
Numéro National de Thèse : 2017LYSEN033

Thèse de Doctorat de l’Université de Lyon
opérée par,

l’École Normale Supérieure de Lyon

École doctorale InfoMaths No 512
École doctorale en Informatique et Mathématiques de Lyon

Spécialité de doctorat : Informatique

Soutenue publiquement le 29 juin 2017 par,

Matthieu Rosenfeld

Avoidability of Abelian
Repetitions in Words

Évitabilité des répétitions abéliennes dans les mots

Devant le jury composé de :
Golnaz Badkobeh Early Career Fellow, University of Warwick Examinatrice
Valérie Berthé Directrice de recherche du CNRS, IRIF, Paris Examinatrice
Julien Cassaigne Chargé de recherche du CNRS, I2M, Marseille Examinateur
Maxime Crochemore Professeur des Universités, LIGM, Marne-la-Vallée Rapporteur
Michaël Rao Chargé de recherche du CNRS, LIP, Lyon Directeur de thèse
Gwenaël Richomme Professeur des Universités, LIRMM, Montpellier Rapporteur
Laurent Vuillon Professeur des Universités, LAMA, Chambéry Rapporteur

ii

Résumé

Dans ce document, nous étudions l’évitabilité de différentes formes de ré-
pétitions dans les mots. En particulier 3 des 6 chapitres sont dédiés aux
répétitions abéliennes en lien notamment avec deux questions d’Erdős de
1957 et 1961. Nous commençons par montrer qu’il existe un algorithme dé-
cidant, sous certaines conditions, si un mot morphique évite des puissances
abéliennes. Cet algorithme élargit la classe sur laquelle les précédents algo-
rithmes pouvaient décider. Une généralisation de cet algorithme nous permet
de montrer que les longs carrés abéliens sont évitables sur l’alphabet ternaire
et que les carrés additifs sont évitables sur Z2. Le premier résultat répond à
une question ouverte de Mäkelä datant de 2003 alors que le deuxième rap-
pelle la question ouverte de 1994 concernant l’évitabilité des carrés additifs
sur Z.

Une autre généralisation de notre algorithme permet d’étudier l’évitabilité
des motifs au sens abélien. Nous montrons que les motifs binaires de longueur
supérieure à 14 sont évitables sur l’alphabet binaire, améliorant la précédente
borne de 118.

Nous donnons des conditions suffisantes pour qu’un morphisme soit sans
longues puissances nème k-abéliennes. Ce résultat nous permet de calculer,
pour tout k ≥ 3, le nombre minimum de carrés k-abéliens qu’un mot binaire
infini doit contenir en facteur. Il permet aussi de montrer que les longs carrés
2-abéliens sont évitables sur l’alphabet binaire et qu’il existe un mot ternaire
qui ne contient qu’un seul carré 2-abélien en tant que facteur.

Enfin, nous proposons une classification complète des formules binaires
en fonction de la taille d’alphabet qu’il faut pour les éviter et du taux de
croissance (exponentiel ou polynomial) du langage les évitant.

iii

iv

Abstract

In this document, we study the avoidability of different kind of repetitions
in words. We first show that under some conditions one can decide whether
a morphic word avoids abelian n-th powers. This algorithm can decide over
a wider class of morphism than the previous algorithms. We generalize this
algorithm and use it to show that long abelian squares are avoidable over
the ternary alphabet and that additive squares are avoidable over Z2. The
first result answers a weak version of a question formulated by Mäkelä in
2003 and the second one is related to an open question from 1994 about the
avoidability of additive squares over Z.

Another generalization of this algorithm can be used to study avoidability
of patterns in the abelian sense. In particular, we show that binary patterns
of length more than 14 are avoidable over the binary alphabet in the abelian
sense. This improves considerably the previous bound of 118.

We give sufficient conditions for a morphism to be long k-abelian n-th
power-free. This result allows us to compute for every k ≥ 3 the number of
different k-abelian squares that a binary word must contain. We prove that
long 2-abelian squares are avoidable over the binary alphabet and that over
the ternary alphabet there exists a word that contains only one 2-abelian
square.

We also give a complete classification of binary formulas based on the size
of the smallest alphabet over which they are avoidable and on the growth
(exponential or polynomial) of the associated language.

v

vi

Contents

Introduction in french xi

Introduction xvii

1 Deciding Whether a Morphic Word is Abelian k-th Power
Free 1
1.1 Definitions . 3
1.2 Templates . 7
1.3 The decision algorithm . 8

1.3.1 Parents and pre-images 8
1.3.2 Finding the set Ranch(t0) ⊆ S ⊆ Anch(t0) 12

1.4 Abelian square-free pure morphic words 18

2 Avoidability of Additive Powers 21
2.1 Decidability . 22
2.2 Results . 23

2.2.1 Additive square-free words over Z2 24
2.2.2 Additive cubes-free words over Z 25

3 Avoidability of Long Abelian Powers 29
3.1 Abelian cubes and Mäkelä’s Question 3.2 30
3.2 Deciding if a morphic word contains large abelian powers . . . 33
3.3 Results . 35

3.3.1 Mäkelä’s Problem on squares 35
3.3.2 Link between long abelian powers and additive powers 36

4 Avoidability of k-Abelian Powers 39
4.1 Proving that a morphic word avoids long k-abelian squares . . 40

vii

4.2 Results . 43
4.2.1 Minimum number of distinct k-abelian squares in bi-

nary words . 43
4.2.2 2-abelian squares over a ternary alphabet 46

5 Avoidability of Binary Formulas 47
5.1 Classification of binary formulas 48
5.2 The useful lemma . 50
5.3 Polynomial formulas . 53
5.4 Exponential formulas . 56
5.5 A formula characterizing b3 63
5.6 Remarks about polynomial languages 64

6 Avoidability of Binary Patterns in the Abelian Sense 67
6.1 Divisibility and easy results 68
6.2 Decidability of pattern freeness in the abelian sense 70

6.2.1 Parents, ancestors and specialization of a template . . 71
6.2.2 Computing the set of special ancestors 76
6.2.3 Small eigenvalues and morphic words 78

6.3 Results and open questions . 79
6.3.1 Abelian-3-avoidability of binary patterns 79
6.3.2 Abelian-2-avoidability of binary patterns 80
6.3.3 Possible generalizations 83

7 Conclusion 85

8 Conclusion in french 89

A Abelian Avoidability Index of Binary Patterns 93

viii

List of Figures

1.1 Tree of words avoiding abelian squares over a ternary alphabet
(starting w.l.o.g. by 01). 2

3.1 Top: the exhaustive search of binary words avoiding abelian
squares of period at least 2. Bottom: the same exhaustive
search restricted to the prefixes of Lyndon words. 32

5.1 The number and maximal length of binary words avoiding the
maximally 2-unavoidable formulas. 51

5.2 The four infinite binary words avoiding AA.ABA.ABBA. . . . 55
5.3 The incompatibility graph. 64

7.1 The minimal number of different k-abelian squares in infinite
words over A. 86

7.2 The minimal number of different k-abelian cubes in infinite
words over A. 86

8.1 Le nombre minimal de carrés k-abéliens différents que contient
un mot infini sur A. 90

8.2 Le nombre minimal de cubes k-abéliens différents que contient
un mot infini sur A. 90

ix

x

Introduction

Les traveaux de Thue sur l’évitabilité des répétitions dans les mots mar-
quent le début de l’étude de la combinatoire des mots [59, 60]. Un carré
(resp. cube) est un mot w qui peut s’écrire w = uu (resp. w = uuu) avec
u un mot non vide. Tout mot binaire de longueur au moins 4 contient un
carré en facteur. Thue montra qu’il existe un mot ternaire infini qui évite
les carrés en facteur et un mot binaire infini qui évite les cubes (voir [7] pour
une traduction en anglais des deux articles de Thue).

Le fameux mot de Thue-Morse (parfois appelé suite de Prouhet-Thue-
Morse) est un exemple de mot binaire évitant les cubes, mais est aussi connu
pour de nombreuses autres applications allant de la géométrie différentielle
à la théorie des nombres (voir [1] pour certaines occurrences de ce mot dans
la littérature). Ce mot peut être obtenu en itérant le morphisme h à partir
de 0:

h :

{
0 7→ 01
1 7→ 10.

On peut montrer que si un mot binaire w évite les cubes alors h(w) évite les
cubes, et on obtient donc le résultat de Thue par induction.

De manière similaire, on peut obtenir un mot sans carrés en itérant ce
morphisme:

g :

0 7→ 012
1 7→ 02
2 7→ 1.

Depuis les mots sans carrés ont été bien étudiés. On sait par exemple que
le nombre de mots sans carrés sur l’alphabet ternaire est exponentiel en
fonction de la longueur des mots [9]. Le problème consistant à décider si un
morphisme préserve l’évitement des carrés (l’image d’un mot sans carrés est
sans carrés) a aussi reçu une certaine attention. Par exemple, Crochemore
a montré que, pour tout morphisme h, il existe une constante Ch, qui ne

xi

dépend que des tailles des images des lettres, telle que h préserve l’évitement
des carrés si et seulement si il préserve l’évitement des carrés pour les mots
de longueur au plus Ch [17].

De nombreuses généralisations de cette question ont été étudiées. On peut
citer la conjecture de Dejean [21] qui concerne les répétitions fractionnaires
et dont la résolution tient sur de nombreux articles de différents auteurs
[12, 41, 47, 48, 18, 52].

L’étude des répétitions abéliennes a été motivée par des questions d’Erdős.
Un carré abélien (resp. cube abélien) est un mot uv tel que v est obtenu par
permutation des lettres de u (resp. uvw avec v et w obtenus en permu-
tant les lettres de u). Erdős a demandé si les carrés abéliens sont évitables
sur 4 lettres [24, 25]. Après des résultats intermédiaires (alphabet de taille
25 par Evdokimov [26] et de taille 5 par Pleasant [50]), Keränen donna une
réponse positive à la question d’Erdős en donnant un morphisme 85-uniforme
(trouvé par ordinateur) dont le point fixe évite les carrés abéliens [34]. De
plus, Dekking a montré qu’on peut éviter les cubes abéliens sur l’alphabet
ternaire et les puissances 4-ème abéliennes sur l’alphabet binaire [22].

Les preuves d’existence d’un mot évitant certains types de répétitions
sont souvent basées sur des constructions explicites utilisant des mots mor-
phiques. Il existe donc de nombreuses méthodes de preuve, plus ou moins
génériques, pour montrer qu’un mot évite certains types de puissances. En
particulier, Dekking a fourni des conditions suffisantes pour qu’un morphisme
envoie tout mot sans puissances abéliennes sur un mot sans puissances abéli-
ennes [22] et Carpi a donné des conditions plus fortes [10]. Il a été conjec-
turé que les conditions de Carpi caractérisent les morphismes qui préservent
l’évitement des puissances k-ème abéliennes. Mais nous connaissons de nom-
breux morphismes qui n’ont pas cette propriété, mais dont le point fixe évite
les puissances k-ème abéliennes. C’est pourquoi un algorithme qui décide de
cette dernière propriété est un outil intéressant pour étudier l’évitabilité des
répétitions abéliennes. Currie et Rampersad ont donné un algorithme qui
peut décider de cette propriété sous de fortes conditions sur le morphisme
[19]. Dans le Chapitre 1, nous généralisons cet algorithme pour pouvoir dé-
cider sur une classe plus large de mots morphiques. Cet algorithme s’avère
être crucial pour les résultats des trois chapitres qui suivent.

Motivé par le fait que les carrés ne sont pas évitables sur l’alphabet ter-
naire, Erdős souleva la question de l’évitabilité des longs carrés [25]. En-
tringer, Jackson et Schatz ont donné une réponse positive à cette question
[23]. Dans le même article, ils ont montré qu’au contraire les longs carrés

xii

abéliens ne sont pas évitables sur l’alphabet binaire. Fraenkel et Simpson
ont amélioré le premier résultat en montrant qu’il existe un mot binaire in-
fini dont les seuls carrés sont 02, 12, (01)2 [27]. La construction de Fraenkel et
Simpson a depuis été simplifiée et il y a maintenant des preuves de ce résultat
basées sur des mots morphiques [28, 51], la plus simple étant la construction
donnée par Badkobeh [3].

