes concentriques, de

secteurs "soft sectored", la densité des disques est

souvent caractérisée par le nombre de "tracks per

inch" (tpi) . Sur les disques durs, un cylindre est

constitué d'un ensemble de pistes de même

diamètre.

Un contrôleur de disque (carte) est chargé de

transférer les informations entre un ou plusieurs

secteurs et la MC. Pour cela, il faut lui fournir : le

sens du transfert (R/W), l'adresse de début en MC

(Tampon), la taille du transfert, la liste des

adresses secteurs (n° face, n° cylindre, n° secteur).

La plus petite unité de transfert physique est 1

secteur.

Pour accéder à un secteur donné, le contrôleur doit

commencer par translater les bras mobiles portes-

têtes sur le bon cylindre, puis attendre que le bon

secteur passe sous la tête sélectionnée pour

démarrer le transfert. Le temps d'accès moyen

caractérise la somme de ces deux délais moyens.

Exemple : TAmoyen et transfert d'1 secteur ?

disque dur 8 faces, 50 cylindres, 10 secteurs/piste

d'1 Ko, tournant à 3600 tours/mn, ayant une

vitesse de translation de 1 m/s et une distance

entre la 1° et la dernière piste de 5 cm.

TAmoyen = (5 cm/2)/1 m/s + (1/60 t/s)/2= 25ms+8,3 ms

Transfert d'1 secteur = (1/60)/10 = 1,66 ms

ASI Chapitre 3 : Structure des ordinateurs 51

Supports optiques

Supports optiques

- unités de lecture fonctionnant au moyen d'un

faisceau laser ;

- densités de stockage supérieures au

magnétique : de 102 à 104 fois plus ;

- temps d'accès plus longs : archivage de masse.

CDROM : disques compacts (même format que les

CDs audio) pré-enregistrés par pressage en usine

et non réinscriptibles : (logiciels, annuaires,

encyclopédies, …).

CDR : inscriptibles une seule fois ;

CDRW : réinscriptibles (1000 fois)

DVDR, DVDRW : idem CD mais avec des

capacités plus importantes : 4,7 Go contre 700 Mo,

double couches ...

Magnéto-optiques : combinant la technologie

optique (laser) et magnétique (particules

orientées), ils sont réinscriptibles. Amovibles, plus

denses que les disques magnétiques mais moins

rapides, ils constituent un compromis pour les

archivages et les fichiers rarement accédés.

ASI Chapitre 3 : Structure des ordinateurs 52

3.4 Contrôleur d'E/S et IT

A l’origine, l’UC gérait les périphériques en leur

envoyant une requête puis en attendant leur

réponse. Cette attente active était supportable

en environnement monoprogrammé.

Actuellement, l’UC délègue la gestion des E/S aux

processeurs situés sur les cartes contrôleur

(disque, graphique, …) :

1. l’UC transmet la requête d’un processus à la

carte contrôleur ;

2. l’UC « endort » le processus courant et exécute

un processus « prêt » ;

3. le contrôleur exécute l’E/S ;

4. le contrôleur prévient l’UC de la fin de l’E/S

grâce au mécanisme d’interruption ;

5. l’UC désactive le processus en cours d’exécution

puis « réveille » le processus endormi qui peut

continuer à s’exécuter.

Grâce à ce fonctionnement, l’UC ne perd pas son

temps à des tâches subalternes !

Généralement, plusieurs niveaux

d'interruption plus ou moins prioritaires sont

admis par l'UC

ASI Chapitre 3 : Structure des ordinateurs 53

3.5 Le(s) Bus

Le bus de données est constitué d'un ensemble

de lignes bidirectionnelles sur lesquelles

transitent les bits des données lues ou écrites par

le processeur. (Data 0-31)

Le bus d'adresses est constitué d'un ensemble de

lignes unidirectionnelles sur lesquelles le

processeur inscrit les bits formant l'adresse

désirée.

Le bus de contrôle est constitué d'un ensemble

de lignes permettant au processeur de signaler

certains événements et d'en recevoir d'autres. On

trouve fréquemment des lignes représentant les

signaux suivants :

Vcc et GROUND : tensions de référence ←

RESET : réinitialisation de l'UC ←

R/ W : indique le sens du transfert →

MEM/ IO : adresse mémoire ou E/S →

Technologiquement, les bus de PC évoluent

rapidement (Vesa Local Bus, ISA, PCI, PCI

Express, ATA, SATA, SCSI, …)

ASI Chapitre 3 : Structure des ordinateurs 54

3.6 Améliorer les performances

3.6.1 Hiérarchie mémoire et Cache

Classiquement, il existe 3 niveaux de mémoire

ordonnés par vitesse d'accès et prix décroissant et

par taille croissante :

- Registres ;

- Mémoire Centrale ;

- Mémoire Secondaire.

Afin d’accélérer les échanges, on peut augmenter

le nombre des niveaux de mémoire en introduisant

des CACHE ou antémémoire de Mémoire Centrale

et/ou Secondaire : Mémoire plus rapide mais plus

petite, contenant une copie de certaines données :

Fonctionnement :

Le demandeur demande à lire ou écrire une

information ;

si le cache possède l’information, l’opération est

réalisée, sinon, il récupère l’info. depuis le

fournisseur puis réalise l’op.

Le principe de séquentialité des instructions et

des structures de données permet d’optimiser le

chargement du cache avec des segments de la

mémoire fournisseur. Stratégie de remplacement

est généralement LRU (Moins Récemment Utilisée).
3.6.1.1 Niveaux et localisation des caches

ASI Chapitre 3 : Structure des ordinateurs 55

- Cache Processeur réalisé en SRAM

- Niveau 1 (L1) : séparé en 2 caches (instructions,

données), situé dans le processeur, communique

avec L2 ;

- Niveau 2 (L2) : unique (instructions et données)

situé dans le processeur ;

- Niveau 3 (L3) : existe parfois sur certaines

cartes mères.

Par exemple, Pentium 4 ayant un cache L2 de

256 Ko.

- Cache Disque

De quelques Méga-octets, ce cache réalisé en

DRAM est géré par le processeur du contrôleur

disque. Il ne doit pas être confondu avec les

tampons systèmes stockés en mémoire centrale

(100 Mo). Intérêts de ce cache :

- Lecture en avant (arrière) du cylindre ;

- Synchronisation avec l’interface E/S (IDE, SATA,

…)

- Mise en attente des commandes (SCSI, SATA)

ASI Chapitre 3 : Structure des ordinateurs 56

3.6.2 Pipeline

Technique de conception de processeur avec

plusieurs petites unités de commande placées en

série et dédiées à la réalisation d’une tâche

spécifique. Plusieurs instructions se chevauchent à

l'intérieur même du processeur.

Par exemple, décomposition simple d'une

instruction en 4 étapes :

6. Fetch : chargement de l'instruction depuis la

MC ;

7. Decode : décodage en micro-instructions ;

8. Exec : exécution de l'instruction (UAL) ;

9. Write Back : écriture du résultat en MC ou dans

un registre

Soit la séquence d'instruction : i1, i2, i3, ...

sans pipeline :

i1F, i1D, i1E, i1W, i2F, i2D, i2E, i2W, i3F, ...

avec pipeline à 4 étages

i1F i1D i1E i1W

 i2F i2D i2E I2W

 i3F i3D I3E

 i4F i4D

ASI Chapitre 3 : Structure des ordinateurs 57

Chaque étage du pipeline travaille « à la chaîne »

en répétant la même tâche sur la série

d’instructions qui arrive.

Si la séquence est respectée, et s’il n’y a pas de

conflit, le débit d’instructions (throughput) est

multiplié par le nombre d’étages !

Problèmes et solutions :

- Rupture de séquence : vidage des étages !

- Dépendance d’instructions : mise en attente forcée

Architecture superscalaire :

Plusieurs pipeline (2) dans le même processeur

travaillent en parallèle (→instons indépendantes).

Exemple :

Pentium 4 : selon ses versions, de 20 à 31 étages !

3.6.3 SIMD

Single Instruction Multiple Data désigne un

ensemble d’instructions vectorielles permettant

des opérations scientifiques ou multimédia. Par

exemple, l’AMD 64 possède 8 registres 128 bits et

des instructions spécifiques utilisables pour le

streaming, l’encodage audio ou vidéo, le calcul

scientifique.

ASI Chapitre 3 : Structure des ordinateurs 58

3.6.4 DMA et BUS Mastering

L'accès direct mémoire ou DMA (Direct Memory

Access) est un procédé informatique où des

données circulant de ou vers un périphérique (port

de communication, disque dur) sont transférées

directement par un contrôleur adapté vers la

mémoire centrale de la machine, sans intervention

du microprocesseur si ce n'est pour initier et

conclure le transfert. La conclusion du transfert ou

la disponibilité du périphérique peuvent être

signalés par interruption.

La technique de Bus Mastering permet à

n’importe quel contrôleur de demander et prendre

le contrôle du bus : le maître peut alors

communiquer avec n’importe lequel des autres

contrôleurs sans passer par l’UC.

Cette technique implémentée dans le bus PCI

permet à n’importe quel contrôleur de réaliser un

DMA. Si l’UC a besoin d’accéder à la mémoire, elle

devra attendre de récupérer la maîtrise du bus. Le

contrôleur maître lui vole alors des cycles

mémoires.

ASI Chapitre 4 : La couche physique 59

4. La Couche Physique

La couche physique est constituée de circuits

électroniques complexes interconnectés. Ces

circuits sont conçus à partir d'un nombre peu

importants de circuits de base relativement

simples. Seuls quelques uns de ces circuits seront

décrits fonctionnellement ici.

4.1 Portes logiques et Algèbre booléenne

Nous ne nous intéresserons qu'aux

caractéristiques essentielles des circuits et non à

l'implantation électronique des réseaux de

transistors sur les supports semi-conducteurs !

Une porte logique gate a un comportement binaire,

"il faut qu'une porte soit ouverte ou bien fermée",

et on lui associera la valeur 0 ou 1 selon le

potentiel de sa sortie.

Exemple :
Volts

6

4

2

0

1 logique

0 logique

ASI Chapitre 4 : La couche physique 60

Remarque

Ce découpage des tensions de sortie des circuits en

deux plages représentant le 0 et le 1 est tout à

fait arbitraire et on a déjà envisagé d'autres

découpages en 3, 4 et même 10 plages de

potentiels. Avec 10 plages représentant les chiffres

de 0 à 9, on obtient une machine travaillant

directement en décimal ! Cependant ces

architectures restent du domaine de la recherche

en raison :

1. de leur coût : il faut développer tous les circuits

composant la machine …

2. de leur fiabilité plus faible : les 10 plages étant

plus "minces" et plus proches les unes des autres,

des parasites peuvent plus facilement provoquer

des erreurs.

Technologie

2 familles de transistors sont utilisés :

• les transistors à jonctions (techno. bipolaire)

utilisés en TTL (Transistor Transistor Logic) et

en ECL (Emitter Coupled Logic).

• TTL rapide, consommation élevée

• ECL très rapide 10*TTL, consommation élevée

• Les transistors à effet de champ (techno.

unipolaire) utilisés en PMOS, CMOS, NMOS …

• MOS lent TTL/10, consommation faible

(portables)

• HMOS, XMOS rapide 1*TTL, consommation

faible

ASI Chapitre 4 : La couche physique 61

4.2 Algèbre booléenne

Variable booléenne

− un nom x, y, z

− 2 valeurs possibles vrai (1), faux (0)

Opérations booléennes

− non noté x

x 0 1

x 1 0

− et noté x.y ou plus simplement xy

x\y 0 1

0 0 0

1 0 1

− ou inclusif noté x+y

x\y 0 1

0 0 1

1 1 1

− ou exclusif noté x ⊕ y

x\y 0 1

0 0 1

1 1 0

− équivalence noté x ≡ y

x\y 0 1

0 1 0

1 0 1

ASI Chapitre 4 : La couche physique 62

4.3 Propriétés des opérations

− commutativités du et, du ou :

xy=yx x+y=y+x

− associativités du et, du ou :

x(yz)=(xy)z=xyz x+(y+z)=(x+y)+z=x+y+z

− distributivités

x(y+z)=xy+xz avec la convention . prioritaire sur +

x+(yz)=(x+y)(x+z)

− lois de Morgan

()x y+ = x . y (.)x y = x + y

− double négation : x x=

− absorption : x.(x+y)=x=x+(x.y)

− réduction : (x.y)+(x .y)=y=(x+y).(x +y)

− complétude du {non, et} ou du {non, ou}

toute fonction logique n-aire peut être réalisée par

des combinaisons de ces 2 opérations.

