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Abstract
Monadic second order logic can be used to express many
classical notions of sets of vertices of a graph as for instance:
dominating sets, induced matchings, perfect codes, indepen-
dent sets or irredundant sets. Bounds on the number of
sets of any such family of sets are interesting from a com-
binatorial point of view and have algorithmic applications.
Many such bounds on different families of sets over different
classes of graphs are already provided in the literature. In
particular, Rote recently showed that the number of mini-
mal dominating sets in trees of order n is at most 95

n
13 and

that this bound is asymptotically sharp up to a multiplica-
tive constant. We build on his work to show that what he
did for minimal dominating sets can be done for any family
of sets definable by a monadic second order formula.

We first show that, for any monadic second order

formula over graphs that characterizes a given kind of subset

of its vertices, the maximal number of such sets in a tree

can be expressed as the growth rate of a bilinear system.

This mostly relies on well known links between monadic

second order logic over trees and tree automata and basic

tree automata manipulations. Then we show that this

“growth rate” of a bilinear system can be approximated

from above. We then use our implementation of this

result to provide bounds (some sharp and some almost

sharp) on the number of independent dominating sets,

total perfect dominating sets, induced matchings, maximal

induced matchings, minimal perfect dominating sets, perfect

codes and maximal irredundant sets on trees. We also solve

a question from D. Y. Kang et al. regarding r-matchings

and obtain a sharp upper-bound on the number of maximal

matchings on trees. Remark that this approach is easily

generalizable to graphs of bounded tree width or clique width

(or any similar class of graphs where tree automata are

meaningful).

1 Introduction

Monadic second order logic can be used to express many
classical notions of sets of vertices of a graph as for
instance: dominating sets, induced matchings, perfect
codes, independent sets or irredundant sets. Bounds
on the number of such subsets are interesting from
a combinatorial point of view and have algorithmic
applications. Lower bounds on the number of such sets
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have direct implications on the enumeration complexity,
but the range of algorithmic applications is much wider
than that. For instance, the celebrated upper-bound
by Moon and Moser of 3

n
3 on the number of maximal

independent sets in a graph of order n was used by
Lawler to give a graph coloring algorithm in time
O∗((1 + 3

1
3 )n) which was the fastest coloring algorithm

for 25 years [14, 13]. Eppstein improved the algorithm
running time in 2003 by using an upper-bound on the
number of small maximal independent sets [5] (this
result as since been improved a few times).

One easily verifies that the result of Moon and
Moser is sharp since a collection of triangle has 3

n
3

maximal independent sets. The same question on other
subsets (in particular variations of dominating sets)
received a lot of attention, but we do not have many
sharp bounds. For instance, it was shown in [6] that
there are at most 1.7159n minimal dominating sets in a
graph of order n, but no graph is known with more that
1.5704n minimal dominating sets. On the other hand,
it is easier to obtain sharp bounds when restricting to
some smaller classes of graphs [4, 19]. Trees is a natural
class of graphs for this kind of questions. Recently
Rote showed that the maximal number of minimal
dominating sets of trees of order n grows in θ(95

n
13 )

[16, 17]. Given a family of graphs G and a function
F that maps every graph to a family of subsets of its
vertices, we call the growth rate of F over G the quantity
given by

lim sup
n→∞

max
G∈G,|G|=n

|F(G)|.

The result from Rote implies that the growth rate of
the number of minimal dominating sets over trees is
95

1
13 . On the other hand, Golovach et al. computed the

growth rate of some families of sets over paths [7]. They
used an automatic approach to compute the growth rate
of different (maximal or minimal) (σ, ρ)-dominating sets
over paths. They also found a recurrence relation and
computed the growth rate of maximal irredundant sets
over paths. Here, we generalize and automatize the
approach of Rote and we show that the growth rate
over trees of any family of sets that can be defined in
monadic second order logic is semi-computable. That
is, there exists an algorithm that takes as input the
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monadic second order formula describing the formula
and that outputs a decreasing sequence of upper-bounds
of the growth rate that converges toward the actual
value of the growth rate. We use this approach to
provide tight bounds for different problems and we solve
some conjectures and open questions along the way.

We start by introducing some definitions and no-
tations in Section 2. Then, we show in Section 3 that
given an MSO formula over graphs with a free second
order variable there is a tree automaton that recognizes
exactly the pairs (T, S) such that T is a tree and S is
a subset of T that satisfies the formula. In Section 4,
we show that the number of terms accepted by the tree
automaton has a bilinear inductive expression. This bi-
linear inductive expression can be easily computed from
the tree automaton. Up to this point everything can
be considered as folklore, but in the rest of Section 4
we show that the growth rate of this quantity is semi-
computable. The computation of this quantity relies on
finding convex polytopes that are fixed point of the bi-
linear map. This idea was introduced by Rote [16, 17] in
the particular setting of minimal dominating-sets, but
we show that it can be used in general to approximate
the growth rate of a bilinear system from above. More-
over, examination of the vertices of the polytope provide
extreme examples of trees and it allowed us to find con-
structions that are out of reach of a simple exhaustive
search.

In Section 5, we use an implementation of this de-
cision procedure to provide some bounds. In particu-
lar, we compute sharp bounds for the number of inde-
pendent dominating sets, total perfect dominating sets,
r-matching for some values of r, minimal perfect domi-
nating sets and perfect codes. Rote asked whether one
could use his approach to compute a sharp upper bound
on the number of maximal irredundant sets [16, 17].
Golovach et al. showed with a different approach that
the growth rate of the number of maximal irredundant
sets in trees is at least 1.5292 and at most 1.6181 [8].
We were not able to obtain an exact bound, but we
show that the growth rate of the maximal number of
maximal irredundant sets is between 14

9 ≈ 1.555556 and

48
1
9 ≈ 1.53746 which reduces the gap from 0.09 to 0.018.

We also answer a question from D. Y. Kang et al. asking
for which r ∈ {3, 4, 5, 7, 9} is the maximal number of r-
matchings over trees reached by paths [11]. We confirm
a conjecture of S. Wagner (personal communication)
that the sharp bound for the number of maximal match-
ings is the same than the sharp bound for the number of

maximum matching, ie Θ

((
11+
√

85
2

)n
7

)
. We also ob-

tain good bounds for the growth rate of the number of
maximal induced matchings in trees (the gap between

the upper and the lower bound is less than 10−25).
We end our paper with a discussion regarding the

possible generalizations. In particular, we mention
the fact that the approach is easily generalizable to
graphs of tree-width (or clique-width) at most k for any
constant k and that monadic second order logic can be
replaced by counting monadic second order logic.

2 Definitions and notations

For X ∈ {Z,Q,R}, we denote by X≥0 (resp. X>0) the
subset of all the non-negative (resp. positive) elements
of X. The order of a graph G denoted by |G| is the
number of vertices of G.

2.1 Monadic second order Logic, definable sets
and growth rate Monadic second-order logic is a
restriction of second-order logic where the second-order
quantification is restricted to quantification over sets.
We restrict ourselves to MSO1, that is second order
quantifiers can only be used over sets of vertices but
not over sets of edges. The syntax of MSO1 is given by

φ :=E(x, y)|x = y|X = Y |x ∈ X|¬φ|φ1 ∧ φ2

|φ1 ∨ φ2|φ1 ⇒ φ2|∀x.φ|∀X.φ|∃x.φ|∃X.φ,

where lower-case letters are first order variables and
upper-case letters are second order variables (with the
exception of E that denotes the adjacency relation).
The semantic is defined as expected by interpreting
E(x, y) as the adjacency relation.

A graph G models a closed formula Ψ, if Ψ is true
when interpreted over G which we denote by G |= Ψ.
Similarly, given a formula Ψ with one free variable X, a
graph G and a set S of vertices of G, we say that G,S
model Ψ (and we write G,S |= Ψ) if Ψ is true when
interpreted over G with X interpreted as S.

Let D be a function that maps any graph to a family
of subsets of its vertices (we will call such a function a
family of sets). We say that D is MSO1 definable if
there exists an MSO1 formula Ψ with one free variable
of the second order, such that for all graphs G,

D(G) = {S ⊆ G : G,S |= Ψ}.

For instance, a set S is a dominating set of a graph
if every vertex is in S or has a neighbor in S. Hence
dominating sets can be defined by the MSO formula

∀x, (x ∈ S ∨ ∃y, (y ∈ S ∧ E(x, y))) .

The growth rate of D (or of Ψ) over a family of
graphs G is the quantity defined as:

γ(D) = lim sup
l→∞

max
G∈G,|G|=l

|D(G)|
1
l
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or equivalently

γ(Ψ) = lim sup
l→∞

max
G∈G,|G|=l

| {S ⊆ G : G,S |= Ψ} | 1l .

We will show that over trees this quantity is approx-
imable from above.

3 Reduction to WS2S and tree automata

In this section, we use the decidability of WS2S to show
that the family of sets that satisfy any given MSO1

formula is recognized by a deterministic binary-tree
automaton. In particular, only Corollary 3.1 and the
definition of deterministic binary-tree automaton are
useful for the other sections. Moreover, the content of
this whole section is folklore and can be retrieved from
[3] so we allow ourselves not to be absolutely formal.

First, we need to introduce WS2S (Weak Monadic
second order logic with 2 successors).1 The objects of
WS2S are binary ordered trees, i.e., rooted trees in which
each node has at most one right child and at most one
left child. The first order elements are the vertices of the
tree and the second order elements are sets of vertices.
The syntax of formulas of WS2S is given by:

φ :=x = y|X = Y |x ∈ X|x ch1 y|x ch2 y|¬φ|φ1 ∧ φ2

|φ1 ∨ φ2|φ1 ⇒ φ2|∀x.φ|∀X.φ|∃x.φ|∃X.φ

where φ1 where x and y are first order variables and
X and Y are second order variables and φ1 and φ2

are formulas The semantic is defined as expected by
interpreting ch1 and ch2 to be respectively the left and
right child relations (i.e., x ch1 y is true if y is the right
left child of x). If a closed formula Ψ is true when
interpreted over a binary ordered trees T , we say that
T models Ψ and we write T |= Ψ.

This notion will be useful as we will see later any
set defined by a WS2S formula is recognizable by a
deterministic binary-tree automaton. Let us first show
that we can reduce any MSO1 formula to an equivalent
WS2S formula.

