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Drag-and-drop is probably one of the most successful and generic representations of direct manipulation
in today’s WIMP interfaces. At the same time, emerging new interactive environments such as distributed
display environments or large display surface environments have revealed the need for an evolution of
drag-and-drop to address new challenges. In this context, several extensions of drag-and-drop have been
proposed over the past years. However, implementations for these extensions are difficult to reproduce,
integrate and extend. This situation hampers the development or integration of advanced drag-and-drop
techniques in applications.

The aim of this paper is to propose a unifying implementation model of drag-and-drop and of its
extensions. This model–called M-CIU–aims at facilitating the implementation of advanced drag-and-drop
support by offering solutions to problems typical of new emerging environments. The model builds upon
a synthesis of drag-and-drop implementations, an analysis of requirements for meeting new challenges
and a dedicated interaction model based on instrumental interaction. By using this model, a programmer
will be able to implement advanced drag-and-drop supporting (1) multi-display environments, (2) large
display surfaces and (3) multi-user systems. Furthermore by unifying the implementation of all existing
drag-and-drop approaches, this model also provides flexibility by allowing users (or applications) to
select the most appropriate drag-and-drop technique depending on the context of use. For example, a
user might prefer to use pick-and-drop when interacting with multiple displays attached to multiple
computers, push-and-throw or drag-and-throw when interacting with large displays and possibly stan-
dard drag-and-drop in a more traditional context. Finally, in order to illustrate the various benefits of this
model, we provide an API called PoIP which is a Java-based implementation of the model that can be used
with most Java-based applications. We also describe Orchis, an interactive graphical application used to
share bookmarks and that uses PoIP to implement distributed drag-and-drop like interactions.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Even though drag-and-drop has been integrated widely,
implementations vary significantly from one windowing system
to another or from one toolkit to another Collomb and Hascoët,
2005; Hascoët et al., 2004. This situation is worse for drag-
and-drop extensions such as pick-and-drop, drag-and-pop, push-
and-throw, etc. As far as these extensions are concerned, very little
support if any is usually provided and implementations are hard to
reuse, generalize or extend as new needs arise.

As the number of drag-and-drop extensions is increasing, it is
important to propose a unified framework that clarifies the field
and offers benefits from at least three perspectives: user’s perspec-
tive, design perspective and implementation perspective. From a
ll rights reserved.
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user’s perspective, such unification will hopefully make it possible
for users to choose the type of drag-and-drop they like best or that
best suits some specific environment or task. From a designer’s
perspective, a unifying framework will help better understand dif-
ferences between the possible techniques and the design dimen-
sions at stake. Lastly, from the programmer’s perspective, a
unifying implementation model should save a lot of time and
efforts in the development of different drag-and-drop extensions
in new emerging and challenging environments such as large
displays and distributed display environments. The aim of this
paper is to propose the basis for building such a framework,
including a unified and open implementation model.

In the following section, we discuss how emerging interactive
environments bring new challenges for the drag-and-drop para-
digm, we review most extensions proposed so far and propose a
unified framework for comparing them. In the next section, we
present a new implementation model that builds upon an analysis
of requirements for adapting to new emerging interactive environ-

mailto:collomb@lirmm.fr
mailto:mountaz@lirmm.fr                  
http://www.sciencedirect.com/science/journal/09535438
http://www.elsevier.com/locate/intcom


M. Collomb, M. Hascoët / Interacting with Computers 20 (2008) 562–573 563
ments and also accounts for implementation models of existing
solutions in most widespread windowing systems or toolkits
Collomb and Hascoët, 2005. This model is based on the definition
of instruments Beaudouin-Lafon, 2000 that embody interaction
techniques. The presentation of the implementation model at a
generic level is based on a generic type of instrument that embod-
ies basic drag-and-drop interaction styles. We further discuss how
specific emerging drag-and-drop extensions can be implemented
as specific instruments that are smoothly integrated into the
model.

2. New challenges for the drag-and-drop paradigm

Most challenges that drag-and-drop has faced recently can be
attributed to the emergence of new display environments such
as wall-size displays or distributed display environments (DDE).
DDE have been defined Hutchings et al., 2005 as

Computer systems that present output to more than one phys-
ical display

This general definition covers a broad range of systems. Conse-
quently, systems that can be studied in this field can exhibit huge
differences. An example of such a huge difference is the difference
between two typical types of DDE: (1) multiple displays attached
to the same machine and (2) multiple displays attached to different
machines. While both configurations can be considered as DDE, the
degree of integration of the distinct displays is very different. In the
first case, the different displays are handled within the same win-
dowing system, offering a single workspace or desktop with full
communication capacities between windows of the different dis-
plays. In the second case, on the contrary, the different displays
are handled by several distinct and potentially heterogeneous win-
dowing systems, making it much more difficult to offer similar sin-
gle workspace spanning the different displays. These two different
configurations lead to significantly different types of problems
when implementing drag-and-drop in these environments.

2.1. Preliminary definitions

In order to better characterize the types of problems that are
most challenging for drag-and-drop and its variants, preliminary
definitions are useful. In this paper, we use a generally agreed def-
inition of the term display: a physical device used to display infor-
mation. The term window is used to refer to an area of a display
devoted to handle input and output from various programs.

Based on these definitions, we define a surface as a set of win-
dows. We further define the term distributed surface as a surface
with two additional properties: (1) windows of the surface poten-
tially appear on different displays attached to different machines
handled through different windowing systems, (2) interactions
between windows handled by different windowing systems is
transparent for the user, e.g. it is similar to single interactions that
happen in a single workspace.

For example, a set of windows spanning three different displays
handled by three different machines, such as a laptop running
MacOS, a PC running X-Windows and a tablet PC running Windows
can be considered as a distributed surface as soon as a system
makes it possible to surpass the boundaries of each windowing
system to support some interactions between different windows
on different displays. It is important to stress that systems
handling distributed surface environments are de-facto potentially
multi-user systems. Indeed, each machine involved in the surface
can be controlled by a different user. To some extent they can be
considered as a specific type of groupware environment.

Our aim is to propose solutions for typical problems arising
when designing and implementing a drag-a-drop like interaction
in a distributed surface environment. These problems can be struc-
tured in three categories: (1) usability and scalability problems, (2)
multi-computer and interoperability problems and (3) multi-user
and concurrency problems.