Mäkelä posa les deux questions suivantes, qui sont assez naturelles après
les questions d’Erdős:

Problem 3.1 (Mäkelä (see [35])). Les carrés abéliens de la forme uv où
|u| ≥ 2 sont-ils évitables sur l’alphabet ternaire ?

Problem 3.2 (Mäkelä (see [35])). Les cubes abéliens de la forme uvw où
|u| ≥ 2 sont-ils évitables sur l’alphabet binaire ?

Dans le Chapitre 3, nous répondons négativement à la seconde question
et positivement à une version faible de la première.

Récemment Karhumäki et al. ont introduit l’équivalence k-abélienne,
une généralisation de l’équivalence abélienne [33]. Cela induit naturelle-
ment des notions associées comme la complexité k-abélienne, les classes
d’équivalence k-abéliennes ou les répétitions k-abéliennes. En particulier,
ils ont montré quelques premiers résultats et posé quelques questions à pro-
pos de l’évitabilité des puissances k-abéliennes [30, 31, 33]. Un des premiers
résultats concernant l’évitabilité des puissances k-abéliennes est que les car-
rés 2-abéliens ne sont pas évitables sur l’alphabet ternaire [31]. Après des
résultats intermédiaires [29, 39, 40], il a finalement été prouvé qu’on peut
éviter les carrés 3-abéliens sur l’alphabet ternaire et les cubes 2-abéliens sur
l’alphabet binaire [53]. En considérant les questions de Mäkelä, il semble na-
turel de demander si les longs carrés 2-abéliens sont évitables sur l’alphabet
ternaire ou si les longs carrés k-abéliens sont évitables sur l’alphabet ternaire
pour tout k. Nous donnons une réponse positive à ces deux questions au
Chapitre 4.

La notion de puissance modulo Φ, introduite par Justin, généralise la
notion de puissance et de puissance abélienne [32]. Une question partic-
ulièrement intéressante demande s’il existe un alphabet fini A ⊆ Z et un mot
infini sur A qui ne contient pas deux facteurs consécutifs de même somme
et même longueur [49]. Récemment Cassaigne et al. ont montré qu’on peut
le faire pour trois facteurs consécutifs [15]. Dans le Chapitre 2, nous con-
sidérons l’autre affaiblissement et nous montrons que la réponse est oui si la
question est posée avec la contrainte A ⊆ Z2.

xiii

De nombreux auteurs ont étudié l’évitabilité des motifs, une généralisa-
tion des puissances [8, 38, 44, 45, 58, 61]. En fait, Thue lui même était
intéressé par savoir si pour tout mot fini u et mot infini w, il existait un
morphisme non-écrasant h tel que h(u) est un facteur de w. Dans notre
terminologie, il demandait s’il existe des motifs évitables, et il montra que
AA et AAA sont évitables. Depuis nous avons une classification complète
des motifs binaires selon la taille d’alphabet nécessaire pour les éviter et
selon qu’ils sont évitables par un mot purement morphique ou non sur ces
alphabets [13, 57]. Cette notion s’étend naturellement a une notion de motif
modulo Φ ou de motif au sens abélien. Un motif P est un mot sur un alpha-
bet ∆, et on dit qu’un mot w réalise P (resp. réalise P au sens abélien) si
w peut s’écrire w = w1w2 . . . w|P | tel qu’aucun des wi n’est vide et que pour
tout i et j, Pi = Pj implique wi = wj (resp. wj est une permutation de wi).
Currie et Visentin ont montré que les motifs binaires de longueur plus que
118 sont évitables au sens abélien sur l’alphabet binaire [20]. Nous étudions
l’évitabilité des motifs binaires au sens abélien dans le Chapitre 6 et nous
montrons que les motifs binaires de longueur plus que 14 sont évitables au
sens abélien sur l’alphabet binaire.

Résumé des chapitres

Dans le Chapitre 1, nous montrons que, sous certaines conditions, nous
pouvons décider si un mot purement morphique évite les puissances n-ème
abéliennes. L’algorithme de décision est plus général que l’algorithme de
Currie et Rampersad ou que les conditions de Dekking ou de Carpi. En par-
ticulier, nous pouvons l’utiliser pour montrer que le morphisme h6 défini en
section 1.4 produit un mot sans carrés abéliens. Ce morphisme est partic-
ulièrement intéressant car seulement 3 de ses valeurs propres sont de norme
supérieure à 1 et nous avons besoin d’un tel morphisme pour les résultats des
Chapitres 2 et 3. Nous introduisons aussi de nombreuses notations au début
de ce chapitre.

Dans le Chapitre 2, nous généralisons l’algorithme du Chapitre 1 en un
algorithme permettant de décider sous certaines conditions de l’évitement
des puissances n-ème additives dans les mots morphiques. Nous utilisons
cet algorithme pour montrer qu’il existe un mot infini sur un sous-ensemble
fini de Z2 qui ne contient pas deux facteurs consécutifs de même longueur et
même somme. La construction est basée sur le morphisme h6 et un deuxième

xiv

morphisme qui envoie les lettres sur Z2. Cet algorithme peut aussi être utilisé
pour vérifier le résultat de Cassaigne et al. à propos de l’évitabilité des
cubes sur un ensemble fini de Z et nous montrons que les cubes additifs sont
évitables sur différents sous-ensembles de Z.

Dans le Chapitre 3, nous commençons par montrer que la réponse à la
question de Mäkelä 3.2 est négative, c’est-à-dire que chaque mot binaire infini
contient au moins un cube abélien de période supérieure à 2. Cela nous mène
à considérer une version faible de la question de Mäkelä où 2 est remplacé par
“un entier p”. Nous montrons ensuite qu’il existe un mot évitant les carrés
abéliens de période supérieur à 5 ce qui répond à la version faible de la Ques-
tion 3.1. La preuve est basée sur une extension de l’algorithme du Chapitre 1
qui permet de décider sous certaines conditions si un mot morphique évite les
puissances n-ème abéliennes de période plus que p. Nous montrons aussi que
l’évitabilité des longues puissances abéliennes et l’évitabilité des puissances
additives sont liées.

Dans le Chapitre 4, nous commençons par donner un ensemble de condi-
tions suffisantes pour qu’un morphisme h ait la propriété suivante: pour tout
mot w évitant les puissances n-ème abéliennes, h(w) évite les longues puis-
sances n-ème k-abéliennes. Puis nous utilisons ce résultat pour montrer qu’il
existe un mot ternaire infini qui ne contient qu’un seul carré 2-abélien [31].
Nous considérons ensuite la fonction g : N 7→ N ∪ {∞} tel que pour tout k,
g(k) est le nombre minimum de différents carrés k-abéliens qu’un mot binaire
infini doit contenir. D’après le résultat de Fraenkel et Simpson, nous savons
que pour tout k, g(k) ≥ 3 [27], et d’après le résultat d’Entringer, Jackson et
Schatz nous savons que g(1) = ∞ [23]. Nous montrons que g(3) = g(4) = 4
et que g(k) = 3 pour k ≥ 5. Puis, en utilisant une construction plus com-
pliquée basée sur la réponse à la question de Mäkelä, nous montrons que
5 ≤ g(2) ≤ 734.

Dans le chapitre 5, nous étudions l’évitabilité des formules, une générali-
sation des motifs introduite par Cassaigne [14]. En particulier, nous donnons
une classification complète des formules binaires en fonction de la taille du
plus petit alphabet permettant de les éviter et du taux de croissance du
langage associé.

Dans le Chapitre 6, nous généralisons l’algorithme du Chapitre 1 pour
pouvoir décider de l’évitement des motifs au sens abélien, et nous utilisons
cela pour montrer que les motifs binaires de longueur supérieure à 14 sont
évitables au sens abélien sur l’alphabet binaire.

xv

xvi

Introduction

The work of Thue on avoidability of repetitions in words initiated the
study of combinatorics on words [59, 60]. A square (resp. cube) is a word w
that can be written w = uu (resp. w = uuu) for some non-empty word u.
Every word of length at least 4 over the binary alphabet contains a square.
Thue showed, that there exists an infinite word over the ternary alphabet
that avoids squares.

He also showed that there exists an infinite binary word that avoids cubes
(see [7] for a translation of the two corresponding papers of Thue). The so-
called Thue-Morse sequence is an example of binary cube-free word and has
many other applications ranging from differential geometry to number theory
(see [1] for some of the occurrences of this sequence in the literature). The
Thue-Morse sequence also has different equivalent constructions. Thue gave
a construction based on a simple morphism:

h :

{
0 7→ 01
1 7→ 10.

The sequence can be obtained by iterating h over 0. One can show that for
any binary word w, if w avoids cubes, then h(w) avoids cubes. Since 0 avoids
cubes, it is clear by induction that for any n, hn(0) avoids cubes. Since the
Thue-Morse word can be obtained by iterating a morphism, we say that it is
a morphic word.

We can also obtain a square free ternary word by iteration of a simple
morphism:

g :

0 7→ 012
1 7→ 02
2 7→ 1.

Square-free words also received a lot of attention, and it was for instance
showed that the number of square-free words over the binary alphabet grows

xvii

exponentially with the length of the word [9]. Several people also investigated
the problem of deciding whether a given morphism preserves square-freeness.
For instance, Crochemore showed that for every morphism h there is a con-
stant Ch that only depends on the length of the images of the letters by h,
such that the morphism h preserves square-freeness if and only if it preserves
square freeness for words of length less than Ch [17].

Many different generalizations of this results and questions were studied.
The ones that received the more attention are probably fractional repetitions,
abelian repetitions and patterns. A word unv is a n+ |v|

|u| power if v is a prefix
of u. The famous Dejean conjecture describes for any given alphabet A the
infimum of the x such that x-powers are avoidable over A [21]. After the
work of many different authors [12, 41, 47, 48] the last cases of this conjecture
were eventually solved [18, 52].

The study of abelian repetitions was motivated by Erdős. An abelian
square (resp. cube) is a word of the form uv where v is a permutation of
the letters of u (resp. uvw where v and w are permutations of u). Erdős
asked whether abelian squares are avoidable over 4 letters [24, 25]. After
some intermediary results (alphabet of size 25 by Evdokimov [26] and size 5
by Pleasant [50]), Keränen answered positively Erdős’s question by giving a
85-uniform morphism (found with the assistance of a computer) whose fixed-
point is abelian square free [34]. Moreover, Dekking showed that it is possible
to avoid abelian cubes on a ternary alphabet and abelian 4-th powers over a
binary alphabet [22].

In the literature a common way to show the existence of an infinite word
that avoids some kind of repetition is to give an explicit construction based
on a morphic word. Because of the interest for this question it is possible
to find in the literature different generic ways to show that a pure morphic
word avoids abelian k-th powers. In particular, Dekking gave generic suffi-
cient conditions for a morphism to preserve abelian k-th power freeness [22]
and Carpi gave stronger conditions [10]. The set of conditions from Carpi is
conjectured to be a characterization of morphisms that preserve abelian k-th
power freeness. We know many morphisms that do not necessarily preserve
abelian k-th power freeness, but that produce abelian k-th power free word
when iteratively applied. An algorithm deciding if a morphic word avoids
abelian powers is an interesting tool to study avoidability of abelian powers.
Currie and Rampersad gave an algorithm that can decide under some con-
ditions if the word generated by iterating a given morphism avoids abelian
k-th powers [19]. In Chapter 1, we generalize this algorithm in order to be

xviii

able to decide on a larger class of morphic words. We needed to be able to
show this property for morphic words from this new class for the results of
the following sections.

Motivated by the fact that squares are not avoidable over the binary
alphabet, Erdős raised the question of the avoidability of long squares [25].
Entringer, Jackson and Schatz gave a positive answer to this question [23].
They showed in the same paper that long abelian squares are not avoidable
over the binary alphabet. Fraenkel and Simpson improved that result and
showed that there is an infinite binary word containing only the squares 02,
12, (01)2 [27]. The construction of Fraenkel and Simpson was simplified and
there are proofs of this result based on morphic words [28, 51] amongst which
the simplest was given by Badkobeh [3].