Let J be the operation, illustrated in Figure 1, from
pairs of rooted trees to rooted trees such that for all
trees T1, T2, J(T1, T2) is obtained by taking the disjoint
union of T1 and T2 adding and edge between the roots
of T1 and T2 and where the root of J(T1, T2) is the
root of T1. It is clear that every rooted tree can be

1The definition we give here is not exactly WS2S. Formally,

the terms of WS2S are words over {0, 1}, each such words is to

be understood as a position in the infinite binary-tree (01 would
be the left right child of the left child of the root). By using a

slightly different convention we avoid the task of defining a binary

tree as being a set of words. For more details on WS2S see [3] for
instance.

T1

T2

Figure 1: Illustration of J

(a) The proper binary ordered tree (b) The rooted tree

Figure 2: Illustration of the surjection from proper
binary ordered trees to rooted trees

obtained by applying J multiple times starting from
copies of the singleton tree. In other words, if we let
⊥ be the singleton tree, then the set of all rooted trees
is the smallest set that contains ⊥ and that is closed
under J . Thus there is a natural surjections from terms
over {J,⊥} to rooted trees. Moreover, the syntax tree
of terms over {J,⊥} gives a simple bijection between
terms over {J,⊥} and proper binary ordered trees (a
rooted binary tree is proper if each node has either 0 or
2 children).

This gives us a natural surjection ϑ from proper
binary ordered trees to trees (Figure 2 is an example of
this bijection). Given a proper binary ordered tree T ,
we also have a natural bijection ϑT that maps the leaves
of T to the nodes of ϑ(T ).

Given an ordered binary tree T and two nodes t1
and t2, we say that the node t1 is a right ancestor of t2
if t1 = t2 or if the left child of t1 is a right ancestor of
t2. The following Lemma, illustrated by the colors in
Fig. 2, is a simple consequence of the definition.

Lemma 3.1. Let T be a proper binary ordered tree and
u, v be two leaves of T . Then ϑT (u) and ϑT (v) are
adjacent in ϑ(T ) if and only if there exists u′ and v′ in
T that are respectively right-ancestors of u and v such
that one of u′ and v′ is the right child of the other one
in T .

The bijection ϑ and this Lemma are the main tools that
allow us to translate an MSO1 formula to a WS2S
formula in Theorem 3.1.

We will say that a set S of vertices of a proper
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binary ordered tree is consistent if S contains only
leaves. A consistent set S of a proper binary ordered
tree T naturally induces a subset ϑT (S) of ϑ(T ).

Theorem 3.1. For any MSO1 formula Ψ on graphs
there exists a WS2S formula Ψ2 that can be computed
from Ψ such that for any proper binary ordered tree T
and any subset S of T the following are equivalent:

• S is consistent and ϑ(T ), ϑT (S) |= Ψ,

• T, S |= Ψ2.

Proof. Let C := ∀x, y : x ch1 y =⇒ x 6∈ S. This
formula is satisfied if and only if S is consistent. Thus
Ψ2 will be the conjunction of C and a formula that
is true if and only if ϑ(T ), ϑT (S) |= Ψ under the
assumption that S is consistent. Let us now build the
second part of this formula.

Let

LCC(X) := ∀x, y : (x ∈ X ∧ x ch1 y) =⇒ y ∈ X

and

RA(x, y) := ∀A : (LCC(A) ∧ y ∈ A) =⇒ x ∈ A.

Then LCC(X) is true if the set X is closed by taking the
left child and RA(x, y) is true if any set that contains
y and is closed by taking the left child also contains
x. That is RA(x, y) is true if and only if y is a right
ancestor of x. Now let

Edge(u, v) :=∃u′, v′ : RA(u, u′) ∧RA(v, v′)

∧ (u′ ch2 v
′ ∨ v′ ch2 u

′).

From Lemma 3.1, we know that for any leaves u, v ∈ T ,
we have Edge(u, v) is true if and only if ϑT (u) and ϑT (v)
share an edge in ϑ(T ). In other words, E(ϑT (u), ϑT (v))
is true if and only if Edge(u, v) is true.

Let

Leaf(x) := ∀y : ¬(x ch1 y) ∧ ¬(x ch2 y)

and
Leaf(X) := ∀x : x ∈ X =⇒ leaf(x)

be the two formulas satisfied if the variable is a leaf
(resp. a set of leaves) of T .

Let Ψ2 be the conjunction of C and Ψ where each
quantification is replaced by a quantification restricted
to leaves and by replacing every use of the relation
E(x, y) by the formula Edge(x, y). More formally, let
g be the function from MSO1 formulas over graphs to
WS2S formulas inductively defined by:

• g(E(x, y)) = Edge(x, y) and g(t) = t for any other
atomic formula,

• for any first or second order variable µ, we have
g(∀µ.φ) = ∀µ.(Leaf(µ) =⇒ g(φ)),

• for any first or second order variable µ, we have
g(∃µ.φ) = ∃µ.(Leaf(x) ∧ g(φ)),

• g(¬(φ)) = ¬(g(φ)),

• g(φ1 ? φ2) = g(φ1) ? g(φ2) for any binary logical
connector ? ∈ {∧,∨, =⇒ }.

Then Ψ2 = C ∧ g(Ψ) and it easily verified by induction
on g that Ψ2 has the desired property.

A deterministic binary-tree automaton (DTFA) is
a tuple A = (Q,Σ, Qf , δ), where Q is a set of states,
Σ = Σ0 ∪ Σ2 is an alphabet with letters of arity 0 and
2, Qf ∈ Q is a set of final states, and δ : Σ0 ∪ (Σ2 ×
Q × Q) → Q is a transition function. We let δ̂ be the
function such that for any α ∈ Σ2 and terms x1, x2 over
Σ, δ̂(α(x1, x2)) = δ(α, δ̂(x1), δ̂(x2)), and δ̂(β) = δ(β) for

any β ∈ Σ0. A term t is then accepted by A if δ̂(t) ∈ Qf .
Intuitively the automaton works on the syntax tree of
the term, the state of a node is inductively deduced from
the states of its children and from its symbol, and the
term is accepted if the state of the root is in Qf .

As we have seen before the terms over {J,⊥} are
in natural bijection with their syntax trees and it we
say that a proper binary ordered tree is accepted by a
DTFA if and only if the associated term is accepted by
the DTFA. We need to extend the definition to pairs
(T, S) where T is a proper binary ordered tree and S is
a subset of the vertices of T . We let t(T, S) be the term
over {J0, J1,⊥0,⊥1} (where J0 and J1 are of arity 2 and
⊥0 and ⊥1 are of arity 0) such that T is isomorphic to
the syntax tree of t(T, S) and the index of a letter is 1
if and only if the corresponding node of T belongs to S.

Theorem 3.2. For any WS2S formula Ψ with a free
second-order variable X, there exists a DTFA A over
{J0, J1,⊥0,⊥1} such that for any proper binary ordered
tree T and any subset S ∈ T the following are equivalent:

• T, S |= Ψ

• t(T, S) is accepted by A.

Moreover, A can be computed from Ψ.

We do not provide the details of the proof of this
result, but it can be deduced by assembling different
results from [3] (this result is almost a particular case
of Lemma 3.3.4). Remark, that the natural statement
would replace proper binary ordered tree by binary
ordered tree, but since being proper for a binary tree
is expressible in MSO this is not a problem. Combining
Theorem 3.1 and Theorem 3.2 gives the following result.
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Corollary 3.1. For any MSO1 formula Ψ with a
second-order free variable X there exists a DTFA AΨ

over {J0, J1,⊥0,⊥1} that can be computed from Ψ such
that for any proper binary ordered tree T and any subset
S ∈ T the following are equivalent:

• S is consistent and ϑ(T ), ϑT (S) |= Ψ,

• t(T, S) is accepted by AΨ.

4 The maximal number of sets

4.1 An explicit formula... Let T (resp. Tn) be the
set of trees (resp. of trees of order n). Let B (resp.
Bn) be the set of proper binary ordered trees (resp.
that contains exactly n leaves). For any T ∈ B and
any DTFA A, let AcceptedA(T ) be the set of sets S of
vertices of T such that t(T, S) is accepted by A.

Lemma 4.1. For any MSO1 formula Ψ with a second-
order free variable X there exists a DTFA AΨ that can
be computed from Ψ such that for any integer n:

max
T∈Tn

|{S ⊆ T : T, S |= Ψ}| = max
T∈Bn

|AcceptedAΨ
(T )| .

Proof. Recall that ϑ is a surjection from B to T . Since a
binary ordered tree with n leaves is mapped to a tree of
order n by ϑ, we deduce that the restriction of ϑ to Bn is
a surjection from Bn to Tn. Thus Tn = {ϑ(T ) : T ∈ Bn}.
Moreover, for any T ∈ Bn, ϑT is a bijection from the
set of consistent subsets of T to the sets of ϑ(T ). Thus

max
T∈Tn

|{S ⊆ T : T, S |= Ψ}|

is equal to

max
T∈Bn

|{S ⊆ T : S is consistent and ϑ(T ), ϑT (S) |= Ψ}| .

We now get our result by letting AΨ be the automaton
given by Corollary 3.1 .

For any proper binary ordered tree T and any

DTFAA = (Q,Σ, Qf , δ), we let TA ∈ R|Q|≥0 be the vector

such that for any q ∈ Q, (TA)q is the number of subsets
of T such that A ends-up in the state q, that is:

(TA)q = |{S ⊆ T : δ̂(t(T, S)) = q}|.

If moreover, we let FA ∈ R|Q|≥0 be the indicator

vector of Qf (i.e., (FA)q = 1 if q ∈ Q and (FA)q = 0
otherwise), then:

(4.1) |AcceptedA(T )| = FA · TA.

For any DTFA A = (Q,Σ, Qf , δ), we let Ã : R|Q|≥0 ×
R|Q|≥0 → R|Q|≥0 be the bilinear map such that for all

u,v ∈ R|Q|≥0 and q ∈ Q:

Ã(u,v)q =
∑

δ(J0,q1,q2)=q

uq1 · vq2

Then by construction for any proper binary ordered
tree T whose left subtree is T1 and whose right subtree
is T2,

TA = Ã
(
TA1 , T

A
2

)
Remark that only the leaves of T can be in S (since we
want S to be consistent), and thus we know that there
is no transition with J1 in our tree-automaton and this
is why only J0 appears in the definition of Ã.