2.2. Usability and scalability issues

Usability problems derive from the complexity of new environ-
ments and the usage variety: heterogeneity of displays both in
terms of size, number and nature, heterogeneity of users in terms
of abilities, experience and style. Over years, drag-and-drop basic
paradigm has been extended with new interaction styles. Most of
these extensions address specific needs for particular display envi-
ronments. Consequently, we now have interesting alternatives to
the drag-and-drop original style that best suits some contexts.
These alternatives will be discussed in Section 2. One benefit of
our approach is to support different styles of interaction in a uni-
fied implementation model so that shifting from one interaction
style to another is facilitated. This feature can be seen as a partic-
ular support for plasticity:

The capacity of a user interface to withstand variations of both
the system physical characteristics and the environment while
preserving usability

Thevenin and Coutaz, 1999. Other types of usability problems
that arise with emerging environments can be considered as scala-
bility due to the increasing space available on large wall-sized dis-
plays: to what extent a technique originally designed to work on
one single and relatively low resolution display will adapt to an
increasing number, size and resolution of displays? When such dis-
plays are used with direct pointing devices, e.g. in the iRoom Stan-
ford University ComputerScience, 2008 or DynaWall Fraunhofer
institute, 2008, the original drag-and-drop paradigm reaches its
limits: interactions that involve dragging objects tend to be partic-
ularly tedious and error-prone Collomb and Hascoët, 2004; Col-
lomb et al., 2005 and can be further complicated by the bezels
separating screen units Baudisch et al., 2003. Drag-and-drop might
even fail when targets are out of reach, e.g. located too high or too
low on a display. Furthermore, user performances in terms of time
necessary to complete a task are known to decrease as the size of
displays increases because they induce greater distances between
targets and sources and target acquisition time is known to in-
crease with distance Paul, 1954.

2.3. Distributed display surfaces: transparently integrating multiple
computers and multiple windowing systems

Multi-computer and multi-windowing system problems are
probably the most challenging problems that have to be addressed
to handle distributed surfaces. Because of the difficulty in surpass-
ing the boundaries of windowing systems associated with each
display, there is still very little support for making windows of a
distributed surface behave as if they were part of the same work-
space. Some systems Shoeneman, 2008; Johanson and Hutchins,
2002; Lachenal, 2004 aim to support communication between dis-
plays based on redirection of input/output mechanisms, but sup-
port is still at its early stage.

Other approaches like those found in distributed visualization
environments provide multi-head support for multiple displays at-
tached to different machines Xdmx project, 2008; Humphreys
et al., 2002. These systems provide advanced support for distrib-
uted surfaces. However, they do not have the flexibility needed
to handle heterogeneous or dynamic distributed surfaces. Indeed,
they impose strict constraints on the architecture of clusters of ma-
chines used and on the windowing systems or graphic toolkit that
is run by these machines. Clearly they are not aimed at handling
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evolving sets of machines running heterogeneous windowing sys-
tems and graphical toolkits. Our model, on the contrary, imposes
no particular constraints on the machines involved in distributed
surfaces and it also supports evolving configurations so that win-
dows from new machines can be dynamically added or removed
from a distributed surface.

Other works are devoted to manage topological issues by stitch-
ing displays in a more realistic way Nacenta et al., 2006 than a two
dimension arrangement, by taking into account the offsets be-
tween screens and differences in resolutions Baudisch et al.,
2004, or by defining lightweight personal bindings between dis-
plays Ha et al., 2006.

2.4. Multi-user issues

Amongst all problems that arise with new display environ-
ments, multi-user issues can be regarded as a particular case of
issues that traditionally belong to the computer-supported
collaborative work domain at large. However, it is important to
stress the very specific situations in which we consider useful to
extend drag-and-drop to multi-user settings.

The UDP notation Lecolinet, 2003 is very helpful to better char-
acterize the specificities and limits of our approach. UDP notation
was originally made to compare multi-pointer situations. In this
notation, systems are characterized according to three dimensions:
U, the number of users, D the number of displays and P the number
of pointers per display. In this notation, systems falling in typical
classes usually share the same notation. For example, single dis-
play groupware systems are all denoted by N-1-N in UDP.

As far as drag-and-drop operations are concerned, our approach
would fall in the N-N-N of UDP. This corresponds to the fact that at
one point, several pointers per display correspond to several users
performing several drag-and-drop like interactions across several
displays. However, our approach shows some specificities and lim-
its compared to other more general cases of N-N-N systems or tool-
kits like for example Ubit Lecolinet, 2003 or I-Am Lachenal, 2004.
Indeed, our approach makes the hypothesis that each user uses
his personal laptop to interact with others. Therefore, contrary to
more general approaches the number N of pointers per display is
limited to the number of computers/laptops involved.

3. Drag-and-drop extensions

Problems listed in the previous section are partially addressed
by a set of drag-and-drop extensions that have been proposed over
the past 10 years. In this domain, it is possible to distinguish be-
tween different types of approaches depending on whether the
underlying interaction model is target-oriented, source-oriented or
undirected. This section reviews the various extensions proposed
recently according to these three categories. The next section fur-
ther compares these extensions according to more detailed
dimensions.

3.1. Target-oriented interaction

Hereafter target-oriented interaction refers to an interaction
style in which the main focus and feedback is located around po-
tential targets locations. To be effective, target-oriented instru-
ments should be used with displays where targets are all roughly
equally within sight. In very large wall-size displays it might be
difficult to clearly distinguish targets very far away from the source
location. In such environments, target-oriented instruments would
fail and source-oriented instruments would be more suitable. Fur-
thermore, with target-oriented interaction, users have to adjust
their move continuously around potential target locations to final-
ly acquire the right target at its real location. These continuous
adjustments may have marked impacts on the systems since they
imply high refresh rates: irregular lags between the user’s hand
movement and the feedback would significantly decrease the
usability of such interaction style.

Throwing, drag-and-throw and push-and-throw are recent exten-
sions that belong to this category. They are described briefly in this
Section.

Geißler Geißler, 1998; Streitz et al., 1999 proposed three tech-
niques to work more efficiently on interactive walls. The goal
was to limit physical displacement of the user on a 4.5 � 1.1 m tri-
ple display (the DynaWall Fraunhofer institute, 2008). The first
technique is shuffling. It is a way of re-arranging objects within a
medium-sized area. Objects move by one length of their dimen-
sions in a direction given by a short stroke by the user on the
appropriate widget. Next, the author proposes a throwing tech-
nique. To throw an object, the user has to achieve a short stroke
in direction opposite to which the object should be moving, fol-
lowed by a longer stroke in the correct direction. The length ratio
between the two strokes determines the distance to which the
object will be thrown. According to the author, this technique
requires training to be used in an efficient way. The third tech-
nique, taking, is an application of pick-and-drop (see Section 3.3)
tailored to the DynaWall.