Exemple : implication binaire, ou ternaire ...

ASI Chapitre 4 : La couche physique 63

4.4 Circuits logiques de base

4.4.1 L'inverseur not

Ve

Vcc (+5 V)

Vs
R

base
émetteur

collecteur S=non(E)

Lorsque Ve est inférieur à la valeur critique du

transistor, celui-ci est bloqué et est équivalent à

un interrupteur ouvert : Vs est donc proche de

Vcc. Lorsque Ve est supérieur à la tension critique,

le transistor bascule (la porte se ferme) et

équivaut à une résistance quasi-nulle : Vs est donc

proche de 0.

Remarquons que l'inversion de l'entrée sur la

sortie n'est pas instantanée : selon les technologies

d'intégration, elle tourne autour des quelques

nano-secondes (10-9 s).

On schématise une porte non not (inverseur) de la

façon suivante :

E S

ASI Chapitre 4 : La couche physique 64

4.4.2 Portes non-et, non-ou nand, nor

NAND

Vcc (+5 V)

Vs
V1

R

base
émetteur

collecteur S=non(E1 and E2)

V2

Si V1 < Vcritique ou V2 < Vcritique alors Vs=Vcc

 sinon Vs=0

On schématise une porte non-et nand de la façon

suivante :

SE1
E2

En plaçant deux transistors en série, on obtient

une porte nor schématisée de la façon suivante :

NOR

Vcc (+5 V)

Vs
V1

R S=non(E1 ou E2)

V2

E1
E2

S

ASI Chapitre 4 : La couche physique 65

Complétude

Les portes NAND et NOR sont dites complètes

car on peut câbler avec l’une ou l’autre n’importe

quelle fonction booléenne n-aire.

Exemple : Implication (A implique B)

nonA ou B =non(A et nonB)=non(non(nonA ou B))

S
S

B

A A

B

Rappel des lois de Morgan :

non(A ou B)=nonA et non B

non(A et B)=nonA ou non B

Schémas :

On schématise de la façon suivante les circuits

logiques usuels réalisés à partir des portes de base

:

not

E S
A

B
S

nand

A

B
S

nor

A

B
S

and

A

B
S

or

A

B
S

xor

4.4.3 Composants de base

Les circuits intégrés logiques (puce, chip)

permettent d’utiliser plusieurs fonctions logiques

sur une plaquette de silicium (5mm*5mm).

Différents procédés technologiques permettent

cette intégration à plus ou moins forte densité. La

densité est calculée en nombre de portes ou de

transistors par mm2 ou par circuit. Ensuite,

ASI Chapitre 4 : La couche physique 66

chaque plaquette est encapsulée dans un boîtier

(noir) rectangulaire en plastique ou en céramique,

d’où sortent des broches (pattes) de connexion.

Il existe 4 classes de produits classées selon leur

densité d’intégration :

SSI (Small Scale Integration) 1 à 10 portes/circuit

MSI (Medium “ “ “) 10 à 100 “ “

LSI (Large “ “ “) 100 à 100 000 “

VLSI (Very Large “ “) plus de 100 000 “

Exemple : SSI 7400 TTL (Vcc=5V) Texas Instr.

14 13 12 11 10 9 8

1 2 3 4 5 6 7

Vcc

GND

7400

Ce circuit très utilisé permet de câbler 4 nands

binaires.

ASI Chapitre 4 : La couche physique 67

4.5 Circuits logiques combinatoires

Ces circuits plus ou moins complexes sont

caractérisés par le fait que leur sortie s’exprime

uniquement par une fonction logique de leurs

entrées. Ils sont différentiables des circuits

mémoires dont la sortie dépend également de leur

état antérieur.

4.5.1 Multiplexeur (Mux)

C'est un cas typique de circuit MSI permettant

d'aiguiller une entrée parmi 2n sur son unique

sortie grâce à n lignes de sélection.

Exemple : Mux à 4 entrées, 1 sortie

D0
D1
D2
D3

S1 S0
(2) (1)

F

MUX 1/4 entrées

D0
D1
D2
D3

S1 S0

F

Ce type de circuit est notamment utilisé pour multiplexer le bus

d'adresses et le bus de données du 8086. Associé à un compteur,

il permet également la conversion parallèle/série. Le

démultiplexeur réalise la fonction inverse en aiguillant une

entrée unique vers l'une des 2n lignes de sorties (série/parallèle).

ASI Chapitre 4 : La couche physique 68

4.5.2 Décodeur

Ce MSI dispose de n lignes d'entrées et de 2n

lignes de sortie. Selon le nombre x en RBNS

présent sur les n entrées, seule la sortie d'indice

égal à x est sélectionnée (active) tandis que les

autres sont au repos. Selon les circuits, l'état actif

peut être représenté par 1 ou bien par 0 (actif à

l'état bas).

Exemple : décodeur 2 entrées actif à l'état 1

Décodeur 2 entrées

D3

S0

S1

D0

D1

D2

Remarques

Ce type de circuit permet de sélectionner les

différents circuits mémoires de la MC. En effet, on

utilise certaines lignes de poids forts du bus

d'adresses comme entrées du décodeur et les

sorties comme sélecteurs de boîtiers (Chip Select

CS).

Les circuits décodeurs du commerce sont de type 4

vers 16, 3 vers 8, ou contiennent plusieurs 2 vers

4. Il existe aussi des circuits spéciaux 4 vers 10

pour le DCB. Le circuit inverse nommé codeur

permet de donner l'indice de l'unique ligne

d'entrée active.

ASI Chapitre 4 : La couche physique 69

4.5.3 Autres circuits

Bien entendu, une multitude d'autres types de

circuits combinatoires sont nécessaires. Afin de

permettre la réalisation de fonctions logiques

spécifiques, des circuits programmables existent.

Les réseaux logiques programmables

(Programmable Logic Array ou PLA) sont

constitués d'un réseau de portes Not, And et Or,

dont les entrées sont des fusibles. La

programmation d'un PLA consiste à faire "griller"

un certain nombre de ces fusibles afin de réaliser

la fonction logique désirée.

Exemple :
PLA 3 entrées (3 not), 2 sorties (2 or), 5 and

1° sortie : a or b c ; 2° sortie : majorité

a

b

c

a or b c

majorité

ASI Chapitre 4 : La couche physique 70

4.6 Circuits de calcul

Ces circuits MSI permettent d’effectuer les

opérations arithmétiques et logiques.

4.6.1 Décaleur

Ce circuit permet de décaler un registre du processeur d’un ou

plusieurs bits vers la droite ou la gauche. Il existe des décaleurs

logiques (introduction de 0 sur le bit entrant), des décaleurs à
droite arithmétiques (recopie du bit le plus significatif), et des

“rotateurs” (recopie du bit sortant sur le bit entrant).

Exemple : Décaleur 1 position sur 3 bits

Right

D0 D1 D2

S1S0 S2

Remarque :

Décalage à gauche = multiplication par 2

Déc. arithmétique à droite = division par 2

ASI Chapitre 4 : La couche physique 71

4.6.2 Additionneur

Un demi-additionneur est constitué d’un XOR

(même table de vérité addition) associé à un AND

pour la retenue de sortie. Pour obtenir un

additionneur, il faut rajouter un autre demi-

additionneur pour la retenue d’entrée.

Exemple : additionneur 1 bit

Ai
Bi

Ri-1

Ri

Si

Remarque :

l’additionneur est le circuit de base pour

l’arithmétique binaire signée et non signée. En

effet, toutes les autres opérations peuvent être

obtenues logiciellement si on a un additionneur et

un inverseur.

Question : OR de la retenue sortante Ri peut il

être remplacé par un XOR? (oui)

ASI Chapitre 4 : La couche physique 72

4.6.3 U.A.L.

A partir des circuits de calcul précédents et de

quelques circuits combinatoires, tels que des

décodeurs, il est aisé d’imaginer la construction

d’Unité Arithmétique et Logique ayant

• en entrée : 2 mots de données de n bits, un mot

de sélection de k bits

• en sortie, un mot de données de n bits résultant

de l’une des 2k opérations exécutée sur les 2

mots d’entrée ou sur un seul.

Exercice :

Construisez (schéma de câblage) une UAL

réalisant l’addition, la soustraction, les décalages 1

bit, le C2, l’inversion sur des mots de 2 bits.

ASI Chapitre 4 : La couche physique 73

4.7 Horloge

L’horloge est la base de temps de l’UC. Celle-ci

émet une suite d’impulsions calibrées. L’origine

de ces impulsions est un quartz qui, soumis à une

différence de potentiel, bat à une fréquence de

quelques dizaines de MégaHertz (MHz). Le temps

de cycle ou période de l’horloge varie donc entre

10 ns (100 Mhz) et 1 µs (1 MHz).

Exemple : diagramme temporel d’une horloge

1 cycle

Front descendant Front montant

Il est parfois impératif de diviser le cycle de temps

de l’horloge principale en plusieurs intervalles. On

utilise alors d’autres horloges déphasées par

rapport à l’horloge principale (circuit de

retardement). Le plus souvent, ces horloges

délivrent des signaux symétriques et de même

cycle (période).

Le cadencement des actions à l’intérieur de l’UC

est toujours déclenché soit sur front montant,

soit sur front descendant.

ASI Chapitre 4 : La couche physique 74

4.8 Circuits de mémorisation

Des circuits mémoires sont nécessaires dans

toutes les parties d’une machine (UC, MC,

périph.). A l’inverse d’un circuit combinatoire, la

sortie d’un circuit mémoire ne dépend pas que de

ses entrées mais aussi de son état précédent. Tous

les circuits mémoires sont des dérivations de la

bascule RS dont voici le schéma :

Q

Q

S

R

NOR

S A Q
0 0 1
0 1 0
1 0 0
1 1 0

On remarque que les deux sorties Q et Q sont

rarement (S=R=1) simultanément égales et que

leur état est stable (bascule) tant que les deux

entrées ne varient pas. L’activation de S (Set) à 1

provoque le positionnement de Q à 1. Ensuite, les

variations de S sont inopérantes. Inversement,

l’activation de R (Reset) bascule Q à 0 . La bascule

RS se “souvient” donc de la dernière activation

d’une entrée.

Des améliorations de ce circuit permettent de

construire des bascules stables et sans ambiguïtés

de fonctionnement (bascules JK, D). En associant

n bascules, on construit des registres n bits.

ASI Chapitre 4 : La couche physique 75

4.8.1 Organisation de la mémoire

L’évolution technologique a provoqué une

augmentation importante du nombre de bits

stockés par boîtier. Années 70 : 1Kbit puis

16Kbits,…actuellement : 1Mbit. On peut

schématiser un boîtier mémoire (RAM) de la

manière suivante :

A0
A1
A2
A3
…

…
An

D0
D1
D2
…

…
Dm

OE RD CS

2 mots
de m bits

n

OE Output Enable active les lignes de sortie

D0…m, tandis que RD sélectionne la lecture ou

l’écriture et que CS Chip Select sélectionne le

boîtier. OE est nécessaire car lors d’une lecture,

il synchronise la recopie du mot sélectionné sur les

lignes D0…m.