Finally, let IA ∈ R|Q|≥0 be the vector such that

IA = (T0)A where T0 is the tree that contains only
a root with no child or in other words, for all q ∈ Q

(IA)q = |{x ∈ {⊥0,⊥1} : δ(x) = q}|.

For any proper binary ordered tree T , there is a
natural associated term tT over {Ã, IA} (we replace the

leaves by IA and the internal nodes by Ã). If t̂T is the
result of the evaluation of tT seen as an expression then
it is easy to show by induction that equation (4.1) can
be rewritten

(4.2) |AcceptedA(T )| = FA · t̂T .

Since the number of internal nodes of any tree
T ∈ Bn is n − 1, the number of occurrences of Ã in
tT is n− 1.

Given any bilinear map B : Rn≥0 × Rn≥0 → Rn≥0

and any vector V0 ∈ Rn≥0, we let Bk(V0) be the set
of vectors obtained by any expression over B and V0

with k − 1 occurrences of B (or equivalently with k
occurrences of V0). In other words, the Bk(V0) are
inductively defined by:

• B1(V0) = {V0},

• for all k,

Bk(V0) =
k−1⋃
i=1

{
B(x, y) : x ∈ Bi(V0), y ∈ Bk−i(V0)

}
.

Then by construction and by equation (4.2)

{|AcceptedA(T )| : T ∈ Bn} =
{

FA · v : v ∈ Ãk(IA)
}

The following lemma is a direct consequence of this last
equation and of Lemma 4.1.

Lemma 4.2. For any MSO1 formula Ψ with a second-
order free variable X there exists an integer n, a bilinear
map B : Rn≥0 × Rn≥0 → Rn≥0 and vectors V0,F ∈ Rn≥0
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that can be computed from Ψ such that for any integer
k:

max
T∈Tk

|{S ⊆ T : T, S |= Ψ}| = max
v∈Bk(V0)

|F · v| .

It implies the following corollary.

Corollary 4.1. For any MSO1 formula Ψ with a
second-order free variable X there exist an integer n,
a bilinear map B : Rn≥0 × Rn≥0 → Rn≥0 and vectors
V0,F ∈ Rn≥0 that can be computed from Ψ such that:

lim sup
k→∞

max
T∈Tk

|{S ⊆ T : T, S |= Ψ}|
1
k

= lim sup
k→∞

max
v∈Bk(V0)

|F · v|
1
k .

4.2 ...expressed as “the growth rate” of a bi-
linear system For any integer n, bilinear map B :
Rn × Rn → Rn and vectors V0,F ∈ Rn, we call the
triple (B,V0,F) a bilinear system. The growth rate of
the bilinear system (B,V0,F) denoted by ρ(B,V0,F)
is defined as

ρ(B,V0,F) = lim sup
k→∞

max
v∈Bk(V0)

|F · v|
1
k .

From Corollary 4.1, we want to compute growth
rates of bilinear systems and this subsection is devoted
to results regarding the computability of these growth
rates. In particular, we will show that we can approxi-
mate this quantity from above and we will give a crite-
rion that can provide exact value under some conditions.
Let us start with the following Lemma that can be easily
deduced from the bilinearity of B.

Lemma 4.3. Let n be an integer, B : Rn × Rn → Rn
be a bilinear map and V0,F ∈ Rn be vectors. For any
positive constant α ∈ R>0, then:

ρ (αB,V0,F) = ρ (B, αV0,F) = αρ(B,V0,F) .

This lemma tells us that if we can semi-decide whether
the growth rate of a bilinear system is greater (resp.
smaller) than 1, we can semi-decide whether the growth
rate of a bilinear system is greater (resp. smaller) than
any fixed constant.

The next step is to show that without lose of
generality we can assume some nice properties regarding
the bilinear map. Let n be an integer, B : Rn×Rn → Rn
be a bilinear map and V0,F ∈ Rn be vectors. We say
that i-th coordinate is accessible if there is an integer k
and v ∈ Bk(V0) such that the i-th coordinate of v is
non zero. Let ei be the vector whose ith coordinate is
1 and the others are 0. We define inductively the set of
co-accessible coordinates:

• if the i-th coordinate of F is non zero then i is co-
accessible,

• if one of the co-accessible coordinate of B(ei, ej) is
non zero and the j-th coordinate is accessible then
the i-th coordinate is co-accessible,

• if one of the co-accessible coordinate of B(ei, ej) is
non zero and the i-th coordinate is accessible then
the j-th coordinate is co-accessible.

The motivation of these definitions is that we can ignore
coordinates that are not accessible and co-accessible
since they do not influence the result. Let m̃ be the
number of accessible and co-accessible coordinates. Let
h be the endomorphism that maps the i-th coordinate
to the i-th accessible and co-accessible coordinate and
hᵀ be the endomorphism that maps the i-th accessible
and co-accessible coordinate to the i-th coordinate. Let
B̃ = h ◦ B ◦ (hᵀ × hᵀ), ṽ = h(v) and F̃ = h(F).
The following lemma is a direct consequence of this
definition.

Lemma 4.4. Let n be an integer, B : Rn × Rn → Rn
be a bilinear map and V0,F ∈ Rn be vectors. Then for
any k,

max
v∈Bk(V0)

|F · v| = max
v∈B̃k(Ṽ0)

∣∣∣F̃ · v∣∣∣
and thus

ρ(B,V0,F) = ρ(B̃, Ṽ0, F̃).

This lemma tells us that one can assume that every
coordinate is accessible and co-accessible without lose
of generality. Remark, that in general the set of
accessible and co-accessible coordinates can easily be
computed by a recursive algorithm. Moreover, if our
bilinear map is associated to a minimal tree-automaton
whose garbage state was removed then the bilinear map
is already accessible and co-accessible. We are now
ready to discuss the computability of the growth rate
of accessible and co-accessible bilinear systems.

For any set of points X, we denote by conv(X) the
convex hull of X.

Lemma 4.5. Let n be an integer, B : Rn × Rn → Rn
be a bilinear map and V0,F ∈ Rn be vectors. Suppose
that there is a bounded set of vectors X ⊆ Rn such that:

• V0 ∈ conv(X),

• ∀u,v ∈ X, we have B(u,v) ∈ conv(X).

Then ρ(B,V0,F) ≤ 1. More precisely, for all u ∈⋃
k≥1 Bk(V0), |F · u| ≤ supx∈X |F · x|.
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Proof. The proof mostly relies on trivial manipulations
of convex sets. First, remark that

(4.3) conv({B(x, y) : x, y ∈ X}) ⊆ conv(X).

Let us first show by induction on k that for all
u ∈ Bk(V0), u ∈ conv(X). If u ∈ B1(V0), then by
definition u = V0 ∈ conv(X).

Suppose u = B(u1,u2) with u1 ∈ Bi(V0), u2 ∈
Bj(V0) and i + j = n. By induction hypothesis
there are two functions f1, f2 : X 7→ [0, 1] such that:∑
x∈X f1(x) =

∑
x∈X f2(x) = 1, u1 =

∑
x∈X f1(x)x

and u2 =
∑
x∈X f2(x)x. By bilinearity of B we get:

u = B(u1,u2) =
∑
x∈X

∑
y∈X

f1(x)f2(y)B(x, y)

Moreover,
∑
x∈X

∑
y∈X f1(x)f2(y) = 1 implies that u ∈

conv({B(x, y) : x, y ∈ X}) which implies u ∈ conv(X)
by equation (4.3).

Now we know that for all k and all u ∈ Bk(V0),
u ∈ conv(X). It implies that there is a function f : X 7→
[0, 1] such that:

∑
x∈X f(x) = 1 and u =

∑
x∈X f(x)x.

Thus |F ·u| = |
∑
x∈X f(x)F ·x| ≤ supx∈X |F ·x|. Since

X is a bounded set this implies that there is a constant
C such that for all k,

max
v∈Bk(V0)

|F · v| ≤ C

and thus
ρ(B,V0,F) ≤ 1

which concludes the proof.

If one can find such a set X then we deduce
that ρ(B,V0,F) ≤ 1. The statement of this lemma
cannot be turn into an “if and only if statement” since
there exist bilinear operators B with polynomial growth
which implies that ρ(B,V0,F) = 1, and

⋃
k≥1 Bk(V0)

is unbounded. On the other hand, Lemma 4.7 tells
us that if ρ(B,V0,F) < 1 then there is such a set
X. We first state an intermediate Lemma about the
approximation of convex sets that will be central in the
proof of Lemma 4.7. For any set S ⊆ Rn and any real

y, we let S
y =

{
v
y : v ∈ S

}
.

Lemma 4.6. Let S ⊆ Rn be a bounded convex set and
ε ∈ R>0 be a positive constant. If 0 belongs to the
interior of S there exists a finite set X ⊆ Qn such that

S

1 + ε
⊆ conv(X) ⊆ S.

Proof. Let x ∈ Rn be any point of the boundary of S
1+ε .

Since 0 belongs to the interior of S there exists β ∈ R>0

such that B the closed ball of radius β centered at 0 is
contained in S. Since (1 + ε)x ∈ S, the convex hull C
of (1 + ε)x and B is included in S. Thus the minimum
distance between x and the boundary of S is at least
the distance between x and the boundary of C. Since
the center of B, x and (1 + ε)x are on the same line,
the ball B′ of center x and of radius βε

1+ε is contained in
C (apply the intercept theorem to any radius of B′ and
the parallel radius of B). Thus the distance between the
boundary of S and the boundary of S

1+ε is at least βε
1+ε .

Let l ∈ Q>0 be a rational such that l < βε√
n(1+ε)

and

let X be the intersection of the grid of step l with S,
that is

X = S ∩ {lx : x ∈ Zn}.

Then the set X is a finite subset of Qn. Moreover, the
largest diagonal of a cell is smaller than βε

1+ε , this implies

that for any point x ∈ S
1+ε the cells that contain x are

all fully contained in S and so are the vertices of theses
cells. This implies that any point from S

1+ε is in the
convex hull of X, which concludes the proof.

using the fact that the distance between the two bound-
aries of the sets is at least βε

1+ε , this is possible to find
a much smaller set S. This is however, useless for us
since we only need that X be finite.