Drag-and-throw and push-and-throw Hascoët, 2003; Collomb
and Hascoët, 2004 are throwing techniques designed for multiple
displays (one or more computers). They address the limitation of
throwing techniques Geißler, 1998; Streitz et al., 1999 providing
users with a real-time preview of where the dragged object will
come down if thrown. These techniques are based on visual feed-
backs, metaphors and the explicit definition of trajectories
(Fig. 1-e). Three types of visual feedback are used: trajectory, target
and take-off area (area that matches to the complete display).
Drag-and-throw and push-and-throw have different trajectories:
drag-and-throw uses the archery metaphor (user performs a
reverse gesture-to throw an object on the right, the pointer has
to be moved to the left) while push-and-throw uses the
pantograph metaphor (user’s movements are amplified). The main
strength of these techniques is that the trajectory of the object can
be visualized and controlled before the object is actually sent. So
users can adjust their gesture before validating it. Therefore,
contrary to other throwing techniques, drag-and-throw and push-
and-throw have very low error rates Collomb and Hascoët, 2004.

3.2. Source-oriented interaction

We use the term source-oriented to characterize drag-and-drop
extensions in which the focus remains around the starting point of
interaction or source object’s original location. Contrary to target-
oriented interaction, source-oriented interactions are less depen-
dent on the visibility of items located far away from the user. In
most cases, ghosts or proxies of relevant items located far away
are displayed around the original source object’s position.

Recent extensions that can be considered source-oriented
include drag-and-pop, vacuum, and push-and-pop.

Drag-and-pop Baudisch et al., 2003 is intended to help drag-
and-drop operations when the target is impossible or hard to
reach, e.g., because it is located behind a bezel or far away from
the user. The principle of drag-and-pop is to detect the beginning
of a drag-and-drop and to move potential targets toward the user’s
current pointer location. Thus, the user can interact with these
icons using small movements. As an example, in the case of putting
a file in the recycle bin, the user starts the drag gesture toward the
recycle bin (Fig. 1-d). After a few pixels, each valid target on the
drag motion direction creates a linked tip icon that approaches
the dragged object. Users can then drop the object on a tip icon.
When the operation is complete, tip icons and rubber bands disap-



Fig. 1. (Left to right, top to bottom) Examples of (a) hyperdragging, (b) stitching, (c) vacuum (black arrows are added), (d) drag-and-pop, (e) push-and-throw and (f) push-
and-pop. (Reproductions with authors’ permission).
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pear. If the initial drag gesture has not the right direction and thus
the target icon is not part of the tip icons set, tip icons can be
cleared by moving the pointer away from them but the whole
operation has to be restarted to get a new set of tip icons.

The vacuum Bezerianos and Balakrishnan, 2005 (Fig. 1-c), a vari-
ant of drag-and-pop, is a circular widget with a user controllable arc
of influence that is centered at the widget’s point of invocation and
spans out to the edges of the display. Far away objects standing in-
side this influence arc are brought closer to the widget’s center in
the form of proxies that can be manipulated in lieu of the originals.

Push-and-pop Collomb et al., 2005 was created to combine the
strengths of drag-and-pop and push-and-throw techniques. It uses
the take-off area feedback from push-and-throw while optimizing
the use of this area (Fig. 1-f): it contains full-size tip icons for each
valid target. The notion of valid target and the grid-like arrange-
ment of tip icons are directly inherited from drag-and-pop’s layout
algorithm. The advantage over drag-and-pop is that it eliminates
the risk of invoking a wrong set of targets. And the advantage over
push-and-throw is that it offers better readability (icons are part of
the take-off area), target acquisition is easier Collomb et al., 2005
and users can focus on the take-off area.

3.3. Undirected interaction

Lastly, some interaction styles are neither source-oriented nor
target-oriented. We call them undirected since feedback will not
be concentrated in one particular area of the display. Pick-and-drop,
stitching and hyperdragging are the main examples of extensions
that fall into this category, and we review them in this section.

Pick-and-drop Jun Rekimoto, 1997 has been developed to allow
users to extend drag-and-drop to distributed environments. While
drag-and-drop requires the user to remain on the same computer
while dragging objects around, pick-and-drop lets him move
objects from one computer to another using direct manipulation.
This is done by giving the user the impression of physically taking
an object on a surface and laying it on another surface. Pick-and-
drop is closer to the copy-paste interaction technique than to
drag-and-drop. Indeed like the copy/paste operation, it requires
two different steps: one to select the object to transfer, and one
to put the object somewhere else. But pick-and-drop and drag-
and-drop share a common advantage over copy-paste techniques:
they avoid the user having to deal with a hidden clipboard. How-
ever, pick-and-drop is limited to interactive surfaces which accept
the same type of touch-pen devices and which are part of the same
network. Each pen has a unique ID and data is associated with this
unique ID and stored on a pick-and-drop server.

Hyperdragging Jun Rekimoto and Masanori Saitoh, 1999 (Fig. 1-a)
is part of a computer augmented environment. It helps users
smoothly interchange digital information between their laptops,
table or wall displays, or other physical objects. Hyperdragging is
transparent to the user: when the pointer reaches the border of a gi-
ven display surface, it is sent to the closest shared surface. Hence, the
user can continue his movement as if there was only one computer.
To avoid confusion due to multiple simultaneous hyperdragging, the
remote pointer is visually linked to the computer controlling the
pointer (simply by drawing a line on the workspace, see Fig. 1-a).

Stitching Hinckley et al., 2004 (Fig. 1-b) is an interaction tech-
nique designed for pen-operated mobile devices. These devices
have to support networking and allow starting a drag-and-drop
gesture on a screen and ending the gesture on another screen. A
user starts dragging an object on the source screen, reaches its bor-
der, then crosses the bezel and finishes the drag-and-drop on the
target screen. The two parts of the strokes are synchronized at
the end of the operation and then bound devices are able to trans-
fer data.