Une mémoire 16 Kbits peut être constituée de 2

boîtiers de 8 Kbits ou de 4 * 4 Kbits ou de 16 *

1Kbits …

ASI Chapitre 5 : La couche Microprogrammée 76

5. La Couche Microprogrammée

La couche microprogrammée dépend complète-

ment de la couche physique sous-jacente. En

fonction de l’architecture interne de l’UC, elle

permet de coder chaque instruction du niveau

Machine en une suite de micro-instructions

élémentaires.

Chaque micro-instruction est codée sur un certain

nombre de champs, chaque champ indiquant

l’activité d’un signal interne à l’UC. Dans l’UC,

une mémoire de commande (ROM) (invisible à

l’utilisateur) contient le texte correspondant à

toutes les instructions machine. L’exécution d’une

micro-instruction nécessite l’existence de plusieurs

sous-cycles permettant de synchroniser les

différentes actions. Ces sous-cycles sont obtenus

grâce à des circuits retards internes.

L’enchaînement des micro-instructions est

semblable à l’enchaînement des instructions

machine ! La règle générale est la séquence mais

des ruptures conditionnelles ou non peuvent

intervenir. Une micro-instruction spéciale de fin

permet au micro-séquenceur d’exécuter

l’instruction suivante.

ASI Chapitre 6 : La couche Machine 77

6. La Couche Machine

Elle constitue le niveau le plus bas auquel

l’utilisateur a accès.

Types d’ordinateurs (évolution constante !)

- les ordinateurs personnels (PC ou Macintosh) ;

- les ordinateurs de bureau ;

- les ordinateurs portables ;

- les assistants personnels (ou PDA) ;

- les moyens systèmes (midrange) (ex IBM

AS/400-ISeries, RISC 6000...)

- les mainframes (serveurs centraux) (ex. : IBM

zSeries 64 bits, Siemens SR2000 et S110 ...) ;

- les superordinateurs (Blue Gene machine IBM

utilisant 65536 Power PC réalisant 136,8

TFlops);

- les stations de travail (PC puissants pour CAO,

…) ;

ASI Chapitre 6 : La couche Machine 78

6.1 Exemples

Pentium 4 (x86 CPU)

- 8 registres 32 bits (AL, AH, AX, EAX);

- Espace adrs : 4 Go ;

- Mémoire virtuelle segmentée (CS code, DS data,

SS stack) avec un sélecteur de segment 16 bits +

adrs virtuelle 32 bits ;

- (x87) coprocesseur arithmétique flottante (FPU)

32, 64 ou 80 bits

AMD 64

- 16 registres 64 bits (AL, AH, AX, EAX, RAX)

- Espace adrs : 256 To

- Mémoire virtuelle non segmentée sur 64 bits

- SIMD avec registres 128 bits

Big endian Little endian

En Little endian, mnémotechniquement, la "gravité" est orientée vers

le bas de la mémoire (adresses supérieures). Les Power PC d’IBM

sont bi-endian.

0
1
2
3
4
5
6
7
8
… …

Adr

mot

double mot 0

MS

LS

MSW

LSW

mot

double mot 8

0
1
2
3
4
5
6
7
8
… …

mot

double mot 0

LS

 MS

x86, AMD

LSW

MSW

mot

double mot 4

0000 11110000 1111

IBM 370, Motorola 68000

ASI Chapitre 6 : La couche Machine 79

6.2 Format des instructions

Programme = suite d'instructions machines

Une instruction est composée de plusieurs champs :

• 1 champ obligatoire : le code opération désigne

le type d'instruction. Sa longueur est souvent

variable afin d'optimiser la place et la vitesse

utilisée par les instructions les plus fréquentes

(Huffman).

• 0 à n champs optionnels : les opérandes

désignent des données immédiates ou stockées

dans des registres ou en MC. Le type de

désignation de ces données est nommé mode

d'adressage.

Exemple :

Code Opération Opérande1 Opérande2

De plus, la taille des cases et mots mémoires doivent

être des multiples de la taille d'un caractère afin

d'éviter le gaspillage de place ou des temps de

recherche prohibitifs. Les codes alphanumériques

usuels étant sur 8 bits (EBCDIC) ou 7+1 bits

(ASCII), c'est la raison du découpage des MC en

octets.

Enfin, des adresses devant également être stockées

en MC, c'est la raison pour laquelle la taille de

l'espace d'adressage est généralement un multiple

de 28 octets (64 Ko, 16 Mo, 4 Go). Sauf lorsque la

technique d'adressage utilise des segments

recouvrants : 8086 : 1Mo = 220 o; 1 adrs = 2 mots.

ASI Chapitre 6 : La couche Machine 80

6.3 Modes d'adressage

Remarque : pour simplifier, nous utiliserons

dorénavant la notation mnémonique des

instructions machines, notation alphanumérique

qui correspond à la couche 4 du langage

d'assemblage.

Types de donnée représentés par les opérandes :

• donnée immédiate stockée dans l'instruction

machine

• donnée dans un registre de l'UC

• donnée à une adresse en MC

Nombres d'opérandes :

Nous supposerons un nombre maximal de 2

opérandes, ce qui représente le cas général.

Souvent, un opérande implicite n'est pas désigné

dans l'instruction : c'est l'accumulateur qui est

un registre de travail privilégié; le Z80 a au

maximum un opérande explicite (et A comme

opérande implicite).

Source et Destination :

Lorsque 2 opérandes interviennent dans un

transfert ou une opération arithmétique, l'un est

source et l'autre destination de l'instruction.

L'ordre d'apparition varie suivant le type d'UC :

IBM 370, 8086 : ADD DST, SRC DST := DST+SRC

PDP-11, 68000 : ADD SRC, DST DST := DST+SRC

ASI Chapitre 6 : La couche Machine 81

6.3.1 Adressage immédiat

La valeur de la donnée est stockée dans

l'instruction. Cette valeur est donc copiée de la MC

vers l'UC lors de la phase de chargement (fetch) de

l'instruction.

Avantage : pas d'accès supplémentaire à la MC

Inconvénient : taille limitée de l'opérande

Exemples : Z80

(1) ADD A, <n> ; Code Op. 8 bits, n sur 8 bits en C2

(2) LD <Reg>, <n> ; Code Op 5 b., Reg 3 b., n 8 b.

6.3.2 Adressage registre

La valeur de la donnée est stockée dans un

registre de l'UC. La désignation du registre peut

être explicite (2) ou implicite (1) (A sur Z80).

Avantage : accès rapide % MC

Inconvénient : taille limitée de l'opérande

Selon le nombre de registres de travail de l'UC, la

taille du code des instructions varie :

8 registres nécessitent 3 bits (Z80)

16 registres nécessitent 4 bits (68000)

ASI Chapitre 6 : La couche Machine 82

6.3.3 Adressage direct

La valeur de la donnée est stockée à une adresse

en MC. C'est cette adresse qui est représentée

dans l'instruction.

Avantage : taille quelconque de l'opérande

Inconvénient : accès mémoire supplémentaire,

taille importante de l'instruction

Selon le type d'implantation mémoire requis par

l'UC, plusieurs adressages directs peuvent

coexister.

Exemples : 8086

MOV AL, <dis> ; déplacement intra-segment (court)

transfère dans le registre AL, l'octet situé à

l'adresse dis dans le segment de données : dis est

codé sur 16 bits, Data Segment est implicite.

ADD BX, <aa> ; adresse absolue aa= S,D (long)

ajoute à BX, le mot de 16 bits situé à l'adresse D

dans le segment S : D et S sont codés sur 16 bits.

L'IBM 370 n'a pas de mode d'adressage direct,

tandis que le 68000 permet l'adressage direct

court (16 bits) et long (32 bits).

ASI Chapitre 6 : La couche Machine 83

6.3.4 Adressage indirect

La valeur de la donnée est stockée à une adresse

m en MC. Cette adresse m est stockée dans un

registre r ou à une adresse m'. C'est r ou m' qui est

codé dans l'instruction (m' est appelé un

pointeur). L'adressage indirect par registre est

présent dans la totalité des UC, par contre,

l'adressage indirect par mémoire est moins

fréquent. Il peut cependant être simulé par un

adressage direct dans un registre suivi d'un

adressage indirect par registre.

Peu de machines disposent de mode d'adressage

indirect à plusieurs niveaux d'indirection !

Avantage : taille quelconque de l'opérande

Inconvénient : accès mémoire supplémentaire(s),

taille importante de l'instruction (pas par registre)

Exemples : Z80 indirection seulement par HL

ADD A, (HL) ; adressage indirect par registre

codage de l'instruction sur 8 bits (code op.) : A et

HL sont désignés implicitement

LD (HL), <reg> ; adressage indirect par registre

code op. sur 5 bits et reg sur 3 bits; HL implicite

ASI Chapitre 6 : La couche Machine 84

6.3.5 Adressage indexé (ou basé)

Il est parfois nécessaire d'accéder à des données

situées à des adresses consécutives en MC. En

adressage indexé, on charge un registre d'index

avec l'adresse de début de cette zone de données,

puis on spécifie dans l'instruction, le déplacement

à réaliser à partir de cet index. L'adresse réelle de

la donnée accédée est donc égale à l'adresse de

l'index ajoutée au déplacement.

Certaines UC exécutent automatiquement

l'incrémentation ou la décrémentation de leurs

registres d'index ce qui permet, en bouclant, de

réaliser des transferts ou d'autres opérations sur

des zones (chaînes de caractères).

Avantage : taille importante de la zone (256

octets si déplacement sur 8 bits)

Inconvénient : taille importante de l'instruction

(si codage du déplacement)

Exemple : Z80 indexation par IX et IY

LD (IX+<dépl>), <reg> ; adressage indexé par IX

codage de l'instruction : code op. sur 12 bits, IX sur

1 bit, reg sur 3 bits, dépl sur 8 bits.

Sur le 8086, MOVSB (MOVe String Byte) permet

de transférer l'octet en (SI) vers (DI) puis

d'incrémenter ou décrémenter SI et DI.

Remarquons que l'indexation sans déplacement

équivaut à l'indirection.

ASI Chapitre 6 : La couche Machine 85

6.3.6 Remarques

Dans une instruction, lorsque deux opérandes sont

utilisés, deux modes d'adressages interviennent.

Souvent certains modes sont incompatibles avec

d'autres pour des raisons de taille du code

instruction ou de temps d'accès : par exemple en

8086, jamais deux adressages directs. Par contre,

un opérande fait parfois appel à la conjonction de

deux modes d'adressage : mode indexé et basé +

déplacement du 8086 !

Schéma des différents modes d'adressage

102

104

35

100

102

104

MC

LDIMM R, 100
R := 100

LDDIR R, (100)
R := 102

LDIND R, ((100))
R := 104 rare

LDIMM R, 100
LDIND R, (R)
LDIND R, (R)
R := 104

LDIMM RX, 100
LDIX R, (RX+4)
R := 35

Toute indirection à n niveaux peut être simulée

dès lors qu'on possède une instruction à

indirection simple.

ASI Chapitre 6 : La couche Machine 86

6.3.7 Adressage par pile

La pile d'exécution de l'UC est constituée d'une

zone de la MC dans laquelle sont transférés des

mots selon une stratégie Dernier Entré Premier

Sorti (Last In First Out LIFO). Le premier

élément entré dans la pile est placé à la base de la

pile et le dernier élément entré se situe au

sommet de la pile.

70
71
72
73
74
75
76
77
78

Base

Sommet 0000 0011
0000 0001
1111 1111
0000 0000

…
PUSH 0
PUSH 0FFH
PUSH 1
PUSH 3
…

Les instructions d'entrée et de sortie de pile sont

PUSH <n> et POP <reg>. Selon le type d'UC, la

pile remonte vers les adresses faibles (voir

schéma) ou bien descend vers les adresses fortes.