Lemma 4.7. Let n be an integer, B : Rn≥0×Rn≥0 → Rn≥0

be a bilinear map and V0,F ∈ Rn≥0 be vectors such
that all the coordinates are accessible and co-accessible.
Suppose that ρ(B,V0,F) < 1 then there is a finite set
of rational vectors X ⊆ Qn such that:

• V0 ∈ conv(X),

• for all u,v ∈ X, we have B(u,v) ∈ conv(X).

Proof. Let n be an integer, B : Rn≥0 × Rn≥0 → Rn≥0 be
a bilinear map and V0,F ∈ Rn≥0 be vectors such that
all the coordinates are accessible and co-accessible with
ρ(B,V0,F) < 1. Let ε ∈ R>0 be a positive real such
that (1 + ε)2ρ(B,V0,F) < 1. Then by Lemma 4.3, we
get ρ((1 + ε)B, (1 + ε)V0,F) < 1.

For any x, y ∈ Rn, we write x ≤ y if each coordinate
of x is at most equal to the corresponding coordinate of
y. For any X ⊆ R≥0

n, let conv≤(X) = {x ∈ Rn≥0 :
∃x′ ∈ conv(X),x ≤ x′} and

S = conv≤

⋃
k≥0

((1 + ε)B)k((1 + ε)V0)


We deduce that if S is unbounded then so is

the set
⋃
k≥0((1 + ε)B)k((1 + ε)V0). Since all the

coordinates are co-accessible, that would imply that
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maxv∈((1+ε)B)k((1+ε)V0) |F · v| is unbounded which con-
tradicts the fact that ρ((1+ε)B, (1+ε)V0,F) < 1. Thus
all the coordinates of any element of S are bounded.

By bilinearity of (1 + ε)B and the fact that all the
coordinates of B are non-negative, for any x, y ∈ S,
(1 + ε)B(x, y) ∈ S and thus B(x, y) ∈ S

1+ε . Moreover,

(1 + ε)V0 ∈ S and thus V0 ∈ S
1+ε . We deduce, that for

any set X such that S
1+ε ⊆ conv(X) ⊆ S, we get

• V0 ∈ conv(X),

• for all u,v ∈ X, we have B(u,v) ∈ conv(X).

In order to conclude the proof we only need to
show that there exists a finite set X ⊆ Qn such that
S

1+ε ⊆ conv(X) ⊆ S, but we cannot apply Lemma 4.6
immediately since 0 is in the boundary of S.

Let S′ = conv(S ∪ {−1}) where 1 is the vector
whose all coordinates are 1. Since all the coordinates
are accessible there exists a positive real α ∈ R≥0 such
that for all i ∈ {1, . . . , n}, the vector αei belongs to S
(αei is the vector whose ith coordinate is set to α and
every other coordinate to 0). Since S′ also contains −1
and is convex, 0 is in the interior of S′. Thus by Lemma
4.6, we deduce that there exists a finite set X ′ ⊆ Qn
such that

S′

1 + ε
⊆ conv(X ′) ⊆ S′.

Since S = conv≤(S), we get S′ ∩ R≤0 = S and thus

S

1 + ε
⊆ conv(X ′) ∩ Rn≤0 ⊆ S.

Moreover since X ′ ⊆ Qn is a finite set, there exists a
finite set X ⊆ Qn such that conv(X) = conv(X ′)∩Rn≤0.
We finally get

S

1 + ε
⊆ conv(X) ⊆ S

which concludes the proof.

As a Corollary of Lemma 4.5 and Lemma 4.7 we
get.

Corollary 4.2. Let n be an integer, B : Rn≥0×Rn≥0 →
Rn≥0 be a bilinear map and V0,F ∈ Rn≥0 be vectors such
that all the coordinates are accessible and co-accessible.
Let Λ ⊆ R≥0 be the largest set such that for all λ ∈ Λ,
there exists a finite set of rational vectors X ⊆ Qn such
that:

• V0

λ ∈ conv(X),

• for all u,v ∈ X, we have B(u,v) ∈ conv(X).

Then ρ(B,V0,F) = inf Λ.

This corollary holds if we replace the condition Λ ⊆ R
by Λ ⊆ S where S is dense in R (this is particularly
interesting if we take the set of rational numbers or the
set of algebraic numbers). We finally deduce that the
growth rate of a bilinear system is approximable from
above.

Theorem 4.1. There exists an algorithm that takes as
input an integer n, a bilinear map B : Rn≥0×Rn≥0 → Rn≥0

and two vectors V0,F ∈ Rn≥0 and that approximate
from above ρ(B,V0,F). That is, this algorithm outputs
a decreasing sequence of rational numbers (ai)i∈N such
that lim

i 7→∞
ai = ρ(B,V0,F).

Proof. Given a rational number α ∈ Q one can enumer-
ate all the finite sets X ⊆ Qn until finding such a set
that respects the conditions of Lemma 4.5 with B,V0

α
and F. If ρ(B,V0,F) < α, Lemma 4.7 implies that
we will find such a set in which case we will be able to
deduce that ρ(B,V0,F) ≤ α by Lemma 4.5.

Now,we can do that for all the rationals “in parallel”
(enumerate the rational and, between each new rational,
run one step of computation for every rational already
enumerated). Whenever the search succeeds for a ratio-
nal α, we have a new upper bound for ρ(B,V0,F) ≤ α
and we can stop running the search for every larger ra-
tional. This sequence of upper bound is clearly increas-
ing and since the search is going to succeed at some
point for any valid upper bound the sequence converges
toward the best upper bound, that is ρ(B,V0,F).

It is obviously not possible to use this algorithm even
for the simplest cases. However, in the next section we
are able to use this approach anyway to deduce a bunch
of results.

4.3 More on the computation of the growth
rate of a bilinear system The idea of finding a
convex polytope invariant by our bilinear operator was
already used by Rote for the computation of the growth
rate of the maximal number of minimal dominating sets
of trees [16, 17]. This idea is in fact really close to the
polytope norm method used for the computation of the
joint spectral radius (see for instance [1] for a definition
and an application of this method).

In his paper Rote already raised the question of the
computability of the growth rate of bilinear systems.
We were able to show here that this quantity is ap-
proximable from above. However, we suspect that this
quantity is in fact computable. Experimentally it is
rather easy to detect that Bk (V0) diverges. Being able
to do so would allow to decide whether the growth rate
is greater than 1 which would lead to an approximation
algorithm.
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Another question raised by Rote is “Is it sufficient
to consider bodies that are polytopes?”. Corollary 4.2
implies that, if one is interested in approximations of
the growth rate it is even sufficient to take polytopes
with rational coordinates. On the other-hand if the
growth rate is exactly one, then the set Bk (V0) is
not necessarily bounded. For instance the number of
induced paths of a tree is quadratic in the size of the
tree (choose the two ends of the path) and induced paths
are easily definable in MSO1. Thus if one desires exact
computations of the growth rate then there is not always
a suitable convex body.

5 Applications

As already stated, the algorithm of Theorem 4.1 cannot
be use to obtain interesting bounds. Instead of trying
all convex bodies, it is much more efficient to explicitly
compute conv≤

(⋃n
k=1 Bk

(
V0

α

))
2 for some “small”3 n

and a chosen α ∈ R≥0. In some cases, it reaches the
limit in finitely many steps. In other cases, by inspecting
conv≤

(⋃n
k=1 Bk

(
V0

α

))
, one can guess the limit or a set

that would respect the conditions. In many cases, it is
easy to find construction that give lower bounds. In fact,
by inspecting the vertices of conv≤

(⋃n
k=1 Bk

(
V0

α

))
one

can find the corresponding extreme construction.
One can replace the explicit computation of the

sets conv≤
(⋃n

k=1 Bk
(
V0

α

))
for all n by the following

algorithm.

Algorithm 5.1. Computation of the set X

Require: B,v0 and α
Ensure: X = conv≤

(⋃n
k=1 Bk

(
V0

α

))
if the algorithm

finishes
X := {v0

α }
while ∃x,y ∈ X such that B(x,y) 6∈ conv≤(X) do
X ′ := {B(x,y) : B(x,y) ∈ X}
X := Hull≤(X ∪X ′)

end while

In this algorithm, for all Y , Hull≤(Y ) is the smallest
subset Y ′ of Y that verifies conv≤(Y ′) = conv≤(Y ).
Remark, that Hull≤ can be easily computed using linear
programming. In deed, in order to verify that a point
lies inside the convex hull of other points, we only need
to verify that it is a convex combination of the other
points (this is an instance of linear programming where
we only want to know if there exists a solution and where

2Remark, that if one find a set X such that conv(X) is as

desired then so is conv≤(X), but using conv≤ leads to more
efficient computations (at least when one uses linear programming

to find conv(X) or conv≤(X)).
3By small, we mean “as large as computationally feasible”

which tends to be small.

we do not need to optimize the solution according to an
objective function). Most of the computation time is
spent on Hull≤ and it would be interesting to reduce it
(even our simplex implementation is sub-optimal).

Our implementation of this technique uses Mona
[12] to obtain the tree automaton from an MSO1

formula. Then a C++ program reads the output
and produces the bilinear map. Our program then
requires the user to input a value α (either as a
rational or as the root of a polynomial) and inductively
computes conv≤

(⋃n
k=1 Bk

(
V0

α

))
until reaching a fix-

point. The user can also provide some other vectors
that should be added to the set, this is useful whenever
the limit of conv≤

(⋃n
k=1 Bk

(
V0

α

))
is not reached in

finite time but can be guessed by the user. We only use
exact computations either on the rationals or on finite
algebraic extension of Q so there is no issue of precision.
More implementation details are given in Annex A.

In this Section, we first study the example of
independent dominating sets in details in order to
illustrate the technique presented here. This is a nice
example since the computations fit in a human brain.
Then we provide other results where the aid of the
computer is necessary. The choice of examples is
arbitrary and the main criterion of choice is that these
sets were interesting enough to be named. It should be
noted that we obtained good bounds for every family
of sets that we tried and that they are all listed in
this section (that is, we don’t know yet of a family of
sets definable in MSO1 for which our approach fails
completely). Recall that the case of minimal dominating
set was already solved by Rote that gave the upper
bound of 95

1
13 , our program can verify and agrees with

the result of Rote [16, 17].