4. Comparison of extensions

The extensions presented in the previous section differ in sev-
eral ways. The instrumental interaction model Beaudouin-Lafon,
2000 can be useful to exhibit dimensions for a better comparison
of their interaction styles. In this section, we briefly review the
instrumental interaction model. Based on this model, we exhibit
dimensions such as instrument feedback and instrument coverage.
By considering these dimensions and others (drag-over and
drag-under feedback), we further draw a comparison of previous
approaches which is summarized in Fig. 3.

4.1. Instrumental interaction

Instrumental interaction consists of describing interactions
through instruments. An instrument can be considered as a media-
tor between the user and domain objects. The user acts on the
instrument, which transforms the user’s actions into commands
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affecting relevant target objects. Instruments have reactions that
enable users to control their actions on the instrument, and provide
feedback as the command is carried out on target objects (see
Fig. 2).

Different extensions of drag-and-drop can be embodied through
different instruments. Interactions between an instrument and
domain objects (commands/responses) are the same for drag-
and-drop and all the extensions presented previously, i.e. all
instruments support primitive and generic commands: source
selection, target selection, specification of type of action, data
transfer (validation of the selected target) and cancellation.

The most important part of typical drag-and-drop interactions
concerns interactions between the user and the instrument (prin-
cipally reactions and feedback). Reactions and feedback of instru-
ments involve three types of feedback: drag-under feedback,
drag-over feedback and instrument feedback. When a user needs
to change from one instrument to another, drag-under and drag-
over visual effects might roughly be preserved, but instrument
feedback and reaction vary significantly. For simplification, in the
following sections we assimilate instrument feedback and reaction
into a single concept we refer to as instrument feedback.

4.2. Drag-under and drag-over feedback

In regular drag-and-drop operations, feedback is usually re-
ferred to as drag-under feedback and drag-over feedback. Drag-over
feedback consists mainly of feedback that occurs on a source ob-
ject. Typically, during a regular drag on a source, the pointer shape
changes into a drag icon or ghost that represents the data being
dragged. This icon can change during a drag to indicate the current
action (copy/move/alias). Hence, drag-over feedback mainly con-
sists of shape and color of source ghost changes when the user
changes the type of action, or when drop becomes possible or
impossible. Some windowing systems may go a step beyond by
providing animation, e.g. to indicate that the action was canceled,
they may animate ghosts back to their original location. It is inter-
esting to note that even though the drag-and-drop model is ma-
ture, not all windowing systems offer this feature. When no
animation is provided, it is significantly more difficult for the user
to follow the effect of a cancel operation.

Drag-under feedback denotes the visual effects provided on the
target side. It conveys information when a potential target has a
drag icon passing through it. The target can respond in many ways
beginning with drag-under feedback made by modifying its shape
and color for example.

If drag-over and drag-under visual effects are sufficient to de-
scribe feedback in the case of regular drag-and-drop operations,
they are not for most of its recent extensions. In the latter case,
more feedback is needed. This additional feedback is the instru-
ment feedback mentioned previously and will be described in the
next section.
Instrument

Domain object

reactionaction

command response

feedback

Fig. 2. Interaction instrument mediates the interaction between user and domain
objects Beaudouin-Lafon (2000).
4.3. Instrument feedback

Instrument feedback is useful to provide users with better con-
trol over their actions. Instrument reactions or feedback can be
considered as a specific type of recognition feedback. As suggested
by Dan et al. (2001),

Recognition feedback allows users to adapt to the noise, error,
and miss-recognition found in all recognizer-based interactions

Such feedback includes, for example, the rubber bands that are
used in the case of drag-and-pop to help users in locating/identify-
ing potential targets. Another example is the case of throwing,
where take-off areas as well as trajectories are displayed to help
users adjust target selection, etc. Such feedback is used in other
extensions and varies significantly from one particular instrument
to another. Fig. 3 summarizes these differences.

4.4. Instrument coverage

All instruments described above do not support full coverage.
By coverage, we mean: areas of a surface where an instrument
can drop an object. The concept of coverage is related to the nature
and reachability of the potential targets: can a target be any loca-
tion on the display identified by x and y coordinates, or should a
target necessary be a graphical object, an icon or component?
Are all areas of all displays reachable?

Instruments with full coverage make it possible for users to
reach any positions, objects, icons or components. We further de-
note by partial coverage the type of coverage found in situation
where the instrument may fail to reach certain areas under certain
circumstances. For example, in wall-size displays with touch/pen
input, regular drag-and-drop coverage is partial since some areas
may be out of reach e.g. situated too high for example. Other types
of instruments, like for example, push-and-pop, only support
moves to potential targets. We denoted this limitation as ‘‘limited
to target”. With such instruments, source objects cannot be
dropped to any other area of the surface. There are many contexts
of drag-and-drop situations where no specific target is aimed and
where such instruments would fail.

It is interesting to notice that all extensions designed so far that
fall in the source-oriented category do not support full coverage.
This leaves an interesting open design space for source-oriented
instruments capable of supporting full coverage. Our future work
includes designing new instruments of that type.

Fig. 3 shows the different types of coverage (partial coverage,
full coverage and coverage limited to targets) of most existing
drag-and-drop extensions.

5. M-CIU model and PoIP API

The implementation model we propose is called M-CIU1 and ad-
dresses the different issues discussed in Section 2. It offers a unified
framework that makes it possible to implement every drag-and-drop
extension discussed previously. Hence shifting from one interaction
style to another is facilitated.

The M-CIU model is implemented as an API (application pro-
gramming interface) called PoIP2. PoIP supports drag-and-drop like
manipulations in different environments and can be used in the
development of most Java-based applications3. Even though we used
PoIP to illustrate the M-CIU model and to provide more details when
useful, the M-CIU model aims at being general enough to be
1 Multi-Computer, multi-Instrument, and multi-User.
2 Pointer Over IP.
3 PoIP is implemented in Java and relies on RMI (Remote Method Invocation) for
network communication and AWT for events.