L'adresse du sommet de pile est toujours

conservée dans un registre nommé pointeur de

pile (Stack Pointer SP). Sur certaines machines,

un registre général peut servir de SP. Certaines

UC utilisent également un pointeur de base de

pile (Base Pointer BP).

ASI Chapitre 6 : La couche Machine 87

6.3.8 Utilisations de la pile

Avantages :

• structure de données LIFO et opérations de

manipulation physiquement implantées : vitesse

• instructions courtes car opérandes implicites

Inconvénients :

• pas toujours dans une zone MC protégée

• sa cohérence nécessite égalité du nombre

d'empilages et de dépilages (programmeur).

• capacité souvent limitée (par exemple 1 segment)

L'appel procédural

L'intérêt de l'utilisation de sous-programmes

nommés procédures lors de l'écriture de gros

programmes a été démontré : concision,

modularité, cohérence, … Le programme

principal (PP) fait donc appel (CALL) à une

procédure P1 qui exécute sa séquence d'instructions

puis rend la main, retourne (RET) à l'instruction du

PP qui suit l'appel. Cette rupture de séquence avec

retour doit également pouvoir être réalisée dans le

code de la procédure appelée P1, soit récursivement,

soit vers une autre procédure P2. Ces appels

imbriqués, en nombre quelconque, rendent

impossible l'utilisation d'une batterie de registres

qui sauveraient les valeurs de retour du CO !

ASI Chapitre 6 : La couche Machine 88

Exemple d'appels procéduraux imbriqués

PP
…
ADD AX, 2
MOV BX, 6
CALL P1
ADD CX, 12
CALL P3
ROTL AX
…

ADD AX,BX
CALL P2
MOV AX, CX
RET

P1

MUL AX, BX
DIV AX, CX
RET

P2

DEC CX
CMP CX, 0
CALLNZ P3
RET

P3

a1 :

a2 :

b1 :

c1 :

Les appels procéduraux imbriqués nécessitent

l'utilisation de la pile de la manière suivante :

CALL <adrs> génère automatiquement (couche 1) :

1. PUSH CO ; le compteur ordinal pointe toujours

sur l'instruction suivante

2. JMP <adrs> ; jump = goto

RET génère automatiquement :

1. POP CO ; branchement à l'adresse de retour

Exemple d'évolution de la pile

a1

b1
a1 a1 a2

c1
a2

c1
c1
a2

c1
…
c1
a2

c1
a2 a2

Attention aux appels récursifs mal programmés qui

provoquent des débordements de pile (Stack

Overflow) ! P3 : 2n appels maximum (mots de n bits).

ASI Chapitre 6 : La couche Machine 89

Paramètres et Variables locales

La plupart des langages de programmation

évolués (Pascal, c, …) permettent le passage de

paramètres et l'utilisation de variables locales

aux procédures. Les paramètres sont passés soit

par valeur, soit par adresse. Les variables

locales sont créées à l'activation de la procédure et

détruites lors de son retour (durée). D'autre part,

leur visibilité est réduite aux instructions de la

procédure.

Passage de paramètre

Dans les programmes écrits en langage machine,

la gestion des paramètres d'appel et de retour est

à la charge du programmeur (registres, MC, pile).

Par contre, un compilateur doit fournir une

gestion générique des paramètres quel que soit

leur nombre et leur mode de passage. La plupart

du temps, la pile est utilisée de la façon suivante :

Dans l’appelant, juste avant l'appel (CALL), le

compilateur génère des instructions d'empilage

(PUSHs) des paramètres d'appel et de retour.

Juste après le CALL, il génère le même nombre de

dépilage afin de nettoyer la pile. Dans le corps de

la procédure appelée, la première opération

consiste à affecter à un registre d'index ou de base

(BP) la valeur du sommet de pile ± taille adresse

de retour. Par la suite, les références aux

paramètres sont effectuées via ce registre

(BP±0..n) !

ASI Chapitre 6 : La couche Machine 90

Exemple de passage de paramètres :

Variables locales

L'implémentation de l'espace dédié aux variables

locales est réalisé dans la pile d'exécution. Les

premières instructions machines correspondant à

la compilation d'une procédure consistent toujours

à positionner les variables locales dans la pile,

juste au dessus de l’adresse de retour. Dans

l’exemple précédent, il suffit de rajouter autant de

PUSH, après le MOV BP,SP, que nécessaires. Ces

variables locales seront ensuite accédées via des

adressages (BP-i) générés par le compilateur. Ce

type d’implémentation permet l’appel procédural

ainsi que la récursivité.

Appelant

…
PUSH <param1> ; param de retour
PUSH <param2> ; param d'appel
…
PUSH <param n> ; param d'appel
CALL <appelée>
POP <reg>
…
POP <reg> ; résultat (retour)
…

n

Appelée

PUSH BP; de l'appelant
MOV BP, SP
MOV AX, (BP+2) ; param n
MOV BX, (BP+3) ; param n-1
MOV CX, (BP+4) ; param n-2
…
MOV (BP+n+1), AX ; résultat
POP BP
RET

a0 :

param n
param n-1
…
param1

a0
param n
param n-1
…
param1

BP appelant
a0
param n
param n-1
…
param1

a0
param n
param n-1
…
param1

param n
param n-1
…
param1

ASI Chapitre 6 : La couche Machine 91

Paramètres et variables locales

Finalement, chaque instance d’appel de procédure

possède un espace d’adressage local composé :

• d’une part, des paramètres d’appel et de retour

localisés dans la pile à (BP+2..n);

• d’autre part, des variables locales localisées dans

la pile à (BP+1..m).

Exemple simple

Nous considérerons une procédure récursive

simple n’utilisant que des paramètres et variables

locales codés sur un mot machine. La fonction

mult est une procédure à un paramètre de retour

réalisant la multiplication de 2 entiers positifs par

additions successives. Nous ne traiterons pas des

problèmes de dépassement de capacité ni de

l’optimisation de l’algorithme (y=0).

entierpositif mult(entierpositif x, entierpositif y)

entierpositif i ; // inutile dans l’algo. !

si x=0 alors retourne 0

sinon début

 i=y

 retourne mult(x-1,i) + y

 fin

Etudions le code compilé de cette procédure et d’un

appel initial avec des données en entrée : x=2, y=5.

ASI Chapitre 6 : La couche Machine 92

Image du code compilé et de la pile

Cet exemple illustre bien le danger de croissance

de la pile lors d’appels récursifs mal programmés !

Remarquons que la dérécursivation évidente de

mult peut être réalisée par le programmeur mais

parfois aussi par le compilateur.

Appelant

…
PUSH <multret> ; param de retour
PUSH x ; param d'appel 2
PUSH y ; param d'appel 5
CALL mult

A0: POP DX
POP DX
POP AX ; résultat (retour)
CALL AFFICHEAX
…

Mult

PUSH BP ; de l'appelant
MOV BP, SP
PUSH DX ; i qcq en (BP-1)
CMP (BP+3), 0 ; x=0 ?
JE ZERO
MOV (BP-1),(BP+2) ; i:=y
MOV AX, (BP+3) ; x
DEC AX ; x-1
PUSH DX ; retour qcq
PUSH AX ; appel x-1
PUSH (BP-1) ; appel i
CALL mult ; récursif

A1: POP DX ; dépile
POP DX ; dépile appel
POP AX ; résultat (retour)
ADD AX, (BP+2) ; résult + y
MOV (BP+4), AX ; range résultat
JMP FIN
ZERO : MOV (BP+4),0 ; range rés.=0
FIN : POP DX ; var locale i
POP BP ; BP appelant
RET

?
BP0
A0
5
2
?

?
BP1
A1
5
1
?
5

BP0
…

BP1

?
BP2
A1
5
0
?
5

BP1
…

BP2 BP3

1° appel 2° appel 3° appel

0
5

BP1
A1
5
1
5
5

BP0
…

1° retour

5
5

BP0
A0
5
2
10

2° retour

BP2

5
2
10

3° retour

ASI Chapitre 6 : La couche Machine 93

Autres utilisations de la pile

Cette structure de données LIFO est massivement

employée dans le cadre d’algorithmes divers et

variés.

Exemples

• dérécursivation automatique : dans l’exemple

précédent, les CALL récursifs peuvent être évités

en empilant successivement les valeurs des

paramètres d’appels puis en réalisant des

additions successives lors des dépilages.

• évaluation d’expressions arithmétiques infixées

et parenthésées : 3*(5+4*2)

3*(5+4*2)

3
(
*

5
3

+
(
*

4
5
3

*
+
(
*

2
4
5
3

*
+
(
*

)
8=2*4

8
5
3

+
(
*

13=8+5

3

13

*

39=13*3

39

• parcours d’arbre (préfixe, infixe, postfixe)

• etc …

ASI Chapitre 6 : La couche Machine 94

6.4 Types d’instructions

Chaque catégorie d’Unité Centrale possède un jeu

particulier d’instructions machines. Cependant, on

peut classer les instructions de ces jeux en type

d’instructions : transfert, opérations arith., …

6.4.1 Transfert de données

Ces instructions permettent de copier ou bien de

déplacer une donnée d’un endroit source vers un

emplacement destination. Les instructions de

copie sont largement majoritaires par rapport aux

instructions de déplacement ! Selon les UC, les

termes suivants sont employés pour la copie :

transfert, duplication, déplacement, mouvement,

chargement, rangement ! On aperçoit donc

souvent les mnémoniques : MOV, LOAD ou LD,

STORE ou ST, PUSH.

Remarquons que les instructions de déplacement

avec destruction de la source sont la plupart du

temps restreintes aux dépilages : POP.

Ces instructions de transfert doivent préciser :

source , destination (voir modes d’adressage), taille

de la donnée. La taille de donnée peut être codée

dans le Code Opération mais peut également être

implicite ou constituer un opérande à part entière.

ASI Chapitre 6 : La couche Machine 95

6.4.2 Opérations arith. et logiques

• Op. dyadiques (à deux opérandes)

Un des 2 opérandes est souvent considéré comme

destination de l’opération à moins que le résultat

ne soit toujours transféré que dans l’accumulateur.

Chaque machine a son type de représentation

préféré des opérandes (C2, DCB,…).

Addition et Soustraction (toujours) : ADD SUB

Multiplication et Division (parfois) : MUL DIV

ET, OU, OUeXclusif : AND OR XOR

Remarques :

• masquage par ET : AND R1, 00FH ; permet de

ne conserver dans R1 que le quartet de poids

faible !

• inversion par OUX : XOR R1, 0F0H; permet

d’inverser le quartet de poids fort de R1 !

• raz par OUX : XOR R1,R1; <=> R1:=0 et plus

rapide (adressage registre à registre) !

Les opérations en virgule flottante (simple ou

multiple précision) peuvent être câblées dans l’UC

ou câblées dans un co-processeur arithmétique ou

exécutées logiciellement par des sous-programmes.

ASI Chapitre 6 : La couche Machine 96

• Opérations monadiques (1 seul opérande)

L’unique opérande source et destination peut

parfois être implicite (accumulateur).

• Décalages et rotations : SHL=SAL, SHR, SAR,

ROL, ROR, RCL, RCR

• Inc. et décrémentations : INC DEC

• Négations log. et (arith.) : NOT (NEG)

• raz : CLEAR

Remarques

• test d’un bit par rotation : RCL R1; JC toto;

positionne R1n-1 dans le Carry Flag.

• décalage multiple → dyadique : 2° opérande

immédiat ou dans un registre compteur :

MOV CX, 4; SHL R1,CX ou bien SHL R1, 4

• négation C2 : NEG R1 ou NOT R1; INC R1

• mult. et div. : R1*19= R1*24+R1*21+R1*20 → 2

décalages (dont un multiple) et 3 additions.