5.1 Independent dominating sets A set of ver-
tices S of a graph (V,E) is an independent dominat-
ing set if it is an independent set and a dominating set.
That is, no two vertices of S are adjacent and every ver-
tex outside of S has a neighbor in S. Moreover, a set is
an independent dominating set if and only if is is a max-
imal independent set if and only if its complement is a
minimal vertex-cover (or a minimal transversal). It was
shown in [19], that the maximal number of independent

dominating sets of a tree of order n is 2
n−1

2 when n is
odd, and is 2

n
2−1 + 1 when n ≥ 2 is even. We provide

an alternative proof of this result in this subsection to
illustrate our approach.

Independent dominating sets can be defined by the
following formula.

Ψ(S) := (∀x, y : (x ∈ S ∧ y ∈ S) =⇒ ¬E(x, y))

∧ (∀x : x /∈ S =⇒ ∃y : y ∈ S ∧ E(x, y)) .
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The associated tree automaton is A = (Q,Σ, Qf , δ)
where Σ = {J0, J1,⊥0,⊥1}, Q = {F,D, d}, Qf =
{D, d}, δ is such that

δ(⊥0) = F δ(⊥1) = D

δ(J0, F,D) = d δ(J0, F, d) = F

δ(J0, D, d) = D δ(J0, D, F ) = D

δ(J0, d,D) = d δ(J0, d, d) = d

and δ is not defined in the remaining cases. Recall that
there is no transition for J1 since the set S is consistent.

Let us first remark, that the automaton is rather
small and this is the case for all the families of sets
that we study in this article (they could theoretically
be exponentially large in the size of the formula).
This tree automaton was automatically obtained using
our implementation, but one could easily find this
automaton without knowing links between MSO and
automata. Indeed, one may interpret D as “the current
root is in the independent dominating set”, d as “the
current root is not in the independent set and is already
dominated by one of its children” and F as “the current
root is not in the independent set and is not already
dominated by one of its children”. Then clearly two
nodes with the state D should not be connected since
this wouldn’t give an independent set and thus there
is no transition δ(J0, D,D). If one connects a node in
state F with a node in state d, then the nodes are still
in the same state and the node in state F has to be the
new root otherwise it will not gain any new neighbor
in the future to dominate it, thus δ(J0, F, d) = F and
there is no transition δ(J0, d, F ). If one connects a node
in state F with a node in state D, then the node in
state F is now in state d and we get δ(J0, F,D) = d and
δ(J0, D, F ) = D. The other transitions can be deduced
in a similar way.

The bilinear map B : R3
≥0×R3

≥0 → R3
≥0 and vectors

V0,F ∈ R3
≥0 that can be computed from Ψ that respect

Corollary 4.1 are given by:

V0 =

1
1
0

 , F =

0
1
1


and for all x, y ∈ R3,

B(x, y) =

 x1y3

x2y1 + x2y3

x1y2 + x3y3 + x3y2

 .

Let X be the set X =


 0

0
1√
2

 ,

0
1
2
1
2

 ,

 1√
2

1√
2

0

.

One easily verifies that X is stable by B and contains

s

s1

s2

s3

s4 s2n

s2n−1

Figure 3: Trees with Θ(2
n
2 ) independent dominating

sets

V0√
2
. We deduce by Lemma 4.5, that ρ(B, V0√

2
,F) ≤ 1

which implies by Lemma 4.3 that

ρ(B,V0,F) ≤
√

2 .

Thus if we let ρn be the maximal number of independent
dominating sets of a tree of order n, we deduce that
lim
n→∞

(ρn)
1
n =
√

2. In fact, Lemma 4.5 even tells us that

for all n, ρn ≤ 2
n
2 maxx∈X F · x = 2

n
2 .

For any positive integer n, let Tn be the graph given
by (see Figure 3)

Tn = ({s, s1, . . . , s2n}, {(s, s2i−1) : i ∈ 1, . . . , n}
∪ {(s2i−1, s2i) : i ∈ 1, . . . , n}).

Let D be a set such that for all i, |S ∩ {s2i, s2i+1}| = 1
and s ∈ D if and only if for all i, s2i−1 ∈ S. Then D
is an independent dominating set of Tn. Thus there are
at least 2n independent dominating sets of Tn which is
of order 2n+ 1.

Proposition 5.1. The number of independent domi-
nating sets in a tree of order n is at most 2

n
2 ≈

1.4142135n. It is sharp in the sense that the number

of independent dominating sets is at least 2
n−1

2 = 2
n
2√
2

for infinitely many trees.

In fact, the gap between the upper-bound and the lower-
bound is only due to the paths on 2 and 4 vertices and
we can provide an upper bound that is reached for every
odd integer.

Proposition 5.2. Let n ≥ 5. The number of indepen-
dent dominating sets in a tree of order n is at most

2
n−1

2 .

Proof. This result can be obtained by considering the
MSO1 property “S is an independent dominating set
and the tree is of order at least 5”. The associated tree
automaton is bigger, but Algorithm 5.1 still converges
quickly toward the limit convex set. One easily deduces
a set X that respects the conditions of Lemma 4.5 (such
a set is provided in our implementation). One can verify
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that for the provided set X, we have maxx∈X F · x =

2
−1
2 . For all n ≥ 5, a simple application of Lemma 4.5

on this set X gives ρn ≤ 2
n
2 maxx∈X F ·x = 2

n−1
2

We were able to provide the sharp bound for every
odd number. However, this bound is not sharp for
the trees of even order since according to [19] it should
be 2

n
2−1 + 1. We could in fact use exactly the same

technique for the even case. Indeed, the property “the
tree is of even order” cannot be simply expressed in
MSO1, but is recognizable by tree-automata. However,
the tools that we used did not allow us to easily
implement this.

We used two different tricks to bound the multi-
plicative constant term in front of the exponential term.
The first is that this bound is in fact given by largest
norm of any vertex of X (this is a simple consequence
of the second part of the statement of Lemma 4.5). The
second trick was to study the set of independent dom-
inating sets of “large” trees to obtain better bounds.
This idea is worth mentioning, but we did not used it
on the other results of this section. It is however, clear
that this would give better bounds for all the results
where the multiplicative constant is not optimal.

5.2 Total perfect dominating sets A subset of
vertices of a tree is a total perfect dominating set if every
vertex has exactly one neighbor in this set. The initial
vector, final vector and the bilinear map corresponding
to these sets are respectively given by

V0 =


0
0
1
1

 , F =


1
1
0
0


and for all u, v ∈ R4,

B(u, v) =


u1v1 + u3v2

u2v3 + u4v4

u3v1

u4v3

 .

We get the following result

Proposition 5.3. Let α = (227× 7)
1
85 ≈ 1.275157 and

C = α80

234881024 ≈ 1.186429. The number of total perfect
dominating sets of a tree of order n is upper-bounded by
Cαn. This value of α is sharp.

Proof. The computation of
⋃
k≥1 Bk(V0

α ) by Algorithm
5.1 converges in finite time and we reach a finite set
X (provided in [15, Annex B.1]) such that conv(X) =

conv
(⋃

k≥1 Bk(V0

α )
)

. By construction this set respects

s

k1 k2 k3 k4 k5 k6 k7 k9 k10 k11 k12k8 k13 k14

Figure 4: The tree T .

Figure 5: The tree T3 that has (227 × 7)3 total perfect
dominating sets.

the conditions of Lemma 4.5 which implies that for all
u ∈

⋃
k≥1 Bk(V0), |F · u| ≤ maxx∈X |F · x|. Given

the set X one easily verifies C = maxx∈X |F · x| which
concludes the proof of the upper bound Cαn.

Let T be the tree depicted in figure 4. Let D
be a perfect total dominating set of T . Each leaf of
the tree needs a neighbor in D, so all the ki are in D.
This implies that s is not in D, otherwise the nodes
between s and the ki would have two neighbors in D.
Moreover, exactly one neighbor of s is in D and ki is
the only other vertex in D in the corresponding subtree,
since ki needs exactly one neighbor in D. For the other
subtrees, exactly one of the leaf of each of them is in D.
Thus there are at least (413×14) = 227×7 perfect total
dominating sets.

Now let Tk be a chain of k copies of T where two
consecutive copies share an edge between their roots.
Then since the roots cannot be in the perfect total
dominating sets the number of perfect total dominating
sets is exactly (227 × 7)k = α85k. Thus Tk has n =
k(6 × 14 + 1) = 85k vertices and αn total perfect
dominating sets.

This case illustrates the power of our technique.
Given that the growth rate is (227 × 7)

1
85 , it seems that

there should be no elementary proof. However, the set
X is found automatically without human intervention
in approximately 10 minutes on an average laptop. The
construction of the lower bound corresponds to one of
the vertices obtained when trying to find X with a
smaller α.

5.3 Perfect codes A subset S of vertices of a graph
(V,E) is a perfect code if any vertex in V \ S has
exactly one neighbor in S and any vertex of S has no
neighbor in S. In other words, a set is a perfect code
if it is an independent set and a perfect dominating
set. The initial vector, final vector and the bilinear map
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s

Figure 6: On the left T and on the right T3.

corresponding to these sets are respectively given by

V0 =

0
1
1

 , F =

1
1
0


and for all u, v ∈ R3,

B(u, v) =

u1v1 + u3v2

u2v3

u3v1

 .

Proposition 5.4. Let α = 3
1
7 ≈ 1.16993 and C =

2
3α

5 ≈ 1.4612. The number of perfect codes of a tree of
order n is upper-bounded by Cαn. This value of α is
tight.