Issues primarily addressed Interaction style 

Distributed 
surface 

Multi-
User 

Scala-
bility 

Instrument 
feedbacks 

Instrument 
Coverage Category 

Pick-and-drop [20]  Ghost Partial undirected 

Hyperdragging [21]  Line Full undirected 

Stitching [14]   Trajectory, screen 
frame, pie menu Partial undirected 

Throwing [11]   None Full Target-oriented 

Drag-and-pop [1] Rubber-bands, tip 
icons Targets Source-oriented 

Vacuum [3]   Arc of influence, 
proxies Full Source-oriented 

Drag-and-throw [13] Take-off area, 
trajectory 

Full Target-oriented 

Push-and-throw [13] Take -off area, 
trajectory Full Target-oriented 

Push-and-pop [6] Take-off area, tip 
icons Targets Source-oriented 

Fig. 3. Comparison of drag-and-drop extensions.
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implemented at other levels or in other programming languages or
toolkits. PoIP is available for download with an example of use Col-
lomb, 2008.

5.1. Overview of M-CIU model

The M-CIU model is based on four key entities: instruments,
drag-and-drop managers, shared windows, distributed surface ser-
ver and topology manager. We quickly present these entities in
this section and will provide more details in the next subsections.

Instruments embody interaction techniques. A hierarchy of
instruments (see Section 5.2) is provided to factorize most com-
mon implementation details shared by different interaction tech-
niques. In order to support distribution, each instrument includes
one master and several slave instruments which will further be de-
scribed in Section 5.2.

Drag-and-drop managers play a central part as they are used to
coordinate all other main entities of the model. Every computer in-
volved in a distributed drag-and-drop in our model has to run a
drag-and-drop manager. These managers are responsible for the
registration of source and target components (e.g. UI components
involved in the interaction), and they handle the creation/destruc-
tion of slave instruments and also help with the redirection of
event streams. A drag-and-drop manager is the single interface for
a set of instruments. Indeed, a master instrument can change
depending on the context, and slave instruments are created and
destroyed upon users’ activities. The drag-and-drop manager pro-
vides a stable interface for this set of instruments and further sim-
plifies communications between the main model entities.

Shared windows are created to display most feedback and will
be described further in Section 5.3.2.

Source and target components can be any basic UI components
involved in the interaction provided that they have the capacity
of registering to a drag-and-drop manager.

Distributed surface server and topology manager are the entities
responsible for handling shared windows distributed over displays
and their associated topology. They will be described in more de-
tail in Section 5.3.

5.2. Multi-instrument support and genericity

Our approach to usability and scalability problems mentioned
in Section 2.2 consists of providing a unified implementation
model that embodies drag-and-drop-like interaction techniques
in instruments. Even though the instrumental interaction Beaud-
ouin-Lafon, 2000 model is primarily devoted to describing interac-
tions, some aspects of the model are well suited to structuring
implementations.

Hence, our approach consists of proposing a multi-instrument
model which meets the following requirements:

� Instruments act upon objects transparently: objects are notified
about the manipulation as usual but they are not aware of the
type of instrument in use. The effort needed to introduce new
instruments is minimal.

� Users can choose the instrument they want to use, depending on
their preferences and the context (touch display, large display,
small display). This choice can be part of the user’s profile. It
can also be made on the fly to adapt to an evolving context.

� Several users can manipulate objects at the same time with dif-
ferent instruments.

Practically, instruments are defined through a hierarchy of clas-
ses, all inheriting from a very generic instrument class in the same
way that in most UI toolkits all widgets or graphical components
usually inherit from a generic window class.

It is important to note that an instrument embodies the imple-
mentation of both the interaction and the distribution (multi-com-
puter support).

5.2.1. Interaction
An instrument receives an input stream (e.g. events from a

mouse and a keyboard) and processes them to implement interac-
tions. Fig. 4 presents two state diagrams Muller and Gaertner, 2003
that depict interaction models for push-and-throw and push-and-
pop. Actually, the first state diagram could also stand for the drag-
and-drop and drag-and-throw interaction models and the acceler-
ated push-and-throw interaction model is very close to the second
diagram.

Drag-and-drop-like state diagrams share several common
points due to the actual nature of the interaction techniques
that they embody. However, some differences between instru-
ments are visible in these diagrams, e.g. an additional state
for push-and-pop. The most important differences between
instruments concern the processing of input events and associ-
ated feedbacks.
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4 Input redirection is the transmission of an input stream so it can be treated on a
mote window. Input redirection involves (1) capturing events on a source window
) transmitting events from the source window to the target window and (3)

nalyzing events on the target window. Source and target windows can be the same
indow.
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5.2.2. Implementation
The PoIP API requires the instruments to be implemented fol-

lowing the master/slave scheme described in the next section.
We introduced no other constraints on instrument in order to keep
the maximum of possibilities for the implementation of various
future instruments.

The instrument implementations are facilitated by two means:
(1) a communication mechanism is provided between slave and
master instruments so instrument developers do not need to deal
with network aspects and (2) instrument classes’ inheritance. PoIP
heavily relies on object oriented concepts and instrument classes
form a hierarchy which allows an instrument to reuse some behav-
iors of its ancestors. For example, the accelerated push-and-throw
instrument inherits from the push-and-throw instrument and
reuses most of it.

Instruments implement interactions described in state dia-
grams (Fig. 4). The M-CIU model makes it possible for several
instruments (e.g. several state diagrams) to run simultaneously.
This corresponds to several users performing drag-and-drop like
operation simultaneously. Most of the time, the different instru-
ments run independently one from another and do not need to
synchronize, nor share resources. However it might happen that
at some point several different instruments might need to share
a given resource. This specific situation will be discussed in section
about multi-user and concurrency issues.

5.3. Multi-computer support and interoperability

In order to address the multi-computer issues discussed in Sec-
tion 2, one preliminary requirement is to support some sort of
interoperability between windowing systems. In our model, inter-
operability is based on (1) implementation of distributed surfaces
and (2) slave instruments.

5.3.1. Distributed surfaces
As defined previously, a distributed surface is a set of windows

possibly displayed by different windowing systems and behaving
as if they were part of the same workspace. In particular, a drag-
and-drop interaction can transparently start with one window of
the distributed surface handled in one windowing system and ends
on another window operated on another windowing system.

5.3.2. Shared windows
So far we have used the term window in a general way. We now

need to refine the concept and introduce the term shared window
to provide more details on implementation. A shared window is
used to make it possible for a given common window or graphic
component to be part of a distributed surface. A shared window
has a name and a unique ID. Shared windows act on their associate
windows or components in two ways:

� Redirection of input events received in the associated window4.
This mechanism allows a pointer to move across the distributed
surface, thus transparently surpassing windowing system
boundaries.