Mäkelä asked the two following questions, which are rather natural to ask
when looking at the two previous questions from Erdős:

Problem 3.1 (Mäkelä (see [35])). Can you avoid abelian squares of the form
uv where |u| ≥ 2 over three letters ? - Computer experiments show that you
can avoid these patterns at least in words of length 450.

He also asked the following similar question:

Problem 3.2 (Mäkelä (see [35])). Can you avoid abelian cubes of the form
uvw where |u| ≥ 2, over two letters ? - You can do this at least for words of
length 250.

In Chapter 3, we give a negative answer to the second question and a
positive answer to a weak version of the first question.

Recently Karhumäki et al. introduced k-abelian equivalence as a general-
ization of abelian equivalence [33]. It induces different interesting notions like
k-abelian complexity, k-abelian equivalence classes or k-abelian repetitions.
In particular, they showed some results and asked some questions about the
avoidability of k-abelian powers [30, 31, 33]. One of the first results con-
cerning the avoidability of k-abelian powers was that 2-abelian squares are
not avoidable over the ternary alphabet [31]. After some intermediary re-
sults [29, 39, 40], it was finally shown that one can avoid 3-abelian squares
over the ternary alphabet and 2-abelian cubes over the binary alphabet [53].
Considering Mäkelä’s questions it seems natural to ask in a similar fashion
whether long 2-abelian squares are avoidable over the ternary alphabet and
whether long k-abelian squares are avoidable over the binary alphabet for
any k. We give a positive answer to both questions in Chapter 4.

xix

The notion of power modulo Φ was introduced by Justin as a stronger
generalization of powers and abelian powers [32]. One of the main questions
related to this notion asks whether it is possible to build a word over a finite
subset of Z that does not contains two consecutive factors of same sum and
same size [49]. Recently Cassaigne et al. showed that you can do this for
three consecutive blocks [15]. In Chapter 2, we consider the other weakening
of the question and we show that there is an infinite word over a finite subset
of Z2 that does not contain two consecutive factors of same size and same
sum.

The avoidability of patterns, a generalization powers, also raised a lot
of interest [8, 38, 44, 45, 58, 61]. In fact, Thue himself was interested in
knowing whether for every word u and infinite word w there is a non-erasing
morphism h such that h(u) is a factor of w. In modern terminology he was
asking whether there exist avoidable patterns, and he showed that AA and
AAA are avoidable patterns. In particular, we have a precise classification
of binary patterns depending on the smallest alphabet on which they are
avoidable and on whether they are avoidable by a pure morphic word on
those alphabets [13, 57]. This notion extend naturally to a notion of pattern
modulo Φ or pattern in the abelian sense. A pattern P is a word over an
alphabet ∆, and we say that a word w realizes P (resp. realizes P in the
abelian sense) if w can be written w = w1w2 . . . w|P | such that none of the
wi is empty and for all i and j such that Pi = Pj, wi = wj (resp. wi is
a permutation of wj). Currie and Visentin showed that binary patterns of
length greater than 118 are avoidable in the abelian sense over the binary
alphabet [20]. We study avoidability of binary pattern in the abelian sense
in Chapter 6 and we show that binary patterns of length greater than 14 are
avoidable in the abelian sense over the binary alphabet.

Organization of the manuscript

In Chapter 1, we show that under some mild conditions one can decide
whether a pure morphic word avoids abelian n-th powers. The decision
procedure is more general than the algorithm from Currie and Rampersad or
the conditions from Dekking or Carpi. In particular, we can use it to show
that the morphism h6, defined in Section 1.4, generates an abelian square-
free word. This morphism is particularly interesting because it has only 3
eigenvalues greater than 1 and we needed such a morphism for the results

xx

from Chapter 2 and 3. We also introduce many notations at the beginning
of this chapter.

In Chapter 2, we generalize the algorithm from Chapter 1 and we get
an algorithm deciding additive n-th power freeness for morphic word under
some conditions. We use this algorithm to show that there is an infinite word
over a finite subset of Z2 that does not contain two consecutive factors of
same size and same sum. The construction is based on the morphism h6 and
a second morphism that maps letters to Z2. The algorithm can also be used
to check the result from Cassaigne et al. about avoidability of cubes on a
finite subset of Z and we show that we can avoid additive cubes over different
subset of Z.

In Chapter 3, we first show that the answer to Problem 3.2 is negative,
that is every infinite binary word contains at least one abelian cube of period
more than 2. It leads us to consider weaker versions of Mäkelä’s question
where 2 is replaced by any integer p. We then show that there is a word
avoiding abelian squares of period more than 5 which answers the weak ver-
sion of the Question 3.1. The proof is based on an extension of the algorithm
from Chapter 1 that allows us to decide under some conditions whether a
morphic word avoids abelian n-th powers of period more than p. We also
explain that we can also deduce some results about avoidability of additive
powers from the answer to Mäkelä’s questions.

In Chapter 4, we first give a set of sufficient conditions for a morphism
h to have the following property: for every word w avoiding abelian n-th
powers, h(w) avoids long k abelian n-th powers. Then we use this result to
show that there is an infinite ternary word whose only 2-abelian square is
22. This last result is optimal since 2-abelian squares are not avoidable over
the ternary alphabet [31]. Then we consider the function g : N 7→ N ∪ {∞}
such that for all k, g(k) is the minimum number of different k-abelian square
that an infinite binary word must contain. From the result of Fraenkel and
Simpson, we know that for all k, g(k) ≥ 3 [27], and from the result of
Entringer, Jackson and Schatz we know that g(1) = ∞ [23]. We first show
that g(3) = g(4) = 4 and that g(k) = 3 for every k ≥ 5. Then using a more
complicated construction based on the answer to Mäkelä’s question we show
that 5 ≤ g(2) ≤ 734.

In Chapter 5, we study the avoidability of formulas, a generalization of
patterns introduced by Cassaigne [14]. In particular we give a complete
classification of binary formulas based on the smallest alphabet over which
they are avoidable and the growth of the associated language.

xxi

In Chapter 6, we generalize the algorithm from Chapter 1 so that we can
decide pattern freeness in the abelian sense, and we use that to show that
binary patterns of length greater than 14 are avoidable in the abelian sense
over the binary alphabet.

xxii

Chapter 1

Deciding Whether a Morphic
Word is Abelian k-th Power Free

One of the most studied generalizations of repetition is the notion of
abelian repetition. We say that two words u and v are abelian equivalent ,
denoted by u ≈a v if they are permutations of the letters of each other.
Clearly ≈a is an equivalence relation over A∗. A word w is an abelian n-th
power if there are u1, . . . , un ∈ A+ such that w = u1u2 . . . un and for all
i, j ∈ [1, n], ui ≈a uj. Its period is |u1|. An abelian square (resp. cube) is
an abelian 2-nd power (resp. abelian 3-rd power). A word is abelian k-th
power-free, or avoids abelian k-th powers, if none of its non-empty factor is
an abelian k-th power.

The avoidability of abelian powers has been studied since a question from
Erdős in 1957 [24, 25]. He asked whether it is possible to avoid abelian
squares in an infinite word over an alphabet of size 4. We give in Figure 1.1
the exhaustive search that shows that abelian squares are not avoidable over
the ternary alphabet.

After some intermediary results (alphabet of size 25 by Evdokimov [26]
and size 5 by Pleasant [50]), Keränen answered positively Erdős’s question:

Theorem 1.1 (Keränen, [34]). Let σ4 be the morphism such that

σ4:

a→abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacbabdabacadcbcdcacdbcbacbcdcacdcbdcdadbdcbca

b→bcdbdadcdadbadacabcbdbcbacbcdcacdcbdcdadbdcbcabcbdbadcdadbdacdcbdcdadbdadcadabacadcdb

c→cdacabadabacbabdbcdcacdcbdcdadbdadcadabacadcdbcdcacbadabacabdadcadabacabadbabcbdbadac

d→dabdbcbabcbdcbcacdadbdadcadabacabadbabcbdbadacdadbdcbabcbdbcabadbabcbdbcbacbcdcacbabd.

Then any fixed point of σ4 is abelian square-free.

1

01

012
0120

01202

01201 012010

0121 01210 012101 0121012

010 0102
01020 010201 0102010

01021
010212
010210 0102101

Figure 1.1 – Tree of words avoiding abelian squares over a ternary alphabet
(starting w.l.o.g. by 01).

Moreover, Dekking showed that it is possible to avoid abelian cubes on a
ternary alphabet and abelian 4-th powers over a binary alphabet [22].

Theorem 1.2 (Dekking, [22]). Fixed points of the following morphism are
abelian cube-free:

σ3 :

a→ aabc
b→ bbc
c→ acc.

Theorem 1.3 (Dekking, [22]). The fixed point of the following morphism is
abelian 4-th power-free:

σ2 :

{
a→ abb
b→ aaab.

In the literature a common way to show the existence of an infinite word
that avoids some kind of repetition is to give an explicit construction based
on a morphic word. An algorithm deciding if a morphic word avoids abelian
powers is an interesting tool to study avoidability of abelian powers. In fact,
we see in Chapter 2, Chapter 3 and Chapter 4 that it also helps to study the
avoidability of different generalizations of abelian powers.

Dekking gave sufficient conditions for a morphism to be abelian k-th
power-free, that is the image of any abelian k-th power-free word by the
given morphism is also abelian k-th power-free [22]. Clearly, if a morphism
is abelian k-th power-free then any word generated by applying iteratively
this morphism on a letter is abelian k-th power-free. These conditions are
used to show Theorem 1.2 and Theorem 1.3, but are not strong enough to
show Theorem 1.1.

2

Carpi gave stronger sufficient conditions for a morphism to be abelian k-th
power-free [10]. The set of conditions is conjectured to be a characterization
of abelian k-th power-free morphisms, and can be used to show Theorem 1.1.
Nonetheless, there are many morphisms that are not abelian k-th power-free,
but that generate infinite abelian k-th power-free words. For instance, the
infinite word generated by the morphism h4 : a 7→ ac, b 7→ dc, c 7→ b, d 7→ ab
is abelian cube-free [15], but the image of dcc contains the abelian cube bbb.

Currie and Rampersad gave an algorithm that can decide on a certain
class of morphisms if the generated pure morphic words are abelian k-th
power-free [19]. Their algorithm can also be used to show Theorem 1.1, but
cannot be applied to the morphism h4. In this Chapter, we will generalize
this algorithm and ideas of [15] to give an algorithm that can decide for a
wider class of morphisms. In particular, this algorithm can be used to show
that h4 generates abelian cube-free words or that h6 (defined in Section 1.4)
generates abelian square-free word. The fact that our algorithm can decide
for morphisms with small eigenvalues is important because we need such
morphisms for the results of Chapter 2 and Chapter 3 where we generalize
this algorithm to be able to decide other avoidability properties of morphic
words.

Our algorithm is based on the notion of template that was introduced by
Currie and Rampersad [19], and we need to define this notion and to recall
some general results and notations from linear algebra before we give the
exact statement of the result and the proof. The results presented in this
Chapter are joint work with Michaël Rao and are part of the article [54].

1.1 Definitions

In this section, we recall some classical definitions about words. Most of
the terminology and notations come from Lothaire [37].

A finite alphabet A is a finite set whose elements are called letters . The
free monoid generated byA, denoted byA∗, is the set of all finite sequences of
elements from A, including the empty sequence, equipped with the concate-
nation operation. The elements of A∗ are called words and the empty word
is denoted by ε. The set of non-empty words is denoted by A+ = A∗ \ ε.
Infinite words are infinite sequences over an alphabet.