Proof. The proof that the upper-bound is correct can
be done by finding a set X that respects the conditions
of Lemma 4.5. One easily verifies that this is the case
for the following set that can be found by Algorithm 5.1

X =


 0

1
3α

6

1
3α

6

 ,

 1
3α

4

0
1
3α

4

 ,

 1
3α

5

1
3α

5

0

 ,

 2
3α

2

0
1
3α

2

 ,

1
0
1
3


In order to verify that this bound is sharp, let T

be the tree made of a central vertex s with 3 pendant
P2 (this graph is given in Figure 6). Let Tk be the tree
made of k copies of T connected by a path going through
the central vertices. The number of perfect codes of T
is 3 and none of the perfect codes contain s, thus Tk
at least 3k perfect codes. Since Tk has 7k vertices this
concludes the proof of the lower bound.

5.4 Minimal perfect dominating set A subset S
of vertices of a graph (V,E) is a perfect dominating set
if every vertex in V \S has exactly one neighbor in S. A
perfect dominating set S is minimal if there is no other
perfect dominating set strictly included in S.

The star on n vertices has 2n−1 − 1 perfect dom-
inating sets, so the growth rate of perfect dominating
sets over trees is 2. However, the case of minimal per-
fect dominating sets is not so trivial. The initial vector,

final vector and the bilinear map corresponding to these
sets are respectively given by

V0 =


0
0
1
1
0
0

 , F =


1
1
1
0
0
0


and for all u, v ∈ R6, B(u, v) is given by
u1v1 + u1v4 + u1v5 + u3v4 + u5v1 + u5v4 + u6v4

u2v2 + u4v1 + u4v3 + u4v5 + u4v6

0
u4v2

u3v1 + u5v5 + u6v1

u3v5 + u6v5

 .

We can show the following result.

Proposition 5.5. Let α be the real root of x3 − x − 1
between 1 and 2, α ≈ 1.32472 and C = −2α2 + 2α +
2 ≈ 1.14133. Then the number of minimal perfect
dominating set in a tree of order n is bounded by Cαn.
Moreover, this value of α is sharp even for paths.

Proof. Algorithm 5.1 applied to B, converges in finite
time and provides the following set that respects the
conditions of Lemma 4.5


0
0

α2 − 1
α2 − 1

0
0

 ,


0

α2 − α
0

α2 − α
α2 − α

0

 ,


α− 1
α− 1

0
α− 1

0
α− 1

 ,


1− α2 + α
1− α2 + α

0
0
0
0




.

We deduce our upper-bound.
Let us now show that this value of α is sharp even

for paths. Let P0 =⊥ and for all n, Pn+1 = J(⊥, Pn),
then clearly Pn is the path of order n rooted at one of

its end. Let P̃0 = V0 and for all n, P̃n+1 = B(V0, P̃n),

then F ·P̃n is the number of minimal perfect dominating
set of the path of of order n. Let M be the matrix given
by

M =


0 0 0 1 0 0
1 0 1 0 1 1
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0


then for all vector v, B(V0,v) = Mv and P̃n = MnV0.
The largest eigenvalue of M is α so the number of
minimal perfect dominating set of the path of of order
n grows in Θ(αn).
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5.5 r-matchings For any r ≥ 1 an r-matching is a
set of edges M such that any two edges of M are at
distance at least r. Matchings are exactly 1-matchings
and induced matchings are exactly 2-matchings. In
other words, S is an induced matching of a graph
(V,E) if any vertex from S has exactly one neighbor
in S. The authors of [11] initiated a study of the
maximal number of r-matchings in trees. The case of
matchings (1-matchings) was already solved and it is
known that the number of matchings of a tree of order
n is maximized by the path of order n [18]. In [11], they
showed that the number of 2-matchings over trees is also
maximized by paths. They asked whether this property
also holds for r-matching with other values of r and
showed that this is not the case for r /∈ {3, 4, 5, 7, 9} and
left the remaining cases as an open question. Using our
technique it is rather simple to solve all the remaining
cases. We show that for r ∈ {4, 5, 7, 9} the number
of r-matchings over trees is not maximized by paths.
In the case of 3-matchings, we show that, up to a
multiplicative constant, the number of 3-matchings of
the path of order n is as big as the number of 3-
matchings of any tree of order n. A careful study of
the vertices of the polytope would probably allow to
remove the multiplicative constant, but we leave this as
an open question.

A set S induces a matching of a graph if and only
if every vertex from S has exactly one neighbor in
S. Moreover, the fact that two nodes are at least at
distance k, for any fixed integer k, is easily expressible
in MSO1. Thus for any r ≥ 2, r-matchings of graphs
are definable in MSO1. Matchings over graphs are more
naturally expressed in MSO2, but in trees MSO1 has
the same expressivity as MSO2. Thus our technique
is well suited to attack this question. The cases of 1-
matchings and 2-matchings were already treated, but
we could easily provide an independent proof of these
results in half a page (it goes exactly as the proof of
Proposition 5.5).

Proposition 5.6. Let α ≈ 1.3802 be the real root of
x4−x3−1 between 1 and 2. Then there exists a constant
C such that the number of 3-matchings in a tree of order
n is at most Cαn. Moreover, this value of α is sharp
even for paths.

Proof. It was shown in [11] that α is the growth rate of
the number of 3-matchings over paths, so we only have
to show that the bound holds for all trees.

For 3-matchings, the initial vector, final vector and

the bilinear map are respectively given by

V0 =


1
0
0
1

 , F =


1
1
1
0


and for all u, v ∈ R4,

B(u, v) =


u1v1 + u1v2

u1v3 + u2v1 + u2v2

u3v1 + u4v4

u4v1

 .

Algorithm 5.1 converges in finite time and provides a
set that respects the conditions of Lemma 4.5 and we
get our upper-bound. We provide this set in [15, Annex
B.2].

Proposition 5.7. Let α = 13
1
9 ≈ 1.329754. Then

there exists a constant C such that the number of
4-matchings in a tree of order n is at most Cαn.
Moreover, this value of α is sharp.

Proof. For 4-matchings, the initial vector, final vector
and the bilinear map are respectively given by

V0 =


1
0
0
0
1

 , F =


1
1
1
1
0


and for all u, v ∈ R5,

B(u, v) =


u1v1 + u1v2

u1v3 + u2v1 + u2v2 + u2v3

u1v4 + u3v1 + u3v2

u4v1 + u5v5

u5v1

 .

The set given in [15, Annex B.3] respects the conditions
of Lemma 4.5 and we get our upper-bound.4

For our lower bound, let Tk be the tree constructed
from k copies of P9 and a vertex v such that there is an
edge from the central vertex of each P9 to v. We give
an illustration of T5 in Fig 7.

4In this case Algorithm 5.1 does not seem to converge in finite

time. However, if we start with V0 and V′ = (0, 1/13α8 +
1/6, 0, 0, 0)ᵀ instead of only V0 the Algorithm converges in
finite time. The set provided in [15, Annex B.3], is in fact⋃
k≥1 B

k
({

V0
α
,V′

})
. Remark, that in V′ the 1/6 can be

replaced by anything between 1/6 and 1/100 (that could be true
for any positive real smaller than 1/6). This underlines the fact

that the convex set that respects the conditions of Lemma 4.5 is
not necessarily unique.
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Figure 7: On the left P9 and on the right the tree T5.

In each copy of the P9 there are 13 4-matchings that
do not use the central vertex. If we chose one of these 4-
matchings for each copy then the union is a 4 matching

of the tree. Thus there are at least 13k = 13
n−1

9

4-matchings in Tk. Thus the maximal number of 4-
matchings of trees of order n grows in Θ(αn).

Proposition 5.8. Let α = 22
17 ≈ 1.29411 and β ≈

1.293211 be the only positive real root of the polynomial

x6×45−104625x5×45−14946778125000x3×45

−28242953648100000000x45−7230196133913600000000

There exists a constant C such that the number of 5-
matchings in a tree of order n is at most Cαn. There
exists a family of trees that have θ(βn) 5 matchings.

Proof. For 5-matchings, the initial vector, final vector
and the bilinear map are respectively given by

V0 =


1
0
0
0
0
1

 , F =


1
1
1
1
1
0


and for all u, v ∈ R6,

B(u, v) =


u1v1 + u1v2

u1v3 + u2v1 + u2v2 + u2v3

u1v4 + u2v4 + u3v1 + u3v2 + u3v3

u1v5 + u4v1 + u4v2

u5v1 + u6v6

u6v1

 .

The computation of
⋃
k≥1 Bk(V0

α ) by Algorithm 5.1
converges in finitely many steps and we reach a finite
set X that respects the conditions of Lemma 4.5.5 This

5This set X was computed in less than a minute on a

laptop and contains 59 vectors. However, the numerators and

denominators of the rational coordinates reach such high values
that writing the set takes approximatively 54000 letters and it

would take a few hundred pages to include this set. It seems more

efficient to provide the C++ code that computes and verifies this
set.

Figure 8: The tree T on the top and T3 on the bottom.

concludes the proof of the upper-bound.
For our lower bound, let T be the rooted tree given

in Figure 8 and let Tk be the tree made of k copies of
T connected by a path going through the roots of each
copy. Let VP11 be the vector corresponding to the path
over 11 vertices rooted in its central vertex, that is

VP11 = B(B(V0,B(V0,B(V0,B(V0,B(V0,V0)))))

,B(V0,B(V0,B(V0,B(V0,V0))))) .

Then let VT be the vector corresponding to T ,

VT = B(B(B(B(V0,VP11),VP11),VP11),VP11) .

Let M be the matrix such that for all x ∈ R6,
Mx = B(VT , x) then FMk−1VP11 is the number of
5-matchings of Tk. Explicit computation of M gives

M =


6561 6561 0 0 0 0
44064 44064 50625 0 0 0
54000 54000 54000 50625 0 0
5832 5832 0 0 6561 0
256 0 0 0 0 256
256 0 0 0 0 0

 .

and we easily compute that β45 is the largest eigenvalue
of M . This implies that the number of 5-matchings
of Tk is in θ(β45k). Since T contains 45 vertices, the
number of 5-matchings of Tk is in θ(βn) where n is the
number of vertices of Tk.

This is the first case where we are not able to provide the
exact growth rate. However, we are still able to provide
a really good bound and it implies that the maximal
number of 5-matching is not reached on a path (since
the number of 5 matchings of a path is ≈ 1.2852 [11]).
We believe that neither the upper-bound nor the lower-
bound is sharp.
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In fact, the construction of Proposition 5.7 can be
adapted to a construction with more 7-matchings (resp.
9 matchings) than the path.