� Rendering feedbacks. A transparent pane is laid on top of the
window in order to render multiple pointers. This pane is also
made available for instruments to implement different types
of feedbacks, especially to perform drag-over feedback and
instrument feedback.

5.3.3. Distributed surface server
A distributed surface server is useful for establishing connec-

tions between the different shared windows independently of their
associated windowing system. Shared windows make a continuous
workspace using a given topology. This workspace can be distrib-
uted between multiple computers, used by multiple users, each
with different input devices (i.e. multi-computer, multi-user).

The distributed surface server is used to:

� Manage windows IDs. An ID identifies both windows and asso-
ciated input devices. An ID is assigned to a window when the
window is registered on the server.

� Maintain a list of shared windows to ensure that each time a
shared window registers or unregisters all other windows are
notified.

� Handle the topology of windows within the surface according to
a topology manager.

5.3.4. Topology manager
Our model includes a topology manager which is handled by

the distributed surface server. It manages the topology of shared
windows by offering the following services:

� Getting the shared windows which is at a given position rela-
tively to another shared window.

� Computing the new position of the pointer when it goes beyond
the limits of a shared window toward another shared window.
re
(2
a
w



5 The number of users cannot be higher than the number of computers involved
since only one input stream is managed on each computer.
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A default topology manager is provided in the PoIP API. The
default topology manager works with shared windows absolute
virtual coordinates in a two dimensions space. This means that
any shared window can be mapped against a location in the virtual
2D space. The default manager provides a basic graphical user
interface for users to specify the position of any new shared win-
dow relatively to the other previously registered shared windows.
This user interface is very limited but at the same time it makes it
possible for users to manipulate the topology very easily. However,
our default interface would not scale if the number of display were
to increase significantly. Therefore, in the future work we plan to
improve this default topology handling. More scalable approaches
such as lightweight personal bindings for example Ha et al., 2006
or others where topology is not based on absolute virtual coordi-
nates in 2D space but rather on the definition of relationships
between pairs of shared windows will be useful to improve the
default topology manager in the future. Note that the indepen-
dency between the topology manager strategy and the rest of the
model makes it possible to develop more advanced topology man-
ager to replace the default one and still benefit from the rest of the
model for drag-and-drop like interaction support.

The default manager further accounts for private and public
aspects of shared windows. During the registration, users may
specify if a shared window is private or public. When a shared win-
dow is declared private, it cannot be accessed by other pointers nor
allow any drag-and-drop operations on it. However, it still handles
redirection of pointers from the given private shared window to
any other public shared window. For that reason, the topology
manager ensures teleportation of pointers from private windows
to any public shared window. Hence by declaring a shared window
as private, a user can participate in the interaction occurring on
several distant public shared windows without having other peo-
ple interfering with his own private shared window. Note that sev-
eral private shared windows are allowed to be located at the same
place in the 2D space handled by the topology manager. Indeed,
since only one pointer can reach a given private shared window
there is no risk of ambiguity. As a consequence, the number of pri-
vate shared window is not an issue regarding the default topology
manager approach.

5.3.5. Master and slave instruments
In order to support multi-computer environments, instruments

are decomposed into one master instrument and several slave
instruments. The number of slave instruments depends on the con-
text and more specifically on the number of different computers
involved in the distributed surface. Most generic levels of commu-
nication between slaves and masters are handled at the most ab-
stract classes of instruments, but more specific communication is
left to more specific classes of instruments. Indeed, communica-
tions between masters and slaves may vary a lot both in terms of
nature and of frequency from one instrument to another.

A given drag-and-drop manager handles one and only one master
instrument and a variable number of slave instruments, depending
on the number of running drag-and-drop interactions. Master
instruments are used to implement appropriate state diagrams
(such as for example those depicted in Fig. 4). Each master instru-
ment can implement a different state diagram (this is the require-
ment for a multi-instrument support). Master instruments are also
responsible for the creation and suppression of slave instruments.
A master instrument requests the creation of slave instruments
when a drag-and-drop-like manipulation is detected and asks for
their destruction at the end of the manipulation. Thus, a master
instrument handles n slave instruments during manipulation where
n is the total number of shared windows in the distributed surface.
Master instruments dispatch orders to slaves using the communica-
tion mechanism offered by PoIP so that slaves can do the real job.
Let’s consider an example where two users meet in a room
where a wall-sized display with touch capacities is available. User
A is using the wall-sized display and the associated computer and
user B is using his own laptop. At one point, both users want to
exchange data using different drag-and-drop like extensions. User
A uses a push-and-pop interaction style while user B, on the con-
trary, prefers to use a push-and-throw interaction style. User A
starts a push-and-pop from computer A and the target component
is handled by application B running on the laptop of user B. At the
same time, user B starts a push-and-throw with his pen from his
laptop B toward an application running on computer A. This exam-
ple of a typical distributed drag-and-drop like operation.

Fig. 5, describes how masters and slave instruments communi-
cate when the two users of this example interact simultaneously.
In this situation, Window A of the Fig. 5 (respectively Window B)
is a shared window handled within the windowing system of user
A (respectively user B). This shared window receives events thanks
to the drag-and-drop manager installed on machine A (respectively
machine B). When user A interacts with his input device, the mas-
ter instrument associated with window A handles events according
to a push-and-pop state diagram described in (Fig. 4). The Fig. 5
shows that this master further dispatches orders to its associated
slave instruments to surpass the windowing system boundaries.
In turn, slave instruments do the real job: e.g. find which compo-
nent is at a given location or perform adequate feedback or action
in the relevant shared window.

At the same time, user B also interacts and as depicted on Fig. 5,
similar behavior occurs simultaneously on window B. The differ-
ence is that the master instrument of window B implements the
push-and-throw state diagram instead of a push-and-pop. The
M-CIU model makes this different transparent and what happens
on window B is very similar to what happens on window A: the
master instrument of window B handles events according to its
associated state diagram (namely push-and-throw of Fig. 4) and
further dispatches orders to its slaves so that adequate feedback
and actions be handled by them.

5.4. Multi-user support and concurrency

The M-CIU model allows multiple users to interact simulta-
neously on a distributed surface5. This can be achieved by augment-
ing event streams with the ID of the input device from which they
originally started. This feature enables multiple users to interact
using several different instruments simultaneously to perform
drag-and-drop-like operations. However, PoIP implementation is
limited by the input restrictions of the underlying windowing sys-
tem. As a consequence, in the current PoIP implementation of the
model, the number of simultaneous users cannot exced the number
of machines available for handling input.