6.4.3 Branchements et comparaisons

Pour réaliser des ruptures de séquence, des

instructions de branchement, ou de saut,

permettent de modifier la valeur du Compteur

Ordinal. Ces instructions sont soit

inconditionnelles (GOTO, BRANCH, JUMP), soit

conditionnées par certaines valeurs des

indicateurs du registre d’état (PSW ou Flags).

ASI Chapitre 6 : La couche Machine 97

• Branchements inconditionnels :

JUMP adrs → CO := adrs

• Branchements conditionnels

JNC adrs → si CF=0 alors CO:=adrs

Il existe différents indicateurs dans le registre

d’état : Carry Flag, Overflow F., Zero F., Neg. F., …

Ces indicateurs sont positionnés à la suite de

l’exécution d’une opération arith. ou logique et

sont plus ou moins rémanents ! Afin d’éviter une

affectation inutile, une instruction particulière de

comparaison (CMP) permet de simuler la

soustraction :

CMP R1, R2 → PUSH R1; SUB R1,R2; POP R1

A la suite de la comparaison, les indicateurs sont

positionnés et permettent donc d’effectuer un

branchement conditionnel :

CMP R1,R2; JAE adrs3

Remarque :

il existe des UC ayant des instructions à 3

adresses permettant le branchement conditionnel

en une instruction :

CMP adrs1, adrs2, adrs3, c’est-à-dire si (adrs1)-

(adrs2)=0 alors JMP adrs3 sinon <continuer en

séquence>

ASI Chapitre 6 : La couche Machine 98

6.4.4 Procédures

Une procédure, ou routine ou sous-programme, est

constituée d’une suite d’instructions réalisant un

traitement particulier. L’appel à cette procédure

est généralement réalisé par une instruction

CALL adrsproc. Le retour à l’appelant s’effectue

dès que l’on exécute un RET dans la procédure

appelée.

La récursivité d’une procédure est une propriété

permettant à celle-ci de s’appeler elle-même. La

mise en œuvre de la récursivité est permise par la

sauvegarde dans la pile de l’adresse de retour, des

paramètres d’appels ainsi que des variables locales

à la procédure.

6.4.5 Itérations

L’exécution répétée d’une suite d’instruction, ou

boucle, est permise grâce à certaines instructions

de branchements conditionnels à 3 adresses :

LOOP CX, 0, adrs ; permet de décrémenter le

registre CX (compteur), de comparer CX avec 0,

enfin si CX?0 de boucler sur adrs (branchement).

Sur certains processeurs, le compteur est implicite

et la valeur immédiate (0) également : LOOP adrs

ASI Chapitre 6 : La couche Machine 99

6.4.6 Les Entrées/Sorties

I) Ces instructions sont très fortement liées au

matériel et varient donc énormément en fonction

de l’UC considérée. Considérons d’abord les UC

pourvues d’instructions d’E/S spécifiques :

1) L’UC exécute les instructions d’E/S et gère le

périphérique : l’UC passe son temps à attendre …

2) L’UC délègue sa responsabilité à une Unité

d’E/S (ou d’échange) qui effectue le contrôle du

transfert des données. Paramètres : Nom périph.,

sens transfert, adrs MC début (tampon ou buffer),

nb de mots. Une fois le transfert initialisé par une

instruction spécifique, l’Unité d’E/S réalise ce

transfert de façon autonome en accédant

directement à la MC (Direct Memory Access).

exemple d’Unité d’E/S : canal IBM 370

1) l’UC crée un prg canal en MC (suite

d’instructions spécifiques au canal considéré).

2) l’UC charge à l’adrs MC 7210 l’adrs de ce prg.

3) l’UC exécute l’inston START I/O n°canal, n°périph

4) l’UC entreprend d’autres traitements

4’) Le canal effectue le transfert en exécutant le

prg stocké à l’adresse 72.

5) l’UC peut tester ou stopper l’E/S : instructions

TEST I/O, TEST CHANNEL ou STOP I/O.

ASI Chapitre 6 : La couche Machine 100

II) l’UC ne possède pas d’instructions d’E/S

spécifiques. Dans ce cas, l’UC communique avec

les périphériques de la même façon qu’avec la MC.

On dit que les E/S sont projetées (ou mappées) en

mémoire. Certaines adresses sont attribuées aux

divers registres internes des unités d’E/S

(registres programme, d’état, tampon). L’UC écrit

donc des informations à ces adresses pour

demander à l’unité d’E/S correspondante

d’entreprendre une E/S.

• Le premier avantage des E/S projetées en MC

consiste à réduire le jeu d’instructions de l’UC en

n’ayant pas d’instructions spécialisées d’E/S. Mais

l’intérêt primordial de cette méthode réside dans

l’utilisation de la puissance du jeu d’instructions

tout entier et des divers modes d’adressage pour

accéder aux registres des unités d’E/S.

• L’inconvénient principal est la diminution de

l’espace allouable à la Mémoire Centrale.

Exemple :

Le PDP-11 a une imprimante standard projetée à

l’adresse octale 777514 (registre d’état) et 777516

(registre tampon). Lorsque le bit 7 du registre

d’état est à 1 (bit ready) , cela signale que

l’imprimante est prête à recevoir un car. dans son

registre tampon.

ASI Chapitre 6 : La couche Machine 101

6.5 Flux de commande

Le flux de commande exprime l’ordre d’exécution

des instructions par l’UC. Le flux de commande

standard ou normal est la séquence. Les

instructions de branchement (conditionnel/

inconditionnel) ou d’appel de procédures, ainsi que

les déroutements et les interruptions modifient cet

ordre.

6.5.1 Sauts et appels procéduraux

Tout d’abord, on rappellera la nocivité des

instructions GOTO (Branch, Jump) dans le cadre

de l’écriture de programmes sans erreur. Par

conséquent, on essayera toujours :

1) d’éviter d’écrire les programmes dans des

langages sans structures de contrôle de haut

niveau (while, for, repeat);

2) de minimiser le nombre de saut dans les autres

programmes (notamment ceux de la couche

machine).

On rappelle simplement ici le mécanisme d’appel

(CALL) et de retour (RET) des procédures et

l’utilisation implicite et explicite de la pile pour la

conservation : des adresses successives de

retour, des paramètres d’appel et de retour,

enfin des variables locales à chaque appel.

ASI Chapitre 6 : La couche Machine 102

6.5.2 Déroutements

Un déroutement (ou trappe trap) pendant

l’exécution d’un programme P consiste à stopper P

et à appeler automatiquement une routine de

traitement lorsque certaines conditions

surviennent. Par exemple, un débordement de

capacité survenu à la suite d’une opération

arithmétique peut provoquer le déroutement du

programme vers une routine de traitement de

l’erreur.

Remarquons qu’un déroutement est provoqué par

l’exécution du programme lui-même, qui, en

positionnant des indicateurs du mot d’état,

déclenche, au niveau physique, un appel à la

procédure appropriée. Tout déroutement pourrait

être simulé par logiciel en testant le mot d’état

puis en exécutant un appel conditionnel à la

routine après chaque opération dangereuse.

Le fait de traiter automatiquement les

déroutements au niveau physique permet :

• l’augmentation de la vitesse d’appel (couche

physique)

• la diminution de la taille du code

Exemples :

débordement, division par 0, débordement de pile,

violation de protection, opération indéfinie…

ASI Chapitre 6 : La couche Machine 103

6.5.3 Interruptions (IT)

Evénement provoqué par une cause externe au

programme et qui interrompt celui-ci pour

exécuter une routine de traitement de

l’interruption. A la fin de cette routine, le

programme interrompu reprendra son exécution

dans l’état exact où il l’avait laissée (sauf

exception : chute alimentation !).

Cette clause de reprise implique la sauvegarde du

contexte du programme en début de routine d’IT

et sa restauration à la fin. Le contexte du

programme comprend en particulier l’ensemble

des valeurs de tous les registres, y compris PSW.

Les IT sont principalement utilisées dans la

gestion des E/S pour signaler la fin des transferts

réalisés de façon asynchrone, ce qui permet

d’éviter l’attente active de l’UC.

Remarques :

• Les déroutements sont parfois nommés

interruptions internes (8086).

• La différence essentielle entre un déroutement et

une IT est que le déroutement est synchrone

avec le programme, alors que l’IT ne l’est pas.

L’instant d’apparition d’une IT est indépendante

du programme, pas le déroutement !

ASI Chapitre 6 : La couche Machine 104

Niveaux d’interruption

En général, il existe plusieurs niveaux de priorités

d’IT. En effet, différents périphériques étant

connectés, il importe d’établir une politique de

gestion des conflits. Différents algorithmes

utilisant plusieurs files de priorités sont utilisés.

Par exemple, chaque niveau de priorité est associé

à un type de périph. et par conséquent à une

routine de traitement correspondante. Le numéro

de périph. communiqué lors de l’IT permettra de le

distinguer des autres de même type.

Transparence des IT imbriquées

Le mécanisme de traitement des IT est

transparent lorsqu’il s’apparente au mécanisme de

l’appel procédural. On utilise la pile pour

sauvegarder les contextes du programme et de la

suite des routines d’IT interrompus. Attention à ne

pas permettre de nouvelle IT pendant le

chargement ou la sauvegarde d’un contexte

(atomicité) !

Exemple :

L’IBM 370 ne permet pas les IT imbriquées car un

seul mot MC stocke le PSW du prog. interrompu.

Pour éviter l’écrasement de ce mot, un indicateur

de contrôle des IT du PSW de la routine est

positionné afin d’interdire (masquer) toute

nouvelle prise en compte d’une autre IT.

ASI Chapitre 7 : Perspectives et conclusion 105

7. Perspectives et Conclusion

7.1 Perspectives de l’ASI

- Stratégie RISC/CISC : processeurs à jeu

d’instruction de limité/complexe : qui va gagner ?

- Nouveaux supports de mémoires de masse :

optiques et magnétiques, DVD ...

- Miniaturisation : on va atteindre une

asymptote horizontale pour les composants

électroniques actuels → changement de

technologie

- métaux supraconducteurs

- ordinateurs biologiques (Science-Fiction ?)

- Standardisation : vue de l’esprit puisque

marché fortement concurrentiel et impératifs

commerciaux prépondérants

- Architectures parallèles de machines

- multiprocesseurs à mémoire partagée

- machines systoliques communicantes (réseaux

quadratiques ou cubiques de processeurs)

ASI Chapitre 7 : Perspectives et conclusion 106

7.2 Les autres couches : à suivre…

Systèmes d’exploitation

Etude des principes fondamentaux des systèmes

d’exploitation :

- fichiers,

- processus,

- mémoire.

Assembleur

- mise en œuvre d’algorithmes sur un jeu

d’instructions assembleur particulier ;

- écrire proprement dans un langage peu

structuré ;

- étudier concrètement des mécanismes

d’adressage ;

- (interfacer avec les autres couches : système

d’exploitation et applications en langage évolué).

ASI Chapitre 7 : Perspectives et conclusion 107

7.3 Conclusion

Il est absolument indispensable de comprendre les

concepts de base des machines matérielles afin :

- d’évaluer correctement les résultats

numériques fournis par les machines (précision).

- de programmer intelligemment les algorithmes

dont on a minimisé la complexité (des E/S

fréquentes peuvent ruiner un algorithme d’une

complexité inférieure à un autre).

- de pouvoir optimiser les parties de programme

les plus utilisées en les réécrivant en langage de

bas niveau.

- d’écrire des compilateurs ou des interpréteurs

performants même si ceux-ci sont écrits en

langage de haut niveau.

- de se préparer à l’arrivée de nouveaux

paradigmes de programmation

(programmation parallèle).

… et enfin d’obtenir une bonne note lors de

l’évaluation !