Proposition 5.9. Let r ≥ 3 be an even integer. Then
the maximal number of r-matchings in trees of order n
is in Ω(15

n
r+6 ).

Proof. Let Tr,k be the tree built from k copies of Pr+6

all connected to the root v.
The number of r-matchings of Pr+6 that do not

include one of the r − 2 central nodes is 15. Indeed,
there are 4 free vertices on each side and thus, 4 possible
way to select at most one edge on each side (including
the one where no edge is selected), the only forbidden
configuration is the one where the most centrals non
forbidden edges are selected on each side (since this two
edges are at distance r − 1). This give us 42 − 1 = 15
such r-matchings.

Now if we select one of these r-matchings for every
copy of Pr+6, we get an r-matching of Tr,k since two
edges selected in two different Pr+6, are at distance at
least 2 r−1

2 + 2 = r + 1. Thus Tr,k has at least 15k

r-matchings. Since Tr,k has (r + 6)k + 1 nodes this
concludes our proof.

The lower bound from this Proposition is strong enough
to verify that the number of 7-matchings (resp. 9-
matchings) over trees are not maximized by the path
(the number 7-matchings (resp. 9-matchings) of the
path can be found in [11]).

Remark that these constructions do not maximize
the number of r-matchings. We could obtain slightly
better lower bounds by simply connecting the Pr+6 by
a path going through the central vertices, but construc-
tions similar to the one from Proposition 5.8 provide
even better lower bounds. However, the computation
become really complicated and this is not the goal of
this article to discuss in detail the case of r-matchings.
We could also use our method to obtain upper bounds
on the number of 7-matchings and 9-matchings in trees.

5.6 Maximal matchings A matching is maximal if
it is not strictly contained in another matching. The
authors of [9] showed that the maximal number of max-
imal matchings of a tree of order n grows in Ω(1.39097n)
and O(1.395337n) (the precise values of the constants
involved can be found in [9]). More recently, Heuberger
and Wagner showed that the maximal number of max-
imum matchings (matchings of maximal size) in trees

grows in Θ

((
11+
√

85
2

)n
7

)
[10]. Since every maximum

matching is maximal this improves the lower bound
on the maximal number of maximal matchings from

Ω(1.39097n) to Ω(1.39166n). S. Wagner conjectured
(personal communication) that the bound for maximum
matchings also holds for maximal matchings and we are
able to verify this conjecture.

Proposition 5.10. Let α =
(

11+
√

85
2

)n
7 ≈ 1.391664

and C = −1/3α10 + 11/3α3. The number of maximal
matchings of a tree of order n is less than Cαn. More-
over, this value of α is sharp.

Proof. In general, matchings are not expressible in
MSO1 since there are sets of edges. However in trees
MSO1 and MSO2 are as expressive since once can
always root the tree and represent an edge by the
corresponding child (an edge is always between a node
an a child of this node). Thus, our approach can be used
for this case as well. For matchings, the initial vector,
final vector and the bilinear map are respectively given
by

V0 =


0
1
0
1

 , F =


1
0
0
0


and for all u, v ∈ R4,

B(u, v) =


u1v1 + u1v2 + u2v4 + u3v4

u2v1

u2v2 + u3v1 + u3v2

u4v1 + u4v2

 .

The set given in [15, Annex B.4] respects the conditions
of Lemma 4.5. This concludes the proof of the upper-
bound.

The fact that the value of α is sharp was established
by the previously mentioned result of Heuberger and
Wagner [10].

The set provided in [15, Annex B.4] corresponds to⋃
k≥1 Bk(V0

α ) but does not seem to be reached by
Algorithm 5.1 in finitely many steps. However, the set⋃
k≥1 Bk({V0

α , v}) where v is a well chosen vector can
be computed in finitely many step by our algorithm and
is the set provided in [15, Annex B.4].

The vertex v is given by

v =
(

5α11

153 −
19α4

153 , 0,−
4α11

765 + 107α4

765 ,− 4α11

765 + 107α4

765

)ᵀ
and is a well chosen eigenvector of the matrix

8 3 0 5
0 0 0 0
3 0 0 3
3 0 0 3

 .
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T

Figure 9: The construction that asymptotically maxi-
mizes the number of maximal matchings

This matrix is the linear operation that correspond
to applying the operation over rooted trees depicted
in Figure 9. The precise scaling of this eigenvector
was chosen by studying the Jordan decomposition of
the matrix as well as the vectors that correspond to
extremal vertices obtained when trying to compute⋃
k≥1 Bk(V0

α ). Remark that the eigenvalue associated
to this eigenvector is α which tells us that iterating the
construction from Figure 9 gives a sequence of trees that
asymptotically have the maximum number of maximal
matchings.

The trees that maximizes the number of maximum
matchings (given in [10]) are also based on the graph
from Figure 9. However, the copies of this tree are
attached based on a more complicated structure. Since
our construction is only optimal up to a multiplicative
constant it might be the case that the construction
from [10] also optimizes the multiplicative constant.
However, it could also be the case that the tree that
maximize the number of maximum matchings do not
maximize the number of maximal matchings.

5.7 Maximal induced matchings We say that an
induced matching is maximal if it is not strictly con-
tained in another induced matching. In the case of max-
imal induced matching the computations become more
complicated than in the case of induced matchings and
instead of giving the exact growth rate we are only able
to provide really good approximations.

Proposition 5.11. Let α = 4254960628685
3195429966304 ≈ 1.331576

and β ≈ 1.331576 be the real root of 108 − 135x8 +
132x16−33x24 +12x32−x40 between 1 and 2. Then the
number of maximal induced matchings in a tree of order
n is less than αn. Moreover, there exists a constant
C ∈ R>0 and a sequence of trees with more than Cβn

maximal induced matchings.

Proof. The initial vector, final vector and the bilinear
map corresponding to these sets are respectively given
by

V0 = (0, 0, 1, 1, 0)T , F = (1, 1, 1, 0, 0)T

and for all u, v ∈ R5,

B(u, v) =


u1v2 + u1v3 + u1v5 + u4v4

u2v1 + u2v2 + u2v3 + u3v1 + u5v1

u3v2

u4v2 + u4v3 + u4v5

u3v3 + u5v2 + u5v3

 .

The computation of
⋃
k≥1 Bk(V0

α ) by Algorithm 5.1
converges in finitely many steps and we reach a finite
set X that respects the conditions of Lemma 4.5.6 This
concludes the proof of the upper-bound.

Now, let M be the matrix such that for all x ∈ R5,

Mx = B(B(V0,B(V0,B(V0,B(B(V0,V0),V0)))),

B(V0,B(V0, x))) .

One easily verifies, that for all x ∈ R5,

B(V0, x) =


0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 1 1 0 1
0 0 1 0 0

x .

Similarly,

B(V0,B(V0,B(V0,B(B(V0,V0),V0)))=(2,1,1,3,2)T

and thus for every x ∈ R5,

B(B(V0,B(V0,B(V0,B(B(V0,V0),V0)))), x) =


0 2 2 3 2
4 1 1 0 0
0 1 0 0 0
0 3 3 0 3
0 2 3 0 0

x .

We deduce that

M =


0 2 2 3 2
4 1 1 0 0
0 1 0 0 0
0 3 3 0 3
0 2 3 0 0




0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 1 1 0 1
0 0 1 0 0


2

=


5 5 3 2 0
1 4 4 1 4
0 0 0 1 0
3 3 0 3 0
3 0 0 2 0

 .

6This set X was computed in under 7 minutes on a laptop and

contains 80 vectors. However, the numerators and denominators

of the rational coordinates reach such high values that writing the
set takes around 220000 letters and it would take a few hundred

pages to include this set. It seems more efficient to provide the

C++ code that computes and verifies that Lemma 4.5 applies to
this set.
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The characteristic polynomial of M is −x5 + 12x4 −
33x3 + 132x2 − 135x + 108. By definition, β8 is a root
of this polynomial and one easily verifies that this is
one of the roots of largest absolute value. Since M is
primitive, we deduce that |FMnV0| grows in θ(β8n) as
n goes to infinity. Since, for all n, MnV0 ∈ B8n+1(V0),
we deduce that the growth rate of B is at least β.

Let us first discuss the bounds given in this proposition.
Remark, that the upper and lower bounds are both
exact bounds and not floating-point approximations.
Moreover, α−β < 7×10−26, thus even if the upper and
lower bounds do not match we can still advertise these
bounds as really good. The value chosen for α is simply
an (arbitrary) upper-approximation of β. In fact, it
seems that one easily gets arbitrarily good bounds here
since in this case the algorithm seems to converge with
any rational upper-bound and the lower-bound β seems
to be optimal. Going from a precision of 2×10−18 (with
933335285
700924826 ) to a precision of 7× 10−26 only increased the
computation time from 5 minutes to 7 minutes. That
might be the case that there is actually a finite polytope
X that allow us to close the gap between the upper
and the lower-bound but we were not able to find it (if
it exists we expect that one of the eigenvectors of M
corresponding to β should be a vertex of the polytope,
but it is not even clear which scaling should be applied).

We should also provide more intuition about the
construction that provided the lower-bound. The op-
eration corresponding to our construction that takes a
tree T and produces a new tree is depicted in Figure
10. We give an instance of this construction applied it-
eratively 6 times to the path on 2 vertices in Figure 11.
The construction was found by inspection of the vertices

of conv
(⋃

n≤k≥1 Bk(V0

β′ )
)

with β′ a real number close

to but smaller than β and n a relatively large integer.
Trees similar to the one from Figure 11 started to ap-
pear clearly when we reached vertices of the convex hull
corresponding to trees with 200 vertices (it took ≈ 10
minutes on a laptop).

5.8 Maximal irredundant sets The closed neigh-
borhood of a vertex v, denoted by N [v] is the set of
neighbors of v and v. For any graph (V,E), any set
S ⊆ V and vertex v ∈ S, we say that a vertex u is a
private neighbor of v if N [u]∩S = {v}. In other words,
u is a private neighbor of v if the only element from
S in the closed neighborhood of u is v. We say that a
set S is an irredundant set if every vertex from S has
a private neighbor. An irredundant set is maximal if
it is not strictly contained in another irredundant set.
Since their introduction by Cockayne, Hedetniemi and
Miller in [2], (maximal) irredundant sets received a lot

T

Figure 10: An illustration of the construction of the
lower bound of Proposition 5.11

Figure 11: An instance of the construction of the lower
bound of Proposition 5.11

of attention through the literature in particular because
of their relation with minimal dominating sets (see the
bibliographical references in [8] for instance). Indeed,
every set is a minimal dominating set if and only if it is
dominating and irredundant, and this implies that ev-
ery minimal dominating set is a maximal irredundant
set.