We denote the concatenation of two words u ∈ A∗ and v ∈ A∗ by u.v
or uv. For instance, if A = {a, b}, u = abba is a word over A and the

3

concatenation of u with aba is u.aba = abbaaba.
A morphism from a monoid (M, .) to a monoid (M ′,+) is a function f :

M 7→M ′ such that for all u, v ∈M , f(u.v) = f(u) + f(v) and f(εM) = εM ′ ,
where εM and εM ′ are the respective neutral elements of M and M ′. In
particular a morphism h : A∗ 7→ M from the free monoid A∗ is completely
characterized by the images of the letters by h and the image of ε is always
h(ε) = ε. For instance, if A = {a, b} and h : A∗ 7→ A∗ is such that h(a) = ab
and h(b) = ba then h(abba) = h(a)h(b)h(b)h(a) = abbabaab.

A morphism h is non-erasing if there is no letter a such that h(a) = ε.
A morphism h : A∗ 7→ A∗ is prolongable at a ∈ A if h(a) = as for some
s ∈ A+. In this case the sequence (hi(a))i∈N converges toward the infinite
word w = ash(s)h2(s)h3(s) . . . If the morphism is non-erasing, w is infinite
and we say that w is a pure morphic word generated by h, denoted by hω(a).
Note that every pure morphic word generated by a morphism h is a fixed
point of h. A morphic word is the image of a pure morphic word by a second
morphism.

The length of a word denoted by |.| is the number of elements of the
sequence. Note that |.| : A∗ 7→ N is a morphism since for all u, v ∈ A∗
|uv| = |u|+ |v|. For instance, if A = {a, b}, |ε| = 0 and |aba| = 3. We denote
by An = {w ∈ A∗ : |w| = n} the set of words of length n. A morphism is
said to be uniform if all the images of the letters by the morphism have the
same length.

A word u ∈ A∗ is a factor of w ∈ A∗ if there are p, s ∈ A∗ such that
w = sup. A word u is a suffix (resp. prefix) of w if there is v ∈ A∗ such that
w = vu (resp. w = uv). Let Suff(w) (resp. Pref(w), Fact(w)) be the set
of suffixes (resp. prefixes, factors) of w. For any morphism h, let Suff(h) =
∪a∈A Suff(h(a)), Pref(h) = ∪a∈A Pref(h(a)) and Fact(h) = ∪a∈A Fact(h(a)).

For any set of words F ⊆ A∗, we say that a word u avoids F (or u is
F -free) if no factor of u belongs to F . A language L is a set of words, and
we say that it is factor-closed (resp. prefix-closed) if for every w in L, every
factor of w is in L (resp. every prefix of w is in L). Note that a language L
is factor-closed if and only if there exists a set of words F such that L is the
set of words avoiding F .

For any letter a and word w, we denote by |w|a the number of occurrences
of the letter a in w. For any alphabet A and word w ∈ A∗ the Parikh vector
of w over A, denoted by ΨA(w) is the vector indexed over A such that for
all a ∈ A, ΨA(w)[a] = |w|a. When the alphabet is clear in the context
we write Ψ(w) to denote the Parikh vector of w. Note that two words are

4

abelian equivalent if and only if they have the same Parikh vector. For

instance, over the alphabet {a, b, c}, Ψ(acbaac) = Ψ(abacac) =

3
1
2

 and

thus acbaac ≈a abacac.
We associate to every morphism h : A∗ 7→ B∗ the matrix Mh indexed

on B × A such that (Mh)b,a = |h(a)|b. By definition we have that for every
w ∈ A∗, Ψ(h(w)) = MhΨ(w). If this is a square matrix, the eigenvalues of h
are the eigenvalues of Mh.

For any morphism h : A∗ 7→ A∗, let Fact∞(h) = ∪∞i=1 Fact(hi). We say
that h is primitive if there exists k ∈ N such that for all a ∈ A, hk(a) contains
all the letters of A (that is, Mh is primitive). If h is primitive then for any
letter a ∈ A, Fact∞(h) = ∪∞i=1 Fact(hi(a)) and we can use that fact to show
the following property:

Proposition 1.4. Let h be a primitive morphism on A∗ prolongable at a,
then Fact(hω(a)) = Fact∞(h).

Proof. Since h is prolongable at a there is, by definition, a non empty
word s ∈ A+ such that h(a) = as and hω(a) = h(a)h(s)h2(s) . . . Remark
that for all i, h(a)h(s)h2(s) . . . hi(s) = hi+1(a). Thus by primitivity of h,
Fact(hω(a)) = ∪∞i=1 Fact(hi(a)) = Fact∞(h).

In the rest of this section we recall some classical notions from linear
algebra.

Jordan decomposition A Jordan block Jn(λ) is a n×nmatrix with λ ∈ C
on the diagonal, 1 on top of the diagonal and 0 elsewhere.

Jn(λ) =

λ 1

λ 1 0
0 . . . 1

λ

We recall the following well known proposition (see [2]).

Proposition 1.5 (Jordan decomposition). For any n × n matrix M on C,
there is an invertible n × n matrix P and a n × n matrix J such that M =

5

PJP−1, and the matrix J is as follows:
Jn1(λ1)

Jn2(λ2) 0

0
. . .

Jnp(λp)

where the Jni

(λi) are Jordan blocks on the diagonal. PJP−1 is a Jordan
decomposition of M .

The λi, i ∈ {1, . . . , p}, are the (non necessarily distinct) eigenvalues of
M . The set of columns from P are generalized eigenvectors of M .

Note that for every k ≥ 0, (Jn(λ))k is the n × n matrix M with Mi,j =(
k
j−i

)
λk−j+i, with

(
a
b

)
= 0 if a < b or b < 0. Thus, if |λ| < 1,

∑∞
k=0(Jn(λ))k

is the matrix N where Ni,j = (1− λ)i−j−1 if j ≥ i, and 0 otherwise. We can
easily deduce from these observations the series of k-th powers of a matrix
in Jordan normal form, and its sum.

Smith decomposition The Smith decomposition is useful to solve systems
of linear Diophantine equations.

Proposition 1.6 (Smith decomposition). For any matrix M ∈ Zn×m, there
are U ∈ Zn×n, D ∈ Zn×m and V ∈ Zm×m such that:
— D is diagonal (i.e. Di,j = 0 if i 6= j),
— U and V are unimodular (i.e., their determinant is 1 or −1),
— M = UDV .

Since U and V are unimodular, they are invertible over the integers. If
one wants to find integer solutions x of the equationMx = y, whereM is an
integer matrix and y an integer vector, one can use the Smith decomposition
UDV ofM . One can suppose w.l.o.g. that n = m, otherwise, one can fill with
zeros. Then DV x = U−1y. Integer vectors in ker(M) form a lattice Λ. The
set of columns i in V −1 such that Di,i = 0 gives a basis of Λ. Let y′ = U−1y,
which is also an integer vector. Finding the solution x′ of Dx′ = y′ is easy,
since D is diagonal. The set of solutions is non-empty if and only if for every
i, y′i is a multiple of Di,i. One can take x0 = V −1x′0 as a particular solution
to Mx0 = y, with (x′0)i = 0 if Di,i = 0, and (x′0)i = y′i/Di,i otherwise. The
set of solutions is given by x0 + Λ.

6

For any vector x we denote by ||x|| its Euclidean norm. For any matrix
complex M , let ||M || be its norm induced by the Euclidean norm, that
is ||M || = sup

{
||Mx||
||x|| : x 6= −→0

}
. Let M∗ be the conjugate transpose of the

matrixM . We will use the following classical Proposition from linear algebra
(see [2]).

Proposition 1.7. Let M be a matrix, and let µmin (resp. µmax) be the
minimum (resp. maximum) over the eigenvalues of M∗M (which are all real
and non-negative). Then for any x:

µmin||x||2 ≤ ||Mx||2 ≤ µmax||x||2.

For any vector x, we also denote by ||x||1 its L1 norm, that is the sum of
the absolute value of its coordinates. The L1 norm is usefull for us because
of the following property: for any w ∈ A∗, |w| = ||Ψ(w)||1.

1.2 Templates

The notion of template was first introduced by Currie and Rampersad
for their decision algorithm [19]. A k-template is a (2k)-tuple of the form
t = [a1, . . . , ak+1,d1, . . . ,dk−1] where for all i, ai ∈ A ∪ {ε} and di ∈ Zn. A
word w = a1w1a2w2 . . . wkak+1, where wi ∈ A∗, is a realization of (or realizes)
the template t if for all i ∈ {1, . . . , k−1}, Ψ(wi+1)−Ψ(wi) = di. A template
t is realizable by h if there is a word in Fact∞(h) which realizes t.

Using the notion of k-templates, we can give an other equivalent definition
of abelian k-th powers:

Proposition 1.8. Let k ≥ 2 be an integer. A non-empty word is an abelian
k-th power if and only if it realizes the k-template [ε, . . . , ε,

−→
0 , . . . ,

−→
0].

Let t′ = [a′1, . . . , a
′
k+1,d

′
1, . . . ,d

′
k−1] and t = [a1, . . . , ak+1,d1, . . . ,dk−1]

be two k-templates and h be a morphism. We say that t′ is a parent by h of
t if there are p1, s1, . . . , pk+1, sk+1 ∈ A∗ such that:

— ∀i ∈ {1, . . . , k + 1}, h(a′i) = piaisi,

— ∀i ∈ {1, . . . , k − 1}, di = Mhd
′
i + Ψ(si+1pi+2)−Ψ(sipi+1).

We denote by Parh(t) the set of parents by h of t. We will show in Proposition
1.11 that for any t′ ∈ Parh(t) if t′ is realized by a word w, then t is realized

7

by a factor of h(w). In Proposition 1.12 we show that if t is realized by a long
enough word from Fact∞(h) then there is a realizable template t′ ∈ Parh(t).

A template t′ is an ancestor by h of a template t if there exists n ≥ 1 and
a sequence of templates t = t1, t2, . . . , tn = t′ such that for any i, ti+1 is a
parent by h of ti. A template t′ is a realizable ancestor by h of a template
t, if t′ is an ancestor by h of t and if t′ is realizable by h. For a template
t, we denote by Anch(t) (resp. Ranch(t)) the set of all the ancestors (resp.
realizable ancestors) by h of t. We may omit “by h” when the morphism is
clear in the context.

1.3 The decision algorithm
In this section, we show the following theorem.

Theorem 1.9. For any primitive morphism h with no eigenvalue of absolute
value 1 and any template t0, it is possible to decide whether Fact∞(h) realizes
t0.

Together with the Proposition 1.4, it implies the following corollary:

Corollary 1.10. For any primitive morphism h with no eigenvalue of abso-
lute value 1 it is possible to decide whether the fixed points of h are abelian
k-th power-free.

The main difference with the algorithm from Currie and Rampersad [19]
is that we allow h to have eigenvalues of absolute value less than 1.

We first show that for any set S such that Ranch(t0) ⊆ S ⊆ Anch(t0),
Fact∞(h) realizes t0 if and only if there is a small factor of Fact∞(h) which
realizes a template in S. Then we explain how to compute such a finite set
S. Since S is finite we can check for any k-template t ∈ S whether a small
factor realizes t and we can conclude.

1.3.1 Parents and pre-images

The next two lemmas tell that the realizations of the parents of a template
t are nearly the pre-images by h of the realizations of h.

Lemma 1.11. Let t′ be a parent of a k-template t0, and w ∈ A∗. If w realizes
t′, h(w) contains a factor that realizes t0.

8

Proof. Let t0 = [a1, . . . , ak+1,d1, . . . ,dk−1] and t′ = [a′1, . . . , a
′
k+1,d

′
1, . . . ,d

′
k−1].

Since w realizes t′, there are w1, . . . , wk ∈ A∗ such that w = a′1w1a
′
2 . . . wka

′
k+1

and for all i ∈ {1, . . . , k − 1}, Ψ(wi+1)−Ψ(wi) = d′i.
Since t′ is a parent of t0, there are p1, s1, . . . , pk+1, sk+1 ∈ A∗ such that:

— ∀i ∈ {1, . . . , k + 1}, h(a′i) = piaisi,

— ∀i ∈ {1, . . . , k − 1}, di = Mhd
′
i + Ψ(si+1pi+2)−Ψ(sipi+1).