In many cases, multi-user support brings to the scene concur-
rency issues. Concurrency problems for collaborative editing have
been widely documented by Ellis and Gibbs, 1989; Greenberg
and Marwood, 1994; Allison, 1994; Campbell, 2006 and others.
However, there are several reasons why the M-CIU model is not
responsible for concurrency management. Firstly, from the M-CIU
model perspective, the interactions that occur simultaneously are
independant from one another. Indeed, the M-CIU model handles
multiple instruments and feedback. It does not handle the actions
on objects which are performed at the level of applications (see
Section 5). When several instruments run simultaneously, only
their actions might lead to critical sections e.g. sections of code
where different actions might need to simultaneously work on a
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Fig. 5. Example of two concurrent drag-and-drop-like manipulations on a distributed surface containing two windows.
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common resource. Therefore it is natural that concurrency be han-
dled at the level of application, not at the level of the M-CIU model.

Orchis is a good example of an application based on M-CIU and
PoIP where concurrency can be handled relatively simply. See Sec-
tion 6 for more details. At the application level, concurrent access
on shared resources can be handled at a finer grain. Furthermore,
the semantic of concurrent access can be more precisely defined.
Depending on the semantic of the drag-and-drop associated
actions, different applications may choose between very different
strategies to handle concurrency including leaving concurrency
management to users, implementing a floor control mechanism,
using mutual exclusion, other database like approaches, or opti-
mistic locking or multi-versioning like in collaborative editing sys-
tems Greenberg et al., 1992; Sun and Chen, 2002; Moran et al.,
1995. Our experience with Orchis showed that managing critical
sections at the level of application induced flexibility and could
even lead to relatively simple solutions (see Section 6).

5.5. The five steps of typical drag-and-drop like interaction

Using the M-CIU model, all interactions are handled through the
main entities of the model described in the previous sections.
These interactions involve 5 steps typical of most drag-and-drop
existing implementation: initialization, drag detection, drag, drop,
and finalization. In this section, we illustrate how these five steps
are handled in the M-CIU model with the example introduced in
the previous section where two users interact simultaneously.

5.5.1. Initialization
Before any drag-and-drop-like operation starts, application A

and B are launched and elements needed for drag-and-drop-like
operations are created once: the source listener, the target listener,
and the master instruments. While these operations are required
only once, it is still possible to change these elements later, e.g. a
master instrument can be changed dynamically according to user
preferences. In this initialization step, source and target compo-
nents have to register themselves on the drag-and-drop managers.

5.5.2. Drag detection
The beginning of the push-and-pop of user A is detected by the

master instrument of computer A (which receives all input events
of computer A). Respectively, the beginning of the push-and-throw
of user B is detected by the master instrument of computer B.
When the beginning of the interaction is detected, associated
source components are notified and respond. Once source compo-
nents have accepted the operation, the master instruments ask for
the creation of all necessary slave instruments. As a result, each
drag-and-drop manager handles two slave instruments: one for
push-and-pop for user A and one for push-and-throw for user B.

5.5.3. Drag
During the drag process, master instruments notify slave instru-

ments that the pointer is moving. This type of redirection ensures
that the slave instrument can perform adequate feedback wher-
ever the pointer moves. When the pointer moves over a potential
target component, both the source and target component are
notified.

5.5.4. Drop
At the end of the operation targets are notified and data transfer

from source to target can take place. At this stage, master instru-
ments also ask for the destruction of all slave instruments in the
same way as they previously asked for their creation.

5.5.5. Finalization
When application A and B are closed, source and target compo-

nents unregister themselves from associated drag-and-drop Man-
agers. This happens only once per session whereas creation and
deletion of slave instruments happens every time a new drag-
and-drop-like operation is performed.

6. An application: Orchis

Orchis is an interactive and collaborative graphical application
designed to share bookmark collections. Its architecture is client/
server and most data is stored on the server side. Other web-based
bookmarking clients have been implemented as well to access the
same data. However, Orchis offers most graphical features associ-
ated with more direct manipulation (Shneiderman, 1981) style.
Hence we consider Orchis as a good place to illustrate the use of
our multi-instrument, multi-user, multi-computer model.

6.1. Scenario

Let’s consider the situation where several users gather book-
marks that deal with distributed display environments, for exam-
ple. Each of them owns a laptop and they regularly meet and
use an interactive wall-sized display to compose a common
repository.

In this context, one distributed surface server runs on the com-
puter associated with the wall-sized display and Orchis runs on
every computer involved in further interactions (e.g. all laptops
and the computer associated with the wall-sized display). Orchis
displays windows such as the windows depicted on Fig. 6.



Fig. 6. Two users working with Orchis on which two bookmarks are copied using accelerated push-and-throw. Topology of the three Orchis windows (top right) in the
meeting room and (bottom right) as managed by the topology manager.
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The topology of shared windows determines how one
pointer can move from one window on one computer to
another window on another computer and is shown on
Fig. 6 for two users and one wall-sized display. In Orchis,
the topology is handled by the default topology manager
contained in PoIP. It can be customized by the user inter-
face provided with it.

At one point, one user using regular drag-and-drop copies part
of his bookmarks to the wall-sized display. Using accelerated push-
and-throw, another user does the same.

Furthermore, one of the users organizes bookmarks gathered on
the wall-sized display by directly using the touch device associated
with the display (Fig. 6). Accelerated push-and-throw is defined as
the preferred technique for the wall-sized display so this user
operates using accelerated push-and-throw. By using the mouse
of his laptop, another user can bring his pointer on the shared win-
dow of the wall-sized display and occasionally helps the first user
in the organization task.
Bookmarks 
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Fig. 7. Orchis architecture: three clients access to the bookmark server through one web b
At the end of the process, the resulting bookmark collection is
saved in the database so it can be reused later by both Orchis
and all other connected web clients.

6.2. Software architecture and implementation

Orchis is a Java/Swing application which uses the PoIP API de-
scribed in the previous section. The Fig. 7 presents an example with
two Orchis applications running and accessing data from a book-
mark server. Other web-based clients have been developed to pro-
vide access to the same bookmark server. The Fig. 7 shows two
clients running Orchis and one web based client (bottom left of
the figure). The two Orchis instances contain shared windows
which automatically create a continuous shared workspace and
drag-and-drop like operations are performed from one shared win-
dow to the other.