Systèmes d’exploitation Systèmes de Gestion de Fichiers 108

8. Les Systèmes de
Gestion de Fichiers

8.1 Les Fichiers

8.1.1 Introduction

Définition conceptuelle :

Un fichier est une collection organisée

d'informations de même nature regroupées en vue

de leur conservation et de leur utilisation dans un

Système d'Information.

Remarque :

inclut les SI non automatisés (agenda, catalogue

de produits, répertoire téléphonique,…)

Définition logique :

C'est une collection ordonnée d'articles

(enregistrement logique, item, "record"), chaque

article étant composés de champs (attributs,

rubriques, zones, "fields"). Chaque champ est

défini par un nom unique et un domaine de

valeurs.

Systèmes d’exploitation Systèmes de Gestion de Fichiers 109

Remarque :

Selon les SE, la longueur, le nombre, la structure

des champs est fixe ou variable. Lorsque l'article

est réduit à un octet, le fichier est qualifié de non

structuré. Au niveau logique, plusieurs modèles

de base de données ont été définis : modèle

relationnel [Codd 76], réseau, hiérarchique.

Définition physique :

Un fichier est constitué d'un ensemble de blocs

(enregistrement physique, granule, unité

d'allocation, "block", "cluster") situés en mémoire

secondaire. Les articles d'un même fichier

peuvent être groupés sur un même bloc (Facteur

de groupage ou de Blocage (FB) = nb

d'articles/bloc) mais on peut aussi avoir la

situation inverse : une taille d'article nécessitant

plusieurs blocs. En aucun cas, un article de taille ≤

taille d'un bloc n'est partitionné sur plusieurs

blocs → lecture 1 article = 1 E/S utile.

Remarque :

les blocs de MS sont alloués à un fichier selon

différentes méthodes liées au type de support qu'il

soit adressable (disques, …) ou séquentiel (bandes,

cassettes, "streamers"). Ces méthodes

d'allocation sont couplées à des méthodes de

chaînage des différents blocs d'un même fichier et

seront étudiées dans le chapitre SGF.

Systèmes d’exploitation Systèmes de Gestion de Fichiers 110

8.1.2 Opérations et modes d'accès

Un certain nombre d'opérations génériques

doivent pouvoir être réalisées sur tout fichier :

- création création et initialisation du

noeud descripteur (i-node, File

Control Block, Data Control

Block) contenant taille, date

modif., créateur, adrs bloc(s), …

- destruction désallocation des blocs occupés et

suppression du noeud descripteur

- ouverture réservation de tampons d'E/S en

MC pour le transfert des blocs

- fermeture recopie des tampons MC vers MS

(sauvegarde)

- lecture consultation d'un article

- écriture insertion ou suppression d'un article

La lecture et l'écriture constituent les modes

d'accès et peuvent être combinés (mise à jour)

lors de l'ouverture d'un fichier (existant). A la

création, un fichier est toujours ouvert en écriture.

Un SE multi-utilisateurs doit toujours vérifier les

droits de l'utilisateur lors de l'ouverture d'un

fichier.

Systèmes d’exploitation Systèmes de Gestion de Fichiers 111

8.1.3 Caractéristiques fonctionnelles

Volume : taille d'un fichier en octets ou multiples.

Si articles de longueur fixe alors taille article*nb

articles.

Taux de consultation/mise à jour pour un

traitement donné : rapport entre le nombre

d'articles intervenant dans le traitement et nb

total d'articles.

Exemple : fichier "personnel", traitement "paye"

==> taux de consultation = 100%

Remarque : un taux de consultation important

implique souvent un traitement par lot avec une

méthode d'accès séquentielle.

Fréquence d'utilisation : nb de fois où le fichier

est utilisé pendant une période donnée.

Taux d'accroissement : pourcentage d'articles

ajoutés pendant une période donnée.

Taux de renouvellement/suppression :

pourcentage d'articles nouveaux/supprimés pendant

une période donnée. (TR=TS ==> volume stable)

Systèmes d’exploitation Systèmes de Gestion de Fichiers 112

Ces différentes caractéristiques ainsi que le type

prépondérant d'utilisation (traitement par lot ou

interactif) d'un fichier doivent permettre de

décider de la structuration des articles, du type de

support de stockage et des méthodes d'accès.

On classe souvent les fichiers en différentes catégories :

fichiers permanents : informations vitales de

l'entreprise : Client, Stock, Fournisseurs...

durée de vie illimitée, Fréquence d'Utilisation

élevée, màj périodique par mouvements ou

interactive.

fichiers historiques : archives du SI : Tarifs,

Prêts-Bibliothèque, journal des opérations…

pas de màj, taux d'accroissement élevé, taux de

suppression nul.

fichiers mouvements : permettent la màj en

batch des permanents afin d'éviter incohérences

ponctuelles : Entrée/Sortie hebdomadaire stock,

heures supplémentaires Janvier, …

durée de vie limité, fréquence d'utilisation très

faible.

fichiers de manoeuvre : durée de vie très courte

(exécution d'un programme) : spool, fichier

intermédiaire.

Systèmes d’exploitation Systèmes de Gestion de Fichiers 113

8.1.4 Structure et Longueur des articles

Articles de longueur fixe et de structure unique

Dans la plupart des cas, chaque article d'un fichier

contient le même nombre de champs chaque

champ étant de taille fixe. Il existe un type unique

d'articles.

Exemple : fichier STOCK

nom champ type taille exemple

REF N 4 0018

DESIGN A 15 VIS 8*20

QTE N 7 550 000

DATE D 6 23/09/92

Articles de longueur fixe et de structure multiple

Les articles peuvent varier de structure parmi

plusieurs sous-types d'articles (record variant de

Pascal, union de C, C++). La longueur fixe des

articles d'un tel fichier correspond à la longueur

maximale des différents sous-types.

Exemple : fichier PERSONNE, articles de 42 octets

NOM(20), PRENOM(15), SITUATION(1),

 cas SITUATION=M alors DATE_MAR(6)

 cas SITUATION=D alors DATE_DIV(6)

 cas SITUATION=C alors rien

Systèmes d’exploitation Systèmes de Gestion de Fichiers 114

Remarque : les deux types d'articles précédents

constituent la quasi-totalité des fichiers. La

longueur fixe des articles permet de réaliser

efficacement les calculs d'adresses de ceux-ci.

Articles de longueur var. et de structure multiple

L'intérêt principal de ce type d'articles consiste

dans le gain de place (suppression des blancs)

constitué par le compactage des fichiers concernés.

L'inconvénient majeur réside dans la difficulté à

calculer l'adresse d'un article. Ce type d'articles

est particulièrement utilisé à des fins d'archivage

sur support séquentiel et pour la téléinformatique.

La séparation des articles et des champs est

souvent effectuée par insertion de préfixes

indiquant la longueur de l'article ou du champ.

Exemple : fichier PERSONNE

TailleArt(1), NOM(1+20), PRENOM(1+15), SIT(1),

 cas SIT=M alors DATE_MAR(6)

 cas SIT=D alors DATE_DIV(6)

 cas SIT=C alors rien

18,5,UHAND,4,PAUL,M,23/08/91,

12,5,PETIT,4,JEAN,C,

19,6,HOCHON,4,PAUL,D,10/10/89,

…

Systèmes d’exploitation Systèmes de Gestion de Fichiers 115

8.1.5 Méthodes d'accès

8.1.5.1 Accès Séquentiel

Les articles sont totalement et strictement

ordonnés. L'accès (lecture/écriture) à un article ne

peut être réalisé qu'après l'accès à l'article

précédent. Un pointeur d'article courant permet

de repérer la position dans le fichier à un instant

donné. L'ouverture en lecture positionne le

pointeur sur le 1er article puis les lectures

successives font progresser le pointeur jusqu'à la

position End Of File (EOF). Selon les cas,

l'ouverture en écriture positionne le pointeur en

début de fichier (rewrite) ou en fin de fichier

(append). Il existe une opération spécifique de

remise à zéro du pointeur (retour en début de

fichier, rembobinage, "reset", "rewind").

Historiquement lié au support bande magnétique et

cartes perforées, cette méthode d'accès est la plus

simple et de surcroît est universelle. Elle reste très

utilisée notamment pour les fichiers non structurés

(textes, exécutables,…) ou les fichiers historiques.

Pour les fichiers permanents, si le taux de

consultation ou de màj est important, la solution

séquentielle doit être envisagée. Cependant, l'accès

séquentiel est impensable pour un bon nombre d'op.

interactives (réservations, op. bancaires, …)

Systèmes d’exploitation Systèmes de Gestion de Fichiers 116

8.1.5.2 Accès direct

(ou sélectif, aléatoire, "random")

Ce type d'accès nécessite un support adressable!

Un ou plusieurs champs des articles servent

d'expression d'accès (clé) pour "identifier" et

accéder à un ou plusieurs articles. On peut

directement lire ou écrire l'article grâce à une

opération du type suivant :

lire/écrire(fichier, valclé, adrsMCtransfert)

On peut également vouloir accéder aux articles

par l'intermédiaire de plusieurs clés :

Exemple : fichier Personne; clé1 = N°SS; clé2 = Nom

Par la suite, nous traiterons de la manière de

réaliser l'accès direct sur un fichier à clé unique.

Selon les cas, la transposition aux clés multiples

est plus ou moins simple !

Adressage direct

Ce type d'adressage est un cas d'école puisqu'il associe à chaque

valeur de clé l'adresse physique du bloc contenant l'article. Il

y a ainsi identité des valeurs de clé d'article et des adresses

physiques de bloc. Un inconvénient évident est que le domaine

des valeurs de clé doit correspondre exactement aux domaine des

adresses physiques. De plus, l'espace adressable est très

fortement sous-occupé (FB=1) et ne peut être partagé par

plusieurs fichiers ayant des valeurs de clés conflictuelles ! Par

contre, le temps d'accès à un article est minimal. La clé doit être

identifiante !

Systèmes d’exploitation Systèmes de Gestion de Fichiers 117

Adressage relatif

La clé est un nombre entier correspondant au

numéro logique (0..n-1) d'article dans le fichier.

On obtient aisément l'adresse physique (bloc ;

dépl.) de celui-ci :
taille fixe : AdPhy:=(Orga(nl div FactBloq); taille*(nl mod FactBloq))

taille var. : il existe une table de correspondance [nl --> AdPhy]

Si la numérotation logique n'est plus continue

(suppressions), de l'espace inutile continue à être

occupé par le fichier ! En effet, la compression

après chaque suppression serait trop coûteuse.

L'insertion suivante sera donc réalisée dans un

trou. L'ordre des nl ne correspond donc pas

forcément à l'ordre d'insertion !

Adressage dispersé, calculé ("hash-coding")

L'adressage dispersé consiste à calculer un

numéro logique d'article à partir d'une valeur de

clé et d'une fonction de hachage : nl:=f(c).

f permet de réduire le domaine des nl par rapport

au domaine des clés afin de donner un volume de

fichier supérieur au volume utile mais inférieur à

card(domaineClé)*tailleArt.

Avantages :

calcul en MC ==> accès très rapide

clés quelconques : non identifiantes ==> collisions

Systèmes d’exploitation Systèmes de Gestion de Fichiers 118

exemple :

Domaine Clé

0
1
2
3
4
5
…

99998
99999

Clés utilisées

1

4

99998

numéros logiques

0
1
2
3
4
5
6
7
8

f

Dans cet exemple, un domaine de 106 clés potentielles est réduit

à un espace logique de 9 numéros logiques permettant de stocker

les 3 articles réels.

hachage parfait

Une fonction de dispersion idéale est celle qui

réalise une bijection de l'ensemble des clés

existantes vers l'ensemble des numéros logiques. Il

n'y a ainsi aucun espace perdu. La recherche d'une

fonction idéale est calculable sur un ensemble

statique de clés identifiantes mais impossible sur

un ensemble dynamique

Collisions ou conflits

Il y a collision lorsque la fonction de hachage

associe un numéro logique déjà utilisé à un nouvel

article. Il faut alors traiter la collision pour insérer

le nouvel article dans le fichier :
- soit dans une zone de collision générale accédée soit

séquentiellement, soit par une autre fonction f2

- soit dans une zone de collision spécifique à chaque numéro

logique.