Thus h(w) = p1a1s1h(w1)p2a2s2h(w2) . . . h(wk)pk+1ak+1sk+1. Now let for all
i, ui = sih(wi)pi+1 then the word u = a1u1a2u2 . . . ukak+1 is a factor of h(w).
Moreover for all i,

Ψ(ui+1)−Ψ(ui) = Ψ(si+1h(wi+1)pi+2)−Ψ(sih(wi)pi+1)

= Ψ(h(wi+1))−Ψ(h(wi)) + Ψ(si+1pi+2)−Ψ(sipi+1)

= Mh (Ψ(wi+1)−Ψ(wi)) + Ψ(si+1pi+2)−Ψ(sipi+1)

= Mhd
′
i + Ψ(si+1pi+2)−Ψ(sipi+1)

Ψ(ui+1)−Ψ(ui) = di.

Thus u realizes t0.

Let δ = maxa∈A |h(a)| and ∆(t) = maxk−1
i=1 ||di||1, for any k-template

t = [a1, . . . , ak+1,d1, . . . ,dk−1].

Lemma 1.12. Let t be a k-template and w ∈ A∗ be a word which realizes t.
If |w| > k

(
(k−1)∆(t)

2
+ δ + 1

)
+1 then for every w′ such that w ∈ Fact(h(w′))

there is a parent t′ of t such that a factor of w′ realizes t′.

The idea is that if the realization is long enough then the part corre-
sponding to each vector is longer than δ. This implies that the ai are images
of different letters and we can then unfold the definitions.

Proof of Lemma 1.12. Let t = [a1, . . . , ak+1,d1, . . . ,dk−1] be a k-template
and w ∈ Fact(h(w′)) such that |w| > k

(
(k−1)∆(t)

2
+ δ + 1

)
+ 1 and w realizes

t. Then there are w1, . . . , wn ∈ A∗ such that w = a1w1a2w2 . . . wkak+1 and
∀i ∈ {1, . . . , k − 1}, Ψ(wi+1) − Ψ(wi) = di. Thus for any i, j ∈ {1, . . . , k}
such that j < i, Ψ(wi) = Ψ(wj) +

∑i−1
m=j dm and, by triangular inequality,

9

we have: ∣∣|wi| − |wj|∣∣ =
∣∣||Ψ(wi)||1 − ||Ψ(wj)||1

∣∣
≤ ||Ψ(wi)−Ψ(wj)||1

≤
∣∣∣∣∣
∣∣∣∣∣
i−1∑
m=j

dm

∣∣∣∣∣
∣∣∣∣∣
1

≤
i−1∑
m=j

||dm||1

≤ (i− j)∆(t).

Therefore for any i, j ∈ {1, . . . , k}, |wj| ≤ |i− j|∆(t) + |wi|. Combining this
equality with |w| = k+1+

∑k
m=1 |wm| we deduce that for any i ∈ {1, . . . , k},

|w| ≤∑k
m=1(|i−m|∆(t) + |wi|) + k + 1 ≤ k(k−1)

2
∆(t) + k|wi|+ k + 1. Then,

by hypothesis, k
(

(k−1)∆(t)
2

+ |wi|+ 1
)

+ 1 ≥ |w| > k
(

(k−1)∆(t)
2

+ δ + 1
)

+ 1,
and consequently ∀i, |wi| > δ = maxa∈A |h(a)|. We also know that w ∈
Fact(h(w′)) so there are a′1, . . . , a′k+1 ∈ A, w′1, . . . , w′k ∈ A∗, p1, . . . , pk+1 ∈
Pref(h) and s1, . . . , sk+1 ∈ Suff(h) such that:

— w′′ = a′1w
′
1a
′
2 . . . a

′
kw
′
ka
′
k+1 is a factor of w′,

— ∀i, h(a′i) = piaisi,
— ∀i, wi = sih(w′i)pi+1.

Then w′′ realizes t′ = [a′1, . . . , a
′
k+1,Ψ(w′2) − Ψ(w′1), . . . ,Ψ(w′k) − Ψ(w′k−1)].

Moreover for all i:

di = Ψ(wi+1)−Ψ(wi)

di = Ψ(si+1h(w′i+1)pi+2)−Ψ(sih(w′i)pi+1)

di = MhΨ(w′i)−MhΨ(w′i) + Ψ(si+1pi+2)−Ψ(sipi+1)

di = Mh(Ψ(w′i)−Ψ(w′i)) + Ψ(si+1pi+2)−Ψ(sipi+1).

Thus t′ is a parent of t and t′ is realized by w′′ a factor of w′.

A small realization of a k-template t is a realization w of t such that
|w| < k

(
(k−1)∆(t)

2
+ δ + 1

)
+ 1. Using Lemmas 1.11 and 1.12 we can show

the following proposition:

10

Proposition 1.13. Let h be a primitive morphism, and t0 a k-template.
Then the following conditions are equivalent:

1. Fact∞(h) contains no realization t0,
2. Fact∞(h) contains no small realizations of any elements of Anch(t0),
3. Fact∞(h) contains no small realizations of any elements of Ranch(t0).

Proof. 2. ⇐⇒ 3. If a template t ∈ Anch(t0) is realized then by definition
t ∈ Ranch(t0) so 3 =⇒ 2. The other direction is clear from Ranch(t0) ⊆
Anch(t0).

1. =⇒ 2. Assume that Fact∞(h) contains a small realization w of t ∈
Anch(t0). By definition there are tn = t, tn−1, tn−2, . . . , t1 ∈ Anch(t0) such
that for all i ∈ [0, n−1], ti+1 ∈ Parh(ti). Now by applying inductively Lemma
1.11 we get that for all i, tn−i is realized by a factor of hi(w) ∈ Fact∞(h). So
in particular Fact∞(h) contains a realization of t0.

2. =⇒ 1. Let w ∈ Fact∞(h) be a realization of t0. By definition, there
is an integer i and a letter a ∈ A such that w ∈ Fact(hi(a)). If w is a small
realization of t0 then we are done since t0 ∈ Anch(t0). If w is not a small
realization, we can apply Lemma 1.12 and we know that there is a parent t1
of t0 and w1 ∈ Fact(hi−1(a)) such that w1 realizes t1. By Lemma 1.12, if w1 is
not a small realization of t1 there is a parent t2 of t1 and w2 ∈ Fact(hi−2(a))
such that w2 realizes t2.

We can apply this reasoning inductively until we get a wk which is a
small realization of tk. This happens eventually since |wk| ≤ |hi−k(a)|. By
construction tk is an ancestor of t0, so we have a small realization of an
ancestor of t0.

We get the following corollary:

Corollary 1.14. Let h be a primitive morphism prolongable at a, and t0 a
k-template. Let S be a set of k-template such that Ranch(t0) ⊆ S ⊆ Anch(t0).
Then the following conditions are equivalent:

1. hω(a) avoids t0,
2. hω(a) avoids every small realizations of every elements of S.

Any given template only has finitely many small realizations, and we only
need to compute small factors of hω(a) to compute them. If we can compute
a finite set S such that Ranch(t0) ⊆ S ⊆ Anch(t0) then we can decide if
hω(a) avoids t0.

11

In particular, Currie and Rampersad showed that if M−1
h is defined and

has induced euclidean norm smaller than 1, then Anch(t0) is finite and com-
putable [19]. They deduced a result really similar to the following theorem:

Theorem 1.15. For any primitive morphism h, if M−1
h is defined and has

induced euclidean norm smaller than 1. Then, for any template t0, it is
possible to decide whether Fact∞(h) realizes t0.

In the setting of Theorem 1.9 Mh is not necessarily invertible which im-
plies that t0 could have infinitely many parents and ancestors. Thus we need
to find a way to discard many elements of Anch(t0). In fact, using the Jordan
normal form of Mh, we can find conditions on the vectors of the templates
of Ranch(t0).

1.3.2 Finding the set Ranch(t0) ⊆ S ⊆ Anch(t0)

Let M = Mh be the matrix associated to h, i.e. ∀i, j, Mi,j = |h(j)|i. We
recall that we have the following equality:

∀w ∈ A∗, Ψ(h(w)) = MΨ(w).

We assume that M has no eigenvalue of absolute value 1. Moreover, since it
is primitive, it has at least one eigenvalue of absolute value greater than 1.
From Proposition 1.5, there is an invertible matrix P and a Jordan matrix
J such that M = PJP−1. Thus P−1M = JP−1, and for any vector x,
P−1Mx = JP−1x. We define the map r, such that r(x) = P−1x and its
projections ∀i, ri(x) = (P−1x)i. Using this notation we have for any w,
r(Ψ(h(w))) = r(MΨ(w)) = Jr(Ψ(w)). Recall that J is as follows:

Jn1(λ1)
Jn2(λ2) 0

0
. . .

Jnp(λp)

where the Jni

(λi) are Jordan blocks on the diagonal. That is, Jn(λ) is a n×n
matrix with λ ∈ C on the diagonal, 1 on top of the diagonal and 0 elsewhere.
Note that it may happen that for i 6= j, λi = λj.

12

Bounds on the P basis We introduce some additional notations used in
Propositions 1.16 and 1.18. Given a square matrix M and PJP−1 a Jordan
decomposition of M , let b : {1, . . . , n} → {1, . . . , p} be the function that
associates to an index i of M the number corresponding to its Jordan block
in the matrix J , thus ∀i ∈ {1, . . . , n}, λb(i) = Ji,i. Let B be the map that
associate to an index i the submatrix corresponding to the Jordan block
containing this index, ∀i ∈ {1, . . . , n}, B(i) = Jnb(i)

(λb(i)). For any vector x
and 1 ≤ is ≤ ie ≤ n such that is is the index of the first row of a Jordan
block and ie is the index of the last row of the same block, we denote by
x[is,ie] the sub-vector of x starting at index is and ending at index ie and
then (Jx)[is,ie] = B(i)x[is,ie]. Let Ec(M) be the contracting eigenspace of
M , that is, the subspace generated by columns i of P such that |λb(i)| < 1.
Similarly let Ee(M) be the expanding eigenspace of M , that is, the subspace
generated by columns i of P such that |λb(i)| > 1. Note that Ec(M) and
Ee(M) are independent from the Jordan decomposition we chose.

We show that for any vector x appearing on a realizable ancestor of any
template t0 and any i, |ri(x)| is bounded, handling separately generalized
eigenvectors of eigenvalues of absolute value less and more than 1. It implies
that there are finitely many such integer vectors, since columns of P form a
basis of Cn.

Proposition 1.16. For any i such that |λb(i)| < 1, {|ri(Ψ(w))| : w ∈
Fact∞(h)} is bounded.

Proof. Take i such that |λb(i)| < 1, and let is (resp. ie) be the index that
starts (resp. ends) the Jordan block b(i) (thus is ≤ i ≤ ie). Let w be a factor
of Fact∞(h). Then there is a factor w′ ∈ Fact(h), an integer l and for every
j ∈ {0, . . . , l − 1}, a pair of words (sj, pj) ∈ (Suff(h),Pref(h)) such that:

w =

(
l−1∏
j=0

hj(sj)

)
hl(w′)

(
0∏

j=l−1

hj(pj)

)
.

Thus

r(Ψ(w)) =
l−1∑
j=0

J jr(Ψ(sj)) + J lr(Ψ(w′)) +
l−1∑
j=0

J jr(Ψ(pj))

and

r(Ψ(w))[is,ie] =
l−1∑
j=0

B(i)jr(Ψ(sjpj))[is,ie] +B(i)lr(Ψ(w′))[is,ie].

13

Since liml→∞

(∑l
j=0B(i)j

)
exists, |ri(Ψ(w))| is bounded.