One easily verifies that the number of irredundant
sets of a star on n vertices is 2n−1. Rote asked
whether one could use his approach to compute a sharp
upper bound on the number of maximal irredundant
sets [16, 17] Golovach et al. showed with a different
approach that the growth rate of the number of maximal
irredundant sets is at least 1.5292 and at most 1.6181
[8]. We can reduce this gap of 0.09 to a gap of 0.018.

Proposition 5.12. Let α = 14
9 ≈ 1.555556 and β =

48
1
9 ≈ 1.53746. Then the number of maximal irredun-

dant sets in a tree of order n is less than αn. Moreover,
there exists a constant C ∈ R>0 and a sequence of trees
with more than Cβn maximal irredundant sets.

Proof. We provide the bilinear system associated with
maximal irredundant sets over trees in [15, Annex C].
The computation of

⋃
k≥1 Bk(V0

α ) by Algorithm 5.1
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Figure 12: The tree T on top and T3 on the bottom.

converges in finitely many steps and we reach a finite
set X that respects the conditions of Lemma 4.5.7 This
concludes the proof of the upper-bound.

Let T be the tree over 9 vertices built from a
central vertex with 4 pendant paths over two vertices
(illustrated in Figure 12). Then let Tk be the tree built
from k copies of T and two vertices s1 and s2 such that
the central vertex of each copy of T shares an edge with
S1 and s1 and s2 share an edge (illustrated in Figure
12). Let S be a maximal irredundant set of Tk such
that s1 ∈ S. First remark, that s2 6∈ S and S2 is
a private neighbor of S1 so s1 does not need another
private neighbor.

Let us count the number of ways of choosing S in a
given copy of T . Recall, that T has a central vertex and
four P2. We say that one of the P2 is occupied if one of
its vertex is in S (remark, that at most one of the two
vertices is in S). If a P2 is occupied then the vertex in S
has a private neighbor, but none of the two vertices can
be a private neighbor of the central vertex. If two P2

are not occupied, then S is not maximal. Thus either
all the P2 are occupied and the central vertex is not in
S or exactly one of the P2 is not occupied. This gives
24 + 4× 23 = 48 ways of choosing S in each copy of T .

We deduce that there are at least 48k maximal
irredundant sets in Tk. Since Tk has 9k + 2 vertices
this conclude the proof of our lower-bound.

Although 0.02 is a small gap between the lower and the
upper bounds, this is the worst bound in this article.
This is not surprising, since it is from far the bilinear

7This set X was computed in approximatively 4 hours on a
laptop and contains 393 vectors. It is once again too large to

inlude in an Annex (277000 letters), but we provide the C++
code that computes and verifies this set.

system of highest dimension. We are indeed, working
in R20, while the previous highest dimension system
was in R6. This makes each step of computation much
slower, but also increases the number of steps since
one might expect the best convex polytope to have
more vertices (this statement is to be understood as
a vague intuition and not a hard fact, since this is
probably the case that some systems in low dimension
have no convex polytopes with finitely many vertices).
This illustrates well the computational limits of our
approach, in particular if one wishes to obtain sharp
bounds. However, they are probably many ways to
improve the algorithmic complexity of this approach.

6 Generalization and conclusion

The main idea presented here was to use logic to deduce
automatically from the definition of a kind of sets the
bilinear map associated to a tree automaton recognizing
accepted sets and to use basic linear algebra to deduce
the growth rate of this family of sets. We were able
to obtain good bounds for all the families of sets that
we studied which is rather promising (they all appear
here except for minimal dominating sets and induced
matching that were already solved). Before generalizing
this approach it would be interesting to find other
interesting applications on trees.

There are many obvious generalizations of our ap-
proach. First, using standard techniques, we can replace
trees, by graphs of tree-width or clique-width (or any
other similar parameters) at most p for some fixed p. In
this cases, the alphabets of the terms corresponding to
a graph have more than one letter of arity 2 and one
has to project the tree-automaton on each of this letter
to obtain one bilinear map for each such letter. The
growth rate of a set of bilinear maps can be approx-
imated from above using exactly the same technique.
One can also replace MSO1 by MSO2 even for graphs
of bounded tree-width. In MSO2 quantification over set
of edges are also allowed and the only proof that need
to be slightly modified is the proof of Theorem 3.1 (in
fact, over trees MSO1 and MSO2 are equivalent since
one can always root the tree and represent an edge by
the node whose unique path to the root takes this edge
first). This would for instance allow to bound the num-
ber of perfect matchings in trees. In fact, second order
monadic logic can even be replaced by counting second
order monadic logic (one is allowed to test if the cardi-
nally of a set is ≡ a mod b where a and b are any fixed
integers). We could also handle tuples of sets instead
of sets and we could, for instance, bound the number of
proper 3-coloring of a tree. It is not clear that any of
these cases have any interesting applications and that
the computation can still be done by a computer.
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We can also restrict this approach to smaller classes.
One can replace trees by paths or graphs of path-width
at most p for some fixed p. Then tree-automata are re-
placed by automata and the bilinear maps by matrices.
In this case, the computation of the growth rate is re-
duced to the computation of the joint spectral radius
of a set of matrices. The joint spectral radius has been
widely studied and in particular there are known algo-
rithms that provides arbitrarily good approximations.
In the case of paths there is a single matrix and we can
always obtain an explicit formula for the tight bound.
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A Annex: C++ code

We give a short description of the code used to generate
the bilinear maps and find the sets X by applying
Algorithm 5.1. 8 The main scripts reads the user inputs,
calls Mona in order to obtain a tree automaton and calls
our C++ program to compute the growth of the bilinear
system. In order to use this one needs bash to call the
main script, g++ and gmp to compile the code (gmp is
a library that among other things implements rational
numbers) and Mona. The only requirement that is not
installed in a simple command line on a Linux is Mona,
but it is still rather simple to install.9

There are fives useful files for our script. The script
himself is in Growth in trees.sh. The script starts
by checking that g++ and Mona are properly installed
and compiling the C++ files. Then it asks the user to
either chose from a list or provide an MSO formula. It
calls Mona on the chosen formula and reads the output.
It cleans the output of Mona from everything else than
the description of the tree automaton and calls the C++
program. The list of pre-configured inputs is stored in
the file mso formulas in a text format that can easily
be modified. The program (generated from the file
read Mona Output Tree.cpp) then asks the user to

8The files can be downloaded from the ancillary files at the

arXiv repository of [15].
9Mona can be downloaded from here https://www.brics.dk/

mona/download.html
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provide a possible value for the growth rate and applies
Algorithm 5.1 to the bilinear system. This program runs
until it success, thus it might be necessary to kill.

Two other files are dedicated to the computation of
the set X:

algebraic.hpp: This file implements the class Number
that allows us to do exact computation on algebraic
numbers. This relies on the bijection between the
smallest algebraic extension of Q that contains α
and Q[X]/P (X) where α is an algebraic number
of minimal polynomial P (X). Interval of rationals
(that can be computed with arbitrary precision)
are used to solve inequalities. The only non-trivial
operation is the division, but this can be done by
using the extended Euclidean algorithm to compute
Bézout coefficients and obtain the inverse of a
polynomial in Q[X]/P (X).

X from operators.hpp: This file implements Algo-
rithm 5.1. We use a simple implementation of the
simplex algorithm to find the set conv≤(S).

For more details on the implementation, one should look
at the code.

Let us now shortly describe the syntax of MSO
formulas expected by our program. The only free
variable of the formula should be the second order
variable S that defines the desired family of sets. The
syntax of atomic formulas is as follows

φ :=edge(x, y)|x = y|x ∼= y|T = R

|T ∼= R|x in T |x notin T

where x and y are first order variables and T and
R are second order variables. Formulas are built from
atomic formulas using disjunctions (φ1|φ2), conjunc-
tions (φ1&φ2), implications (φ1 => φ2) and negations
(∼ φ2). Each formula should end with a semicolon
(;) and giving multiple formulas is the same as giving
the conjunctions of these formulas. Quantification is
slightly more complicated since one has to take care
that the manipulated variables are valid that is:10

• first order existential quantification of y is written
ex1 y: validVertex(y) & (φ)

• first order universal quantification of y is written
all1 y: validVertex(y) => (φ)

10It might seem redundant to use this validVertex and ValidSet

predicates, but remember that mona works with WS2S formulas,
so we need to translate our MSO1 formula as explained in
Theorem 3.1. If the user adds these keywords we only need to

define the corresponding predicates to mona and we avoid some
precomputations.

• second order existential quantification of y is writ-
ten ex2 y: validSet(y) & (φ)

• second order universal quantification of y is written
all2 y: validSet(y) => (φ)

For instance, the formula corresponding to independent
dominating sets is given by

all1 x: validVertex(x) =>

( all2 y:validVertex(y) =>

((x in S & y in S) => ~edge(x,y)));

all1 x: validVertex(x) =>

(x in S | ex1 y: validVertex(y)

& edge(x,y) & y in S);

while the equivalent MSO formula is

(∀x, y : (x ∈ S ∧ y ∈ S) =⇒ ¬E(x, y))

∧ (∀x : x /∈ S =⇒ ∃y : y ∈ S ∧ E(x, y))

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited


	Introduction
	Definitions and notations
	Monadic second order Logic, definable sets and growth rate

	Reduction to WS2S and tree automata
	The maximal number of sets
	An explicit formula...
	...expressed as ``the growth rate'' of a bilinear system
	More on the computation of the growth rate of a bilinear system

	Applications
	Independent dominating sets
	Total perfect dominating sets
	Perfect codes
	Minimal perfect dominating set
	r-matchings
	Maximal matchings
	Maximal induced matchings
	Maximal irredundant sets

	Generalization and conclusion
	Annex: C++ code