In order to support multi-instrument, multi-display and multi-
user drag-and-drop operations between different instances of
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ased application (left laptop) and two instances of Orchis (center and right laptops).
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Orchis the work was minimal thanks to PoIP. As shown on Fig. 7,
the PoIP API manages all the communications between shared win-
dows. Each instance of Orchis creates a shared window object at
launch and then has to deal with identified input events. It further
implements the interfaces required by PoIP to perform drag-and-
drop like operations. The GUI components used in Orchis are not
aware of which drag-and-drop like technique is currently used.
Orchis further provides an interface for changing the technique
on the fly and forwards the user’s choice to the DnDManager han-
dled by PoIP.

6.3. Concurrency in Orchis

In Orchis, the only critical sections that have to be handled
occur when simultaneous interactions lead to move actions on
related bookmarks or folders. These situations are very rare. In-
deed, as noted by Stefik et al., 1987 among others, social protocols
decrease the probability of such critical sections. However, the
situation could occur and is handled by Orchis relatively simply.

Our approach in Orchis is based on the replication of objects
when they are dragged. Hence, when a drag starts, source objects
are replicated for each instrument performing the interaction.
When the interactions end, the actual move actions are performed
on the object in the order they were received by the surface server.
Consequently, the final position of the moved object is the position
last received by the surface server. Due to the very limited number
of situations where such concurrent access occur, this replication
strategy was found to be satisfactory. It keeps the interaction fluid
since no locking is performed and it does not compromise the con-
sistency of the data handled. However, other more sophisticated
strategies might be considered in the future work as new needs
arise.

6.4. Discussion

Orchis is an example of what can be done with PoIP API:

� Several windows from different computers can set up a seamless
distributed surface.

� This surface can be used simultaneously by several users.
� Each user can choose his preferred drag-and-drop-like interac-

tion technique. Note that Orchis only uses instruments that offer
full coverage (see Fig. 3).

One limitation is that only one input stream is managed on a
computer. The number of simultaneous users is therefore limited
to the number of computers involved in the distributed surface.
This limitation is not due to the M-CIU model but to the implemen-
tation of PoIP. PoIP deals with input events once they are treated by
the windowing system and therefore cannot identify if these
events are generated by different input devices. A better solution
would be to implement the M-CIU model at the windowing system
level Hutterer and Thomas, 2007. However, this requires important
development resources and is beyond the scope of our work.

7. Conclusion and future work

In this paper, we have shown the necessary changes to drag-
and-drop to meet requirements of new emerging interactive envi-
ronments. We have pointed out the necessary support for larger
and distributed display surfaces, heterogeneous interaction styles
and multi-user simultaneous interactions. We have further re-
viewed, compared and discussed recent drag-and-drop extensions
that partially address these issues. Finally, we have proposed the
M-CIU model, which is an implementation model that builds upon
these analyses to meet some of the challenging requirements of
new emerging interactive environments and to make it possible
for a programmer to support most extensions of drag-and-drop
in a single unified framework.

We have also provided an implementation of the model as an
API called PoIP that implements the M-CIU model at the toolkit le-
vel. PoIP can be used in the development of most Java-based graph-
ical applications. The API has been used in the development of a
collaborative bookmarking application called Orchis. Overall, PoIP
was found to be robust, and even though PoIP uses a layered pane
to display pointers and feedbacks, we did not notice any significant
reduction in performance with the Java applications tested.

Our model proposes a multi-instrument approach which is
important to address problems of usability and scalability men-
tioned in Section 2. In that context, modularity and genericity were
used to minimize the cost of introducing new drag-and-drop
extensions as new needs arise. Our model further supports mul-
ti-computer environments transparently. This is useful to support
drag and drop over distributed surfaces displayed by several com-
puters possibly running different windowing systems. Multi-com-
puter support is achieved thanks to the combination of shared
surface management and slave instruments. Finally, our model
supports multiplexing of input streams thanks to input device ID.
Hence, we make it possible for multiple users to perform different
types of drag-and-drop operations simultaneously.

However, there are several issues that were left open for future
work. First, as mentioned earlier, even though it is possible for sev-
eral users to interact on the same display simultaneously, we do
not address problems typical of single display groupware. Our
implementation is limited by the input restrictions of the underly-
ing windowing system. Therefore in PoIP the number of simulta-
neous interacting users is limited by the number of laptops
available. This is coherent with our main target scenario where
each user comes with his personal laptop. It is important to stress
that this limitation is in the implementation not in the model. PoIP
implementation is constrained by the difficulty to account for mul-
tiple concurrent input streams in today’s windowing systems.
Extending our implementation in PoIP to typical cases of SDG
would be an interesting further development. This would however
ask the question of the level at which the model should be imple-
mented. Our approach in PoIP was to implement the model at the
toolkit level but another interesting option would be to consider
deeper levels that might benefit from recent advances in this area
Hutterer and Thomas, 2007.

Another limitation left for future work is the question of scala-
bility in terms of users. M-CIU model was designed for small
groups of users and we have not yet investigated how it would
scale to considerably larger numbers of users. Future work in the
direction probably also need to consider this issue in a broader
context of social mediation in large groups.

Apart from this, several improvements of the model are neces-
sary to include more support for instrument implementation with-
out burdening the model with unnecessary functions. Since most
instruments can be implemented from state diagram descriptions,
augmenting the model with an approach similar to the approach of
Swingstates Appert and Beaudouin-Lafon, 2006 would be an inter-
esting future direction for this work. This might significantly re-
duce the code necessary to introduce new instruments without
falling into problems typical of monolithic approaches Bederson
and Hollan, 1994.

Lastly, an important future work concerns topology manage-
ment. This problem is very important in distributed display envi-
ronments. Since it was not the primary focus of the M-CIU
model, the default topology manager provided in our model is very
primitive. Nevertheless, it offers two advantages: (1) it already
makes it possible to manage the relative positions of shared win-
dows in the distributed surface and (2) it is very independent of
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the rest of the model and can be replaced with more advanced
topology management in the future. Recently, completely different
approaches can be found in the literature to address topological
issues in distributed display environments. These approaches
range from completely user-driven approaches like for example
in Swordfish Ha et al., 2006 to approaches where topology is con-
figured more automatically like in I-am for example (Lachenal,
2004). This opens the space for very interesting alternatives that
could replace or augment the current default topology manager
of our model.
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