More precisely, a bound for |ri(Ψ(w))| can be found by the following way.
Let A−1 = {a−1 : a ∈ A} be the set of inverses of the letters of A. Recall
that the free group generated by A is the group made of the set of words
over A ∪A−1 where the only non-trivial equalities can be deduced from the
fact that for all a ∈ A, aa−1 = a−1a = ε. We can also extend the notion of
Parikh vector such that the Parick vector of the inverse of a letter count as a
negative occurence of the letter. Now for any a ∈ A∪A−1 and word s, p and
f such that h(a) = pfs we have fsh(a−1)pf = f . For all a ∈ A, a ∈ Fact(h),
since h is primitive. It implies that for every l′ > l one can find a ∈ A∪A−1

and extend the sequence (sj, pj)j∈{0,...,l−1} to the sequence (sj, pj)j∈{0,...,l′−1}
such that:

w =

(
l′−1∏
j=0

hj(sj)

)
hl
′
(a)

(
0∏

j=l′−1

hj(pj)

)
.

Thus there is an infinite sequence (sj, pj)j∈N of elements in (Suff(h),Pref(h))
such that:

r(Ψ(w))[is,ie] =
∞∑
j=0

B(i)jr(Ψ(sjpj))[is,ie].

For any i such that |λb(i)| < 1, ri(Ψ(w)) is bounded by u · v, where:
— u is the vector such that uj =max {|rj(Ψ(sp))| : (s, p) ∈ (Suff(h),Pref(h))},
— v is the vector such that vj = (1 − |λb(i)|)i−j−1 if j ∈ {i, . . . , ie}, and

zero otherwise.

Let r∗i = 2 × max{|ri(Ψ(w))| : w ∈ Fact∞(h)}. Let RB be the set of
templates t = [a1, . . . , ak+1,d1, . . . ,dk−1] such that for every i with |λb(i)| < 1
and j ∈ {1, . . . , k − 1}, |ri(dj)| ≤ r∗i .

Corollary 1.17. Every k-template which is realized by h is in RB.

We need a tight upper bound on r∗i for the algorithm corresponding to
Theorem 1.9 to be efficient. The bound from the last proposition could be too
loose, but we can reach better bounds by considering the fact that (since h is
primitive) for any l > 1, hl has the same factors than h. For example, for the
abelian square-free morphism h8 (Section 1.4) the bound for the eigenvalue
λ ∼ 0.33292,+0.67077i is 5.9633, and become 1.4394 for the eigenvalue λ20

of (h8)20, while the observed bound on the prefix of size approximately 1
million of a fixed point of (h8)2 is 1.4341.

14

For any k-template t0, we denote by Xt0 the set of all the vectors that
appear on an ancestor of t0.

Proposition 1.18. For every i such that |λb(i)| > 1, for every k-template t0,
{|ri(x)| : x ∈ Xt0} is bounded.

Proof. The proof is close to the proof of Proposition 1.16. Let x be a vector
of Xt0 . If it is not a vector of t0 then it appears on a template t which is
a parent of an ancestors t′ of t0. If x′ is the vector at the corresponding
position in t′ then, by definition of parent, there are s, s′, p, p′ ∈ (Suff(h),
Suff(h),Pref(h),Pref(h)) such that x′ = Mx+ Ψ(sp)−Ψ(s′p′).

By induction there is a vector x0 of t0, an integer l and a sequence of 4-
tuple of words (sj, s

′
j, pj, p

′
j)0≤i≤l−1 ∈ (Suff(h), Suff(h),Pref(h),Pref(h))0≤i≤l−1

such that:

x0 =
l−1∑
j=0

M jΨ(sjpj) +M lx−
l−1∑
j=0

M jΨ(s′jp
′
j).

Thus

r(x0) =
l−1∑
j=0

J jr(Ψ(sjpj)−Ψ(s′jp
′
j)) + J lr(x).

Let is (resp. ie) be the starting (resp. ending) index of the block b(i).
Thus

B(i)lr(x)[is,ie] = r(x0)[is,ie] +
l−1∑
j=0

B(i)jr(Ψ(s′jp
′
j)−Ψ(sjpj))[is,ie]

.

Moreover we know that B(i) is invertible so:

r(x)[is,ie] = B(i)−lr(x0)[is,ie] +
l−1∑
j=0

B(i)j−l(r(Ψ(s′jp
′
j)−Ψ(sjpj))[is,ie]

.

The only eigenvalue of B(i)−1 is λ−1
b(i) and has absolute value less than

1, thus
∑∞

j=1 ||B(i)−j|| converges. Hence ||r(x)[is,ie]|| can be bounded by a
constant depending only on h, P , J and i. Thus there is a constant r∗i,t0 such
that for all x ∈ Xt0 , |ri(x)| ≤ r∗i,t0 .

In paragraph Computing S efficiently, we explain why we do not need
to compute a value for the bound r∗i,t0 . Since the columns of P is a basis,

15

Propositions 1.16 and 1.18 imply that the norm of any vector of a k-template
from RB ∩ Anch(t0) is bounded, and thus RB ∩ Anch(t0) is finite. We sum
up all the interesting properties about RB ∩ Anch(t0) in the next corollary:

Corollary 1.19. For any template t0 and any morphism h whose matrix has
no eigenvalue of absolute value 1, we have:
— Ranch(t0) ⊆ RB ∩ Anch(t0) ⊆ Anch(t0),
— RB ∩ Anch(t0) is finite,

From Corollary 1.14 and Corollary 1.19, we know that if we can compute
RB ∩Anch(t0) then we can decide whether hω(a) avoids abelian k-th powers.

We can deduce from Propositions 1.16 and 1.18 a naive algorithm to
compute a set S of templates such that Ranch(t0) ⊆ S ⊆ Anch(t0). We
first compute a set of templates Tt0 whose vectors’ coordinates in basis P are
bounded by r∗i or r∗i,t0 , then we compute the parent relation inside Tt0 and
we select the parents that are accessible from t0. We explain at the end of
this section a more efficient way to compute such a set S.

We summarize the proof of Theorem 1.9. We know from Corollary 1.19
that one can compute a set S such that Ranch(t0) ⊆ S ⊆ Anch(t0). Moreover
from Corollary 1.14 we know that the followings are equivalent:

1. hω(a) avoids t0,
2. hω(a) avoids every small realizations of every elements of S.

For any integer l, we can compute every factor of hω(a) of bounded size l.
Moreover S is finite so we can check every template of S one by one. So we
can check condition 2 with a computer. Hence one can decide whether hω(a)
avoids t0.

Computing S efficiently The naive algorithm we gave is not efficient,
since for morphisms whose fixed points avoid abelian powers, the set of an-
cestors RB ∩ Anch(t0) is usually very small relatively to Tt0 .

The following algorithm does not necessarily compute RB∩Anch(t0), but
a set S such that Ranch(t0) ⊆ S ⊆ RB ∩ Anch(t0). We compute recursively
a set of templates At0 that we initialize at {t0}, and each time that we add a
new template t, we compute the set of parents of t which are in RB and add
them to At0 . At any time we have At0 ⊆ RB∩Anch(t0) which is finite so this
algorithm terminates. Moreover if a parent of a template is realizable then
this template also is realizable. It implies that, at the end, Ranch(t0) ⊆ At0 .

16

We need to be able to compute a finite superset of the set of realizable
parents of a template. Let t = [a1, . . . , ak+1,d1, . . . ,dk−1] be a template,
and assume that t′ = [a′1, . . . , a

′
k+1,d

′
1, . . . ,d

′
k−1] is a parent of t, and t′ is

realizable by h. Then there are p1, s1, . . . , pk+1, sk+1 ∈ A∗ such that:
— ∀i ∈ {1, . . . , k + 1}, h(a′i) = piaisi,
— ∀i ∈ {1, . . . , k − 1}, di = Md′i + Ψ(si+1pi+2)−Ψ(sipi+1).

There are finitely many ways of choosing the a′i in t′ and finitely many ways of
choosing the si and the pi, so we only need to be able to compute the possible
values of the d′i of a template with fixed a′1, . . . , a′k+1 and s1, p1, . . . , sk+1, pk+1.
(Note that this is easy if M is invertible.)

Suppose we want to compute d′m for some m. That is, we want to com-
pute all the integer solutions x of Mx = v, where v = dm −Ψ(sm+1pm+2) +
Ψ(smpm+1). Moreover, since we are interested by realizable parents we can
restrict ourself to solutions that respect the bounds from Proposition 1.16.
The rest is only linear algebra.

First, we can use the smith decomposition ofM , as explained after Propo-
sition 1.6, in order to find a particular solution x0 and a basis (β1, ..., βκ)
(where κ = dim ker(M)) of the lattice Λ = ker(M)∩Zn. If this equation has
no integer solution, then the template t has no parents with this choice of
ai, pi and si. We are only interested in parents realizable by h, so we want
to compute the set X = {x ∈ x0 + Λ : ∀i s.t. |λb(i)| < 1, |ri(x)| ≤ r∗i }.
Since Λ is included in the union of the generalized eigenspaces of eigenvalue
0, we know by Proposition 1.16 that X is finite. Let B be the matrix whose
columns are the elements of the basis (β1, ..., βκ), and let XB = {x ∈ Zκ :
x0 + Bx ∈ X}. ker(M) is generated by B but also by the generalized eigen-
vectors corresponding to a null eigenvalue which are columns of P . So there
is a matrix Q made of rows of P−1 such that QB is invertible. All the rows
of Q are rows of P−1 thus from Proposition 1.16 there are c1, . . . , cκ ∈ R
such that for any x ∈ XB and i ∈ {1, . . . , κ}, |(Q(Bx + x0))i| ≤ ci thus
|(QBx)i| ≤ ci + |(Qx0)i|. Then:

||QBx||2 ≤
κ∑
i=1

(ci + |(Qx0)i|)2.

Let c =
∑κ

i=1(ci+|(Qx0)i|)2. From Proposition 1.7, if µmin is the smallest
eigenvalue of (QB)∗(QB) then µmin||x||2 ≤ ||QBx||2 ≤ c. Moreover QB is
invertible, thus µmin 6= 0, and XB contains only integer points in the ball of

17

radius
√

c
µmin

. We can easily compute a finite super-set of XB, and thus of
X, and then we can select the elements that are actually in X. The choice
of x0 is significant for the sharpness of the bound c: it is preferable to take
a x0 nearly orthogonal to ker(M).

1.4 Abelian square-free pure morphic words
We implemented the algorithm described in the previous sections. We

can use this algorithm to check the following results.
Let h6 be the following morphism:

h6 :

a→ ace b→ adf
c→ bdf d→ bdc
e→ afe f → bce.

Theorem 1.20. hω6 (a) is abelian square-free.

We provide a computer program 1 that applies the algorithm described in
the previous section in order to show Theorem 1.20.

The matrix associated has the following eigenvalues: 0 (with algebraic
multiplicity 3), 3,

√
3 and −

√
3. A Jordan decomposition of Mh6 is PJP−1,

with:

J =

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 3 0 0

0 0 0 0
√

3 0

0 0 0 0 0 −
√

3

 and P =

− 1
2

0 −1 1 2+
√

3 2−
√

3

1
2
−1 0 1 −2−

√
3
√

3−2

− 1
2

1 −1 1 −1 −1

0 0 1 1 −3−2
√

3 2
√

3−3

0 1
2

1 1 3+2
√

3 3−2
√

3

1
2
− 1

2
0 1 1 1

.

The bounds on r∗i , i ∈ {1, 2, 3} computed as explained in the proof
of Proposition 1.16 on (h6)2, are respectively 4, 4

3
and 4

3
. The template

[ε, ε, ε,
−→
0] has 28514 parents with respect to those bounds, and it has 48459

different ancestors including itself. None of the factors of hω6 (a) is a small
realization of a forbidden template so we can conclude that hω6 (a) avoids
abelian squares.

1. https://arxiv.org/abs/1511.05875

18

https://arxiv.org/abs/1511.05875

From Proposition 1.16, the Parikh vectors of the factors of hω6 (a) are close
to a subspace of dimension 3. In Chapter 3, we need such a morphism in
order to apply our proof technique, so finding this morphism is the first step
in showing that long abelian squares are avoidable over the ternary alphabet.
It seems hard to find simpler morphisms with this property, in particular we
are interested by the following question:

Problem 1.21. Is there an abelian square-free pure morphic word over 4 or
5 letters generated by a morphism with only 3 eigenvalues of norm at least
1?