Systèmes d’exploitation Systèmes de Gestion de Fichiers 119

La détermination d'une bonne fonction de hachage

donnant un faible taux de collision est un gage

de rapidité d'accès. Exemple : somme des entiers

(16 bits) composant la clef modulo taille fichier.

Avec une clé non identif., le taux de collision

augmente.

Lorsque le volume utile du fichier croît, il est

nécessaire de réorganiser celui-ci, par exemple, en

allouant un espace logique double du précédent, en

modifiant f et en réorganisant les articles

existants.

inconvénients :

collisions coûteuses

pas d'accès séquentiel (accès calculés répétés)

taux d'occupation mémoire <= 1

taille du fichier connue à priori

réorganisations coûteuses

Adressage indexé

Un index est une table de couples (valeur clé, nl)

triée sur les valeurs de la clé. L'index est dense si

toutes les clés du fichier y sont recensées. Sinon

l'index est dit creux et une clé c présente dans le

fichier et absente de l'index est dite couverte par la

clé tout juste inférieure présente dans l'index. Un

index creux implique une clé primaire, c'est à

dire que le fichier soit trié sur cette clé. D'autres

index secondaires doivent alors être dense !

Systèmes d’exploitation Systèmes de Gestion de Fichiers 120

Exemple d'Index creux primaire :

1,Dupont/5,Hochon/ / /

Index

(,4)
(6,0)

(15,16)
(46,12)
(135,8)

6,Paul/13,Durand/14,Pierre/

Blocs (FB=4)135,Michel/ / / /

46,Potuit/49,Dru/ / /

15,Riton/ / / /

0 1 2 3

numéros logiques

La recherche d'une clé d'un article est réalisée par

dichotomie sur le fichier d'index. Lorsque le fichier

atteint un volume important, son fichier d'index ne

tient plus sur un seul bloc et on est alors forcé de

parcourir séquentiellement les blocs d'index.

Aussi, on préfère une organisation arborescente

(b-arbre) de l'index dans laquelle existe une

hiérarchie de sous-tables d'index creux permettant

une bonne rapidité d'accès. En fait, on indexe

chaque bloc d'index !

Contraintes sur un b-arbre d'ordre p (#ptrs/bloc

index)
• tout chemin (racine --> feuille) est de longueur

identique = hauteur (exemple h=2)

• chaque bloc d'index est toujours au moins à

moitié plein (sauf la racine) : chaque bloc d'index

contient k clés avec EntInf(p/2)≤k≤p-1 (ex. p=3).

Systèmes d’exploitation Systèmes de Gestion de Fichiers 121

Exemple d'index par b-arbre :

14 22

10 18 20 30

2
Paul
9
Piera

10
Ilot

14
Duri

18
Py
19
Tota

20
Rat

22
Ture
29
Roit

30
Pou

4 blocs
d'index

1 bloc de fichier = 1 à 2 articles
Afin de maintenir les contraintes lors des

suppressions ou des insertions d'articles, on est

parfois obligé de réorganiser l'arborescence !

Moins rapide que le hachage pour l'accès direct,

l'adressage indexé permet cependant de traiter

également l'accès séquentiel à moindre coût

(index creux ou b-arbre).

Remarques

• Il existe toujours un compromis (place utilisée/temps d'accès).

• Les insertions et suppressions d'articles provoquent des trous

dans les blocs de données. L'index b-arbre gère ceux-ci mais les

index linéaires (creux ou denses) ne le font pas… (voir SGF)

• Pratiquement, les b-arbres et les index creux (ISAM)

prédominent dans les SGBD (vitesse + accès séquentiel).

• index multiples : on peut ajouter des index secondaires denses

peu efficaces pour l'accès séquentiel.

Systèmes d’exploitation Systèmes de Gestion de Fichiers 122

8.2 Système de Gestion des Fichiers

8.2.1 Organisation arborecente

La quasi-totalité des SGF sont organisés en

arborescence de répertoires (catalogue,

"directory") contenant des sous-répertoires et

fichiers. Suivant le cas, les répertoires sont

considérés comme des fichiers (unix) ou bien

demeurent dans des zones de MS spécifiques (MS-

DOS zone DIR). Le répertoire permet d'accéder au

noeud descripteur d'un fichier qu'il contient. Ce

noeud permettra de connaître la localisation et

l'ordonnancement des blocs contenant les données

de ce fichier. Par la suite, on supposera des

répertoires de même nature que les fichiers.

8.2.2 Allocation de mémoire secondaire

8.2.2.1 Support séquentiel (bande)

- pistes longitudinales (1 car/ 8|16 pistes //)

- densité d'enregistrement en bpi (1600..6000)

- blocs séparés par des gap inter-bloc (2 cm)

- fichiers séparés par des gaps inter-fichier

- entêtes de blocs et de fichiers permettant le positionnement.

- on ne modifie jamais directement une bande.

- les maj sont effectuées lors de la recopie sur une autre bande.

- faible coût, accès lent ==> archives, copies, sauvegardes

Systèmes d’exploitation Systèmes de Gestion de Fichiers 123

8.2.2.2 Support adressable (disque)

Espace adressable numéroté (0..b-1) de b blocs.

L'accès à deux blocs consécutifs est peu coûteux

(translation et rotation minimale de la tête de

lecture/écriture). Remarquons que la numérotation

logique des blocs ne correspond pas à la topologie

(facteur d'entrelacement).

2 problèmes :

• disponibilité ou occupation d'un bloc

• localisation et ordonnancement des blocs d'un fichier

Gestion des blocs disponibles

Une liste des blocs libres doit être maintenue afin

de gérer les créations et destructions de fichiers.

implémentations :

• tableau de bits : 0100011111101…110 (mot de b bits)

demande bloc : chercher le 1° 0 dans la liste puis 0 -> 1

rejet bloc : 1 -> 0

• considérer cette liste des blocs libres comme un

fichier, donc utiliser une des méthodes d'allocation

suivantes.

Systèmes d’exploitation Systèmes de Gestion de Fichiers 124

Allocation contigüe

Ex : fic1 (b0..b3); fic2(b9..b12); …; fick(b5..b6)

• temps d'accès séquentiel et direct optimal

• noeud descripteur contenant blocDebut, nbBlocs

• peu utilisé car les fichiers ont des tailles

dynamiques ==> surévaluation a priori des

volumes fichiers, réorganisations fréquentes et

coûteuses lors des augmentations de volume.

• utilisation pour les tables systèmes de taille fixe :

MS-DOS : boot, FAT1, FAT2, DIR

Unix : boot, SF type, i-node table

Problème de l'allocation dynamique (=new, malloc)

lors d'une demande de n blocs libres, le système

doit chercher un trou (suite de blocs libres)

suffisament grand parmi les trous de l'espace

disque.

Stratégies

• Premier trouvé ("First-Fit") : on parcours la

liste des trous jusqu'à en avoir trouvé un assez

grand.

• Plus Petit ("Best-Fit") : on cherche dans toute

la liste la borne supérieure des trous => parcours

intégral ou liste des trous triée et recherche dicho.

• Plus Grand ("Worst-Fit") : inverse de Best-Fit.

Des simulations ont prouvées la meilleure performance de BF et

FF en temps et en espace utilisé. Lorsque l'espace libre est

suffisant mais qu'il n'existe pas de trou assez grand, cette

fragmentation externe implique un compactage des fichiers.

Systèmes d’exploitation Systèmes de Gestion de Fichiers 125

Allocation chaînée

Les blocs de données d'un fichier contiennent un

pointeur sur le bloc suivant. Le noeud descripteur

contient, lui, la tête de liste. Lors de la création, la

tête est mise à nil, puis, au fur et à mesure des

demandes, une allocation contigüe (optimale en

temps d'accès) est tentée. Si celle-ci ne peut avoir

lieu, on choisit le(s) premier bloc disponible.

Avantage

• plus de fragmentation externe donc seule

limitation = taille espace disque libre.

Inconvénients

• Accès séquentiel seulement !

• fragmentation interne des fichiers nécessitant

de nombreux mouvements de tête. Des utilitaires

de compactage permettent la réorganisation

périodique des fichiers en allocation contigüe.

• fiabilité : si un pointeur est détruit

logiciellement ou matériellement (bloc illisible) on

perd tout le reste du fichier.

• encombrement disque dû aux pointeurs si blocs

de petite taille

Systèmes d’exploitation Systèmes de Gestion de Fichiers 126

Allocation chaînée déportée

On déporte le chaînage dans une table système

(FAT pour MS-DOS) dont chaque entrée pointe

sur le bloc de données suivant du fichier. La tête

de liste est positionnée dans le noeud descripteur.

Cette table de chaînage est chargée en MC

(volume courant) afin de permettre des accès

directs rapides.

Avantage

• Accès direct et séquentiel peu coûteux

Inconvénients

• fragmentation interne (compactages périodiques)

• accès direct après parcours de la liste en MC

Allocation indirecte (indexée)

Un bloc d'index contient la liste des pointeurs sur

les blocs de données du fichier. Ce bloc d'index est

lui-même pointé par un champ du noeud

descripteur de fichier. A la création le bloc d'index

est initialisé à nil, nil, …, nil et lors des écritures

successives, les premiers pointeurs sont affectés des

adresses des blocs alloués par le gestionnaire de

mémoire disponible. Ici encore la contiguïté est

tentée ! A l'ouverture, le bloc index est chargé en

MC afin de permettre les accès.

Systèmes d’exploitation Systèmes de Gestion de Fichiers 127

Avantage

• accès direct et séquentiel rapide

Inconvénients

• fragmentation interne => compactages périodiques

• taille gaspillée dans les blocs d'index >> taille

des pointeurs en alloc chaînée.

• petits fichiers : pour 2 ou 3 adresses de blocs, on

monopolise un bloc index !

• très grands fichiers : un bloc index étant

insuffisant, plusieurs blocs index peuvent être

chaînés et un mécanisme de multiple indirection

peut être utilisé.

Allocation directe

Le noeud descripteur contient tous les pointeurs

sur les blocs de données. De taille fixe et petite,

cette structure de données ne pourra être utilisée

que pour des fichiers de faible volume.

Avantage

• accès direct et séquentiel très rapide

• peut être mixtée avec indirection ou chaînage

Inconvénients

• taille limitée des fichiers

• fragmentation interne

Systèmes d’exploitation Systèmes de Gestion de Fichiers 128

8.3 Exemples

8.3.1 Le SGF MS-DOS

Nous décrivons ci-après l'organisation physique

d'un volume MS-DOS sous la forme d'une

disquette 5,25 pouces. Les principes d'allocation de

MS-DOS restent les-mêmes quel que soit le

support adressable, seuls le nombre et la taille des

champs varient.

Une disquette, ou disque souple ou "floppy disk", est constituée

d'un support plastique mince de forme discale d'un rayon de 5,25

pouces (1 pouce = 2,54 cm) sur lequel a été déposé un substrat

magnétique. Dans le cas de disquettes double face double

densité, cette surface homogène de particules magnétisables est

structurée en 2 faces de 40 pistes possédant chacune 9

secteurs. Les pistes concentriques sont numérotées de 0 à 39

depuis l'extérieur vers l'intérieur. Chaque secteur contient 512

octets utiles. La capacité d'une disquette est donc de 2 * 40 * 9 *

512 = 360 Koctets.