In fact, for similar reasons, a positive answer to the following question
could help to show that additive squares are avoidable over Z:

Problem 1.22. Is there an abelian square-free pure morphic word generated
by a morphism with only 2 eigenvalues of norm at least 1?

Let h8 be the following morphism:

h8 :

a→ h b→ g
c→ f d→ e
e→ hc f → ac
g → db h→ eb.

Theorem 1.23. Words in h∞8 (e.g. infinite fixed points of (h8)2) are abelian
square-free.

This morphism may also be interesting because it is a small morphism
which gives an abelian square-free word, its matrix is invertible and it has
4 eigenvalues of absolute value less than 1. In particular, such a morphism
could be part of a simpler construction of an abelian square-free word over
4 letters.

Our algorithm can also show that the infinite word generated by h : a 7→
ac, b 7→ dc, c 7→ b, d 7→ ab is abelian cube-free. It would be interesting for
the sake of completeness to be able to decide the abelian k-th power freeness
for any morphism. We can get ride of the primitivity condition with some
technicalities, but it seems much harder to deal with eigenvalues of absolute
value exactly 1.

19

Problem 1.24. Is it decidable, for any morphism h, whether the fixed points
of h are abelian k-th power-free?

In fact, we do not know any example of interesting morphism with an
eigenvalue of norm 1 generating an abelian k-th power-free word.

20

Chapter 2

Avoidability of Additive Powers

Let (G,+) be a semigroup and Φ : (A∗, .) 7→ (G,+) be a morphism. Two
words u and v are equivalent modulo Φ, denoted by u ≈Φ v, if Φ(u) = Φ(v).
For any k ≥ 2, a k-th power modulo Φ is a word w = w1w2 . . . wk such that
for all i ∈ {2, . . . , k}, Φ(wi) = Φ(w1). If moreover |w1| = |w2| = . . . = |wk|
then it is a uniform k-th power modulo Φ. Uniform k-th powers modulo Φ
are often called additive k-th powers , without mention of the morphism Φ, if
the morphism Φ use is clear in the context. A square modulo Φ (resp. cube
modulo Φ) is a 2nd power (resp. 3rd power) modulo Φ. We say that (G,+)
is k-repetitive (resp. uniformly k-repetitive) if for any finite alphabet A and
any morphism Φ : (A∗, .) 7→ (G,+) every infinite word over A contains a
k-th power modulo Φ (resp. a uniform k-th power modulo Φ).

For instance, if G is the free-monoid generated by A and Φ is the identity,
k-th powers modulo Φ are exactly k-th powers. So from the avoidability of
squares over the ternary alphabet we deduce that if |A| ≥ 3 the free-monoid
generated by A is not 2 repetitive. If G is the free abelian monoid generated
by A and for all a ∈ A, Φ(a) = a then k-th powers modulo Φ are exactly
abelian k-th powers. So Theorem 1.1 implies that if |A| ≥ 4 the free abelian
monoid generated by A is not 2 repetitive.

A direct application of Szemerédi’s Theorem shows that for any finite
alphabet A, Φ : A 7→ Z and k ∈ N, it is not possible to avoid k-th powers
modulo Φ over A, that is, (Z,+) is k-repetitive for any k. On the other hand,
whether Z is uniformly 2-repetitive or not is a long standing open question
[32, 49], and it was recently showed that Z is not uniformly 3-repetitive [15].
The main result of this chapter is Theorem 2.5, which states that Z2 is not
uniformly 2-repetitive .

21

In the rest of the chapter, we only consider (G,+) = (Zd,+) for some
d > 0. Note that, for any integers n and k, if (Zn+1,+) is k-repetitive then
(Zn,+) is uniformly k-repetitive. Φ can be seen as a linear map from the
Parikh vector of a word to Zd, therefore we can associate to Φ the matrix FΦ

such that ∀w ∈ A∗, Φ(w) = FΦΨ(w). Clearly, if d = |A| and FΦ is invertible
then two words are abelian-equivalent if and only if they have the same image
by Φ.

In this chapter we show that under some conditions one can decide if a
morphism generates a word which is additive k-th power-free. Then we use
this result to give some new results about the avoidability of additive powers.

The decidability algorithm is mainly based on the results from the Chap-
ter 1. We also use many notations introduced in Chapter 1. The results
presented in this chapter are joint work with Michaël Rao and are part of
the article [54].

2.1 Decidability
Let Φ : (A∗, .)→ (Zd,+) be a morphism with d ∈ N and h : A∗ 7→ A∗ be

a primitive morphism. Let the matrix FΦ be such that ∀w, Φ(w) = FΦΨ(w).
Let Mh be the matrix associated to h and let Mh = PJP−1 be a Jordan

decomposition of Mh. Let Ec(Mh) be the contracting eigenspace of Mh,
that is, the subspace generated by columns i of P such that |λb(i)| < 1.
Similarly let Ee(Mh) be the expanding eigenspace ofMh, that is, the subspace
generated by columns i of P such that |λb(i)| > 1. Note that Ec(Mh) and
Ee(Mh) are independent from the Jordan decomposition we choose.

Proposition 2.1. If Mh has no eigenvalue of absolute value 1 and Ee(Mh)∩
ker(FΦ) = {−→0 } then one can compute a finite set of templates S such that
each k-th power modulo Φ in Fact∞(h) is a realization of a template in S.

Proof. Let κ = dim ker(FΦ) and Λ = ker(FΦ) ∩ Zd. By definition any k-th
power modulo Φ realizes at least one template of the form t = [ε, . . . , ε,d1, . . . ,dk−1]
where for all i, di ∈ Λ. We use the Smith decomposition of FΦ, as explained
after Proposition 1.6, to get the matrix B, whose columns form an integral
basis of Λ.

Let Q be the rectangular submatrix of P−1 such that the i-th line of
P−1 is a line of Q if and only if |λb(i)| < 1. By definition of B, for every
x ∈ Cκ \ {−→0 }, Bx ∈ ker(FΦ) then, by hypothesis, Bx 6∈ Ee(Mh). Since the

22

lines of Q generate the subspace orthogonal to Ee(Mh), QBx 6= −→0 . Thus
we have rank(QB) = κ which implies that there is a submatrix Q′ of Q such
that Q′B is invertible.

For all i ∈ {1, . . . , κ}, let pi be the function such that for all vector x,
pi(x) = (Q′x)i. From Proposition 1.16, for all i ∈ {1, . . . , κ}, there is ci ∈ R
such that for any two factors u and v of Fact∞(h), |pi(Ψ(u)−Ψ(v))| ≤ ci.

Let X = {x ∈ Λ : ∀i ∈ {1, . . . , κ}, |pi(x)| ≤ ci}. Since we are only
interested in realizable templates for S, we can add the condition: for all i,
di ∈ X.

Let XB = {x ∈ Zκ : Bx ∈ X} and x ∈ XB. Then for all i, |pi(Bx)| ≤ ci,
then ||Q′Bx||2 ≤ ∑l

i=1 c
2
i = c. From Proposition 1.7, if µmin is the smallest

eigenvalue of (Q′B)∗(Q′B), we have µmin||x||2 ≤ ||Q′Bx||2 ≤ c. Since Q′B is
invertible, µmin 6= 0 and ||x|| ≤

√
c

µmin
. Then XB and X are finite, and we

can easily compute them.
So we can compute S = {[ε, . . . , ε,d1, . . . ,dk−1] : ∀i,di ∈ X}.

From Theorem 1.9 we know that for any given template we can decide
whether it is avoided by a word generated by a primitive morphism with no
eigenvalue of absolute value 1. We can deduce the following result:

Theorem 2.2. Let h : A∗ → A∗ be a primitive morphism with no eigenvalue
of absolute value 1, and let Φ : A∗ → Zd a morphism. If Ee(Mh) ∩ ker(Φ) =
{−→0 } then one can decide whether every word in Fact∞(h) avoids k-th powers
modulo Φ.

The conditions from Theorem 2.2 seem restrictive, but we can apply this
Theorem to every morphic word avoiding additive powers that we found.
It seems reasonable to think that the condition Ee(Mh) ∩ ker(Φ) = {−→0 } is
necessary in order to generate a word avoiding k-th power modulo Φ. But
for the sake of completeness, we ask the following question.

Problem 2.3. Is there an algorithm deciding k-th power modulo Φ freeness
of (pure) morphic words?

2.2 Results
In this section we use the algorithm described in this chapter to show

that additive squares are avoidable over Z2. We also give some other results

23

about the avoidability of additive cubes over different alphabets from Z. We
provide a computer program 1 that applies the algorithm described in the
previous section in order to show Theorem 2.4.

2.2.1 Additive square-free words over Z2

Let h6 be the morphism that we already used in Section 1.4:

h6 :

a→ ace b→ adf
c→ bdf d→ bdc
e→ afe f → bce.

Let Φ be the following morphism:

Φ :

a→ (1, 0, 0) b→ (1, 1, 1)
c→ (1, 2, 1) d→ (1, 0, 1)
e→ (1, 2, 0) f → (1, 1, 0).

Theorem 2.4. hω6 (a) does not contains squares modulo Φ.

In other words, the fixed point hωadd

(0
0

)

of the following morphism

does not contain any additive square.

hadd :

(
0
0

)
→

(
0
0

)(
2
1

)(
2
0

) (
1
1

)
→

(
0
0

)(
0
1

)(
1
0

)
(

2
1

)
→

(
1
1

)(
0
1

)(
1
0

) (
0
1

)
→

(
1
1

)(
0
1

)(
2
1

)
(

2
0

)
→

(
0
0

)(
1
0

)(
2
0

) (
1
0

)
→

(
1
1

)(
2
1

)(
2
0

)
.

It implies the following result:

Theorem 2.5. Z2 is not uniformly 2-repetitive.

It seems rather natural to ask:

Problem 2.6. What is the smallest alphabet A ⊆ Z2 over which we can
avoid additive squares?

1. https://arxiv.org/abs/1511.05875

24

https://arxiv.org/abs/1511.05875

2.2.2 Additive cubes-free words over Z
Cassaigne et al. showed that the fixed point of f : 0 → 03, 1 → 43, 3 →

1, 4 → 01, avoids additive cubes [15]. Our algorithm is able to reach the
same conclusion for this morphism. We can also use it to show that additive
cubes are avoidable over some other alphabets of size 4.

Let h4 :

0→ 001
1→ 041
2→ 41
4→ 442

, h′4 :

0→ 03
2→ 53
3→ 2
5→ 02.

and h′′4 :

0→ 03
2→ 63
3→ 2
6→ 02.

Theorem 2.7. hω4 (0), h′ω4 (0) and h′′ω4 (0) avoid additive cubes.

It seems that {0, 1, 2, 3} is the only alphabet of 4 integers over which
additive cubes are hard to avoid. It gives us a motivation to find a character-
ization of the alphabets of integers over which additive cubes are avoidable.

Rao conjectured the following property:

Conjecture 2.8 ([53]). For any integers i < j such that i and j are coprime
and j ≥ 6, additive cubes are avoidable over {0, i, j}.

He showed that the conjecture is true for 6 ≤ j ≤ 9 and that additive
cubes are avoidable over {0, 1, 5} [53].
Theorem 2.9. Let A ∈ Z3. If A = {0, 1, 5} or if A = {0, i, j} with i and j
coprime and 6 ≤ j ≤ 9 then additive squares are avoidable over A.

Note that if we apply the same affine function of the form x 7→ ax+b with
a 6= 0 to each letter of an alphabet A to get a new alphabet A′ then we can
avoid exactly the same additive powers over A and A′. We say that A and A′
are equivalent. This is why without loss of generality every alphabet contains
0 and positive integers. It also justifies that, in the previous conjecture, the
cases where i and j are not coprime are not interesting.