L'unité d'allocation ("cluster"), ou bloc, est la plus petite partie

d'espace mémoire allouable sur une disquette. Pour une

disquette 5,25 pouces à 360 Ko, un bloc est constitué de deux

secteurs consécutifs et a donc une capacité d'1 Ko. La

numérotation des secteurs est effectuée de la façon suivante :

Face 0 Piste 0 Secteurs 0 à 8

Face 1 Piste 0 Secteurs 9 à 17

Face 0 Piste 1 Secteurs 18 à 26

Face 1 Piste 1 Secteurs 27 à 35 etc…

Systèmes d’exploitation Systèmes de Gestion de Fichiers 129

Fichier et catalogue

Un fichier MS-DOS est une suite d'octets désigné par un

identifiant composé d'un nom de 8 caractères et d'une

extension de 3 caractères. Par exemple, COMMAND.COM,

PRG1.PAS, SALAIRES.DBF, TEXTE1.DOC…

Un catalogue ("directory") MS-DOS est un type de fichier

particulier permettant de regrouper différents fichiers de

données et/ou d'autres catalogues dans une même entité.

L'architecture du Système de Fichiers est donc une arborescence

dont toutes les feuilles sont des fichiers et tous les nœuds

intermédiaires des catalogues. Le catalogue racine est désigné

par un "backslash" \ et est stocké en début de disquette.

Allocation

Les fichiers sont fragmentés en allocation chaînée déportée

et MS-DOS conserve dans une table l'adresse des différents

fragments. Cette table s'appelle Table d'Allocation des Fichiers

("File Allocation Table") et sera désignée par la suite par FAT.

Deux copies de la FAT sont stockées sur la disquette (secteurs

1,2 et 3,4) afin de garantir la sécurité des données en cas de

destruction accidentelle d'une des deux copies. Le catalogue

général (racine) de la disquette est lui situé sur les secteurs 5 à

11. Le secteur 0, quant à lui, contient le programme d'amorçage

sur les disquettes systèmes ("boot-strap"). Enfin les secteurs 12

à 719 contiennent les données des différents fichiers.

catalogue racine

C'est une table dont les entrées ("File Control Block") ont une

longueur de 32 octets qui décrivent les fichiers et les sous-

catalogues. Une entrée de répertoire peut être schématisée de la

façon suivante :

Systèmes d’exploitation Systèmes de Gestion de Fichiers 130

FCB

0..7 nom du fichier sur 8 octets

8..15 extension sur 3 octets attrib

ut

 réservé par MS-DOS

16..23 réservé par MS-DOS heure

modificat
24..31 date

modificat.

1° entrée

FAT

Taille fichier (LSB, MSB)

L'octet d'attribut permet de spécifier certaines protections :

fichier caché, lecture seulement, archive, système, normal ou

encore de préciser que le fichier est un catalogue. L'heure et la

date de dernière modification permettent de retrouver la

dernière version d'un fichier de travail. La taille du fichier est

codé sur 32 bits ce qui permet une taille maximale de 4 Giga-

octets ! Ce qui est bien entendu impossible sur une disquette

de 360 Ko. Enfin, la 1ère entrée dans la FAT permet d'indiquer le

premier maillon du chaînage dans la FAT qui pointera lui-

même sur le second qui pointera sur le troisième etc…

la FAT 12 bits

C'est une table d'entrées d'une longueur de 12 bits (1,5 octets)

qui spécifie le chaînage permettant de reconstituer un fichier

fragmenté sur plusieurs blocs. Les deux premières entrées (0 et

1) de cette table sont réservées par le système pour préciser le

type de la disquette sur laquelle elle se trouve (simple/double

face, simple/double densité). L'entrée numéro 2 correspond au

premier bloc de la disquette non réservé au système, c'est-à-

dire le bloc n° 6 (secteurs 12 et 13). Ainsi le fichier dont le "1°

entrée FAT" de son entrée de répertoire est 2 verra son premier

bloc de données situé sur les secteurs 12 et 13. Dans cette

première entrée FAT on trouve la valeur de l'entrée suivante, par

exemple 005, qui correspond au bloc de données suivant.

Systèmes d’exploitation Systèmes de Gestion de Fichiers 131

exemple de FAT

type

disquette

005 000 i … FFF …

 0 1 2 3 4 5 6 … i

 1° bloc du fichier 2° bloc du fichier indique la fin

 = bloc n° 6 = bloc n° 9 du chaînage

Dans cet exemple, le fichier est contenu sur trois blocs (6, 9 et

i+4). La fin du chaînage est indiqué par la valeur 0FFFH (nil)

tandis qu'une valeur 000 indique un bloc libre. La gestion des

blocs libres (table de "12 bits") est en effet couplé au mécanisme

de FAT.

Deux remarques
- Les entrées du répertoire racine ne sont pas compactées et la

valeur 0E5H située sur le premier octet d'un FCB signifie que

cette entrée est libre. Soit cette entrée n'a jamais été utilisée

pour décrire un fichier ou un catalogue, soit ce fichier ou ce

catalogue a été détruit (delete ou rmdir) et le système a

simplement surchargé le premier octet du nom du fichier par

un code 0E5H. Par conséquent, la recherche d'un nom dans le

catalogue général est effectuée séquentiellement sur toutes les

entrées. On aurait pu tout aussi bien choisir de compacter les

entrées du catalogue à chaque destruction de fichier, ce qui

aurait diminué le temps de recherche d'un fichier n'existant pas !

Mais cela aurait interdit les utilitaires de récupération de

fichiers détruits (undelete).

- La seconde remarque concerne la fragmentation des fichiers

sur la disquette. Au bout d'un certain nombre de créations et de

destructions de fichiers et de répertoires, les différents blocs

supportant les données d'un fichier se trouvent être disséminés

sur la disquette. Or le transfert en mémoire centrale de tous les

blocs de ce fichier va nécessiter un grand nombre de mouvements

de translations du bras de lecture. C'est pourquoi il existe des

utilitaires de compactage des blocs des fichiers d'une disquette

permettant de minimiser les temps d'accès à un fichier.

Systèmes d’exploitation Systèmes de Gestion de Fichiers 132

La VFAT 32

Nouveau standard de FAT permettant de gérer

des disques durs de grande capacité (>2Go) :

• Entrées de FAT sur 12, 16 ou 32 bits permettant

des petits clusters ;

• FCB sur 32, 37 ou 44 octets (FCB étendu).

Exemple : disquette 1.4 Mo

Volume :

• 80 pistes/face : 160 pistes

• 18 secteurs/piste : 2880 secteurs

• 512 octets/secteurs : 1440 Ko soit 1.40 Mo

• 1 secteur/cluster

FAT

• 1 FAT : 9 secteurs * 2 copies ;

• Entrée de FAT : 12 bits ;

• 3072 entrées (2880 clusters)

Répertoire racine :

• Répertoire racine sur 14 secteurs

• FCB sur 32 octets

• soit 224 entrées

Taux de transfert : 500 Kbits/s

Les noms longs de fichiers de WinX sont stockés

dans le FCB suivant immédiat codé en Unicode.

Systèmes d’exploitation Systèmes de Gestion de Fichiers 133

8.3.2 Le SGF d'Unix

Exemple d'une arborescence de fichiers Unix

bin usr dev

10 14 7
3 12

ls cat prt1 hda2dupont durand

15

data1 prg1 prg2 data2

19 18 13 11

2 /

6 5 8

• catalogues : bin, usr, dev, dupont, durant;

• fichiers ordinaires : ls, cat , data1, prg1, prg2, data2;

• fichiers périphériques : sous le catalogue dev ("device") : prt1,

dsk2.

Caractéristiques
• Entrées/Sorties généralisées ou transparentes

• désignation : chemin d'accès absolu /…, ou relatif

• fichiers non structurés = suite d'octets numérotés logiquement

de 0 à n-1 (n = longueur du fichier) : structuration à la charge des

programmeurs

• accès direct à une suite d'octet à partir d'une position i dans le

fichier (0 ≤ i ≤ n-1) et/ou accès séquentiel

• catalogues Unix = liste (nom de fichier, # i-node)

• identification = # i-node

• désignations multiples : compteurs de liens ou de références

• système de protection : rwx rwx rwx propriétaire groupe

autres

Systèmes d’exploitation Systèmes de Gestion des processus 134

9. Les processus Unix

9.1 Généralités

Processus : suite temporelle d'exécutions

d'instructions d'un programme par un processeur.

(programme : données + suite d'instructions)

La gestion des processus (pus) étant très

dépendante du SE étudié, nous nous bornerons à

définir quelques notions générales avant d'aborder

plus particulièrement les pus Unix.

nom d'un pus : où numéro d'identification du pus

qui permet sa manipulation par le système et par

l'utilisateur l'ayant créé.

ressources : emplacements de mémoire centrale,

périodes d'utilisation de l'UC, périphériques …

nécessaires à un processus pour son évolution.

état : un processus disposant de toutes les

ressources (UC, MC, …) nécessaires à l'exécution

de sa prochaine instruction est dans l'état actif.

Dans tous les autres cas, il est bloqué sur la ou les

ressources manquantes.

Systèmes d’exploitation Systèmes de Gestion des processus 135

Remarque : l'observation des ressources

courantes d'un processus actif ne peut être fait

qu'entre deux instructions (atomicité).

ressource locale à un pus i : si elle ne peut être

utilisée que par le pus i. ex : variables du prog.

ressource commune : si elle n'est locale à aucun

pus. ex : tube

partageabilité : une ressource commune est

critique (resp. partageable à n=2 points d'accès)

si sur un point observable elle ne peut être

détenue que par un (resp. n) pus au plus. ex : l'UC

est critique; une zone mémoire tube est

partageable à 2 points d'accès.

Plusieurs pus sont dits en exclusion mutuelle sur

r lorsque ils utilisent cette ressource critique r.

mode : niveau de pouvoir (droits) dans lequel

s'exécute le pus lui permettant ou non d'accéder à

certaines ressources et/ou d'exécuter certaines

instructions privilégiées de l'UC. ex : dans de

nombreux systèmes deux modes (seulement)

existent : mode maître (ou système ou

noyau)/mode esclave (ou utilisateur). Le mode

d'un pus peut être statiquement donné à la

création ou évoluer dynamiquement (Unix).

Systèmes d’exploitation Systèmes de Gestion des processus 136

durée de vie : un pus naît, après chargement en

MC, lors du lancement du programme par le SE et

meurt à la fin de l'exécution de ce programme lors

du retour au SE.

Les mécanismes de synchronisation permettent

notamment l'activation d'un pus bloqué sur une

ressource ou au contraire le blocage d'un pus actif.

ex : l'accès de 2 pus à une ressource critique

nécessite leur synchronisation afin qu'un seul

d'entre eux n'obtienne la ressource.

Les mécanismes de communication permettent

à plusieurs pus de se transmettre des données.

Afin d'éviter la communication par fichier (E/S

lentes) on utilise des structures de données en

mémoire centrale : variables partagées, tubes,

signaux, files de messages, sockets,…

Le recouvrement (overlay) est une technique qui

permet de remplacer une partie de la mémoire

centrale par une autre. ex : un programme très

long peut être décomposé en parties se recouvrant

pour diminuer l'espace utilisé (quasiment plus

utilisé car grande mémoires et pagination).

Systèmes d’exploitation Systèmes de Gestion des processus 137

9.2 Description des processus
Unix

image mémoire d'un pus : ensemble des zones

mémoires utilisées par un pus :

zone Système zone Utilisateur

segment

de code

segment de

données

statiques

segment de

données

dynamiques

…

ADD AL,'X'

…

allocation

stat/extern

3.14159

tas

pilevar locales

var dynam.

new, malloc

pid, ppid, état

utilisateurs (2)

valeurs reg.

descripteurs

adresses segm.

……

Un processus Unix réalise ses instructions

normales en mode utilisateur puis commute en

mode système lors d'un appel au noyau, d'une

interruption, ou d'un déroutement.

La commutation de pus est toujours effectuée en

mode système par le pus "partant" (pas de

préemption).

ASI Chapitre 8 : Assembleur 138

10. Assembleur