Using Theorem 2.7 and Theorem 2.9 we can show the following result:

Proposition 2.10. Let A = {0, i, j, k} be an integer alphabet such that 0 <
i < j < k < 10. If additive cubes are not avoidable over A, then A is
equivalent to {0, 1, 2, 3}.
Proof. Let A = {0, i, j, k} be an integer alphabet such that 0 < i < j < k <
10 and such that additive cubes are not avoidable over A. We distinguish
different cases depending on the value of k. Without loss of generality, we can
suppose that i, j and k are coprime (we need to consider only one representant
by equivalence class).

25

k = 3. Then A = {0, 1, 2, 3}.

k = 4. {0, 1, 2, 4} and {0, 2, 3, 4} are equivalent by x 7→ 4− x and additive
cubes are avoidable over this alphabets by Theorem 2.7. Additive cubes are
avoidable over {0, 1, 3, 4} [15].

k = 5. If i = 1 or j = 4 then A contains {0, 1, 5} or {0, 4, 5} so additive
cubes are avoidable by Theorem 2.9. By Theorem 2.7, additive cubes are
avoidable over {0, 2, 3, 5}.

k = 6. If i = 1 or j = 5 then A contains {0, 1, 6} or {0, 5, 6} so additive
cubes are avoidable by Theorem 2.9. By Theorem 2.7, additive cubes are
avoidable over {0, 2, 3, 6} (and over {0, 3, 4, 6}} since they are equivalent).
The only remaining possibility is {0, 2, 4, 6} which is excluded by coprimality.

k = 7. By Theorem 2.9, additive cubes are avoidable over {0, i, 7} and thus
over A.

k = 8. If i (resp. j) is odd then by Theorem 2.9 additive cubes are avoidable
over {0, i, 8} (resp. {0, j, 8}). If i and j are both even then i, j, k are not
coprime.

k = 9. If i (resp. j) is not divisible by 3 then by Theorem 2.9 additive cubes
are avoidable over {0, i, 9} (resp. {0, j, 9}). If i and j are both divisible by 3
then i, j, k are not coprime.

If Conjecture 2.8 is true, we can show the following stronger result:

Proposition 2.11. Conjecture 2.8 implies that for every alphabet A = {0, i, j, k}
if additive cubes are not avoidable over A then A is equivalent to {0, 1, 2, 3}.

Proof. In the proof we say that an alphabet is good if additive cubes are
avoidable over this alphabet.

In fact Conjecture 2.8 implies that if there is an integer p ≥ 6 which
divides n but is coprime with m then {0, n,m} is good. Indeed, since

n
gcd(n,m)

≥ p, then by Conjecture 2.8
{

0, n
gcd(n,m)

, m
gcd(n,m)

}
is good which

implies that {0, n,m} is good. In the following we call this property (P).

26

Let A = {0, i, j, k} be an alphabet which is not good with i, j and k
coprime.

If one of i, j or k is divisible by a prime number p > 5, then one of them
is not divisible by p by coprimality. Then by (P), A is good.

Then none of i, j or k is divisible by a prime number p > 5. Thus they
are only divisible by 2, 3 and 5. At least one of them is not divisible by 5 so
if any of them is divisible by 25 = 52, (P) implies that A is good. For the
same reason none of i, j or k is divisible by 32 or by 23.

This implies that i, j, k ∈ {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60}. W.l.o.g.
i < j < k. We can do a disjunction over the value of k.

k is divisible by 30. Then i and j are both greater than 5 otherwise, by
(P), A is good. {0, 6, 30} is equivalent to {0, 1, 5} and {0, 6, 60} is equivalent
to {0, 1, 10} so they are both good. So i, j ∈ {10, 12, 15, 20, 30}. By copri-
mality only one of i or j is divisible by 5 so one of them is equal to 12. By
coprimality of i and j, there is no choice left for the last letter.

k = 20. Since {0, 1, 5} is good and equivalent to {0, 4, 20} none of i or j
is equal to 4. By (P) none of i or j is equal to 1, 2, 3 or 6. So i, j ∈
{5, 10, 12, 15}. By coprimality one of them is 12, and then the other cannot
be 10. By (P), {0, 5, 12} is good, while {0, 12, 15} is equivalent to {0, 1, 5}
which is good. So every possible alphabet is good for k = 20.

k = 15. Since {0, 1, 5} is good, {0, 12, 15} and {0, 3, 15} are good. By (P),
i and j cannot be equal to 1, 2 or 4. So i, j ∈ {5, 6, 10}. By coprimality
one of them is equal to 6. Since {0, 5, 6} is good, {0, 5, 6, 15} is good. The
only remaining is possibility {0, 6, 10, 15}. This alphabet contains {6, 10, 15}
which is equivalent to {0, 4, 9} which is good.

k = 12. By (P), i and j are not equal to 1 or 5. Since {0, 2, 12} and
{0, 10, 12} are both equivalent to {0, 1, 6} which is good, i and j are not equal
to 2 or 10. So i, j ∈ {3, 4, 6}. By coprimality the only possible alphabet is
{0, 3, 4, 12}, which contains {3, 4, 12} which is equivalent to {0, 1, 9} and is
good.

k = 10. By (P), {0, 1, 10} and {0, 3, 10} are good, so i and j cannot be
equal to 1 or 3. {0, 2, 10} is equivalent to {0, 1, 5} which is good so i and

27

j cannot be equal to 2. So i, j ∈ {4, 5, 6}. By coprimality one of them is
5. The alphabets {0, 5, 6, 10} and {0, 4, 5, 10} are equivalent, and the second
one contains {4, 5, 10} which is good because it is equivalent to {0, 1, 6}.

k < 10. See Proposition 2.10.

Clearly, Rao’s conjecture also implies that additive cubes are avoidable
over any alphabet of 5 or more integers. On the other hand additive cubes
cannot be avoided over two integers since abelian cubes are not avoidable
over two letters. Other than proving Rao’s Conjecture we are left with some
related open questions:

Problem 2.12. Are additive cubes avoidable over {0, 1, 2, 3}? {0, 1, 4}?
{0, 2, 5}?

The subsets of size 3 of {0, 1, 2, 3} are missing from this question because
additive cubes are probably not avoidable over {0, 1, 2, 3} which implies the
same result for any of its subsets.

Finally, recall that one main open question regarding avoidability of ad-
ditive powers is the 2-repetitivity of Z:

Problem 2.13 ([49]). Are additive squares avoidable over a finite subset of
Z?

28

Chapter 3

Avoidability of Long Abelian
Powers

Erdős asked whether it is possible to avoid arbitrarily long squares on
binary words [25]. Entringer, Jackson and Schatz showed that it is possible
to avoid squares of period at least 3 over the binary alphabet, but that long
abelian squares are not avoidable over the binary alphabet [23]. On the
other hand Keränen answered positively another Erdős’ question by proving
that abelian squares are avoidable over 4 letters. This led Mäkelä to ask the
following question about the avoidability of long abelian squares on a ternary
alphabet:

Problem 3.1 (Mäkelä (see [35])). Can you avoid abelian squares of the form
uv where |u| ≥ 2 over three letters ? - Computer experiments show that you
can avoid these patterns at least in words of length 450.

He also asked the following similar question:

Problem 3.2 (Mäkelä (see [35])). Can you avoid abelian cubes of the form
uvw where |u| ≥ 2, over two letters ? - You can do this at least for words of
length 250.

In this section, we will first show that the answer to the second question
is negative. It leads us to ask, in Problem 3.6, whether there is an integer p
such that abelian cubes of period more than p are avoidable over two letters.
In Problem 3.7, we ask whether there is an integer p such that abelian squares
of period more than p are avoidable over three letters.

29

We then give an algorithm, based on the algorithm from Chapter 1, de-
ciding under some conditions whether a morphic word avoids abelian k-th
powers of period more than a given p. In Section 3.3, we use this algorithm to
solve Problem 3.7 by showing that abelian squares of period more than 5 are
avoidable over the ternary alphabet. The results presented in this Chapter
are joint work with Michaël Rao and are part of the articles [54] and [55].
We use the notations introduced in Chapter 1.

3.1 Abelian cubes and Mäkelä’s Question 3.2

In this section, we show that the answer to Problem 3.2 is negative: there
is no infinite word over a binary alphabet avoiding abelian cubes of period at
least 2. The usual method to show that a prefix-closed language is finite is
to enumerate it by an exhaustive search. Algorithm 1 computes the elements
of a set L, if L is a finite prefix-closed language and isinL is a function that
checks if a word is in L.

Find-right-extensions(w)
for a ∈ A do

if isinL(wa) then
Find-right-extensions (wa);

return true;
Algorithm 1: Exhaustive computation of L.

For instance, the exhaustive search from Fig. 1.1 shows that abelian
squares are not avoidable over the ternary alphabet and corresponds to the
execution of Algorithm 1 over the corresponding language. Unfortunately,
we cannot run this algorithm, in a reasonable time, over the language of the
words avoiding abelian cubes of period at least 2. This language is so large
that it would take too much time to do this search on a modern computer. (It
is hard to say whether it would take years, centuries or more since we do not
know the actual size of the language. But after a few days of computation it
seemed that only a tiny fraction of the language had been found.) Thus we
need to restrict our search to a smaller language.

A word w ∈ Σ∗ is a Lyndon word if for all u, v ∈ Σ+ such that w = uv,
w <lex vu, where <lex is the lexicographic order. The Chen-Fox-Lyndon
Theorem states that every word can be written uniquely as a concatenation

30

of non-increasing Lyndon words (see for example [37]). In the following, we
refer to this decomposition as the Lyndon factorization.

Proposition 3.3. Any factor-closed language L with arbitrarily long words
contains arbitrarily long Lyndon words or repetitions of arbitrarily large ex-
ponent.

Proof. Let us assume that there are no arbitrarily long Lyndon words in L.
This implies that there is a finite number n of Lyndon words in L and there
is an integer s ∈ N such that for every Lyndon word w in L, |w| ≤ s. Let
w1, . . . , wn ∈ L be the Lyndon words of L ordered by decreasing lexicographic
order.

Then using the Lyndon factorization for every w ∈ L there are some
Lyndon words L1 ≥lex L2 ≥lex . . . ≥lex Ld such that w = L1 . . . Ld. Since
L is factor-closed, all the Li are in L. We get that for every w ∈ L, there
are α1, . . . , αn ∈ N such that w = wα1

1 . . . wαn
n . Then |w| =

∑
i |wi| × αi ≤

s ×∑i αi ≤ s × n ×maxi(αi). So any word w contains at least a repetition
of exponent at least |w|

sn
.

Moreover L contains arbitrarily long words and sn is a constant depending
only on L, so L contains repetitions of arbitrarily large exponent.

The language of the words avoiding abelian cubes of period more than 2
avoids long repetitions and is factor-closed. Moreover, if a language is prefix-
closed and contains arbitrarily long Lyndon words it contains arbitrarily long
prefixes of Lyndon words. We can then deduce the following Lemma:

Lemma 3.4. The set L of words avoiding abelian cubes of period more than
2 contains arbitrarily long words if and only if L contains arbitrarily long
prefixes of Lyndon words.

The language of Lyndon word prefixes avoiding abelian cubes is a prefix-
closed language. Thus we can use algorithm 1 to show that this set is finite.
For instance, Figure 3.1 shows how it shortens the exhaustive search of binary
words avoiding abelian squares of period at least 2.

Using this we can give a negative answer to Problem 3.2:

Theorem 3.5. There is no infinite binary word avoiding abelian cubes of
period at least 2.

31

ε

1

11

110
1101 11011 110111

1100 11000 110001 1100011 11000111 110001110 1100011100

111 1110
11101 111011 1110111

11100 111000 1110001 11100011 111000111

10

101 1011 10111

100 1000 10001 100011 1000111 10001110 100011100

0

00

001
0010 00100 001000

0011 00111 001110 0011100 00111000 001110001 0011100011

000 0001
00010 000100 0001000

00011 000111 0001110 00011100 000111000

01

010 0100 01000

011 0111 01110 011100 0111000 01110001 011100011

ε

1 11 111

0

00

001
0010 00100 001000

0011 00111 001110 0011100

000 0001
00010 000100 0001000
00011 000111 0001110 00011100 000111000

01

010

011 0111 01110

Figure 3.1 – Top: the exhaustive search of binary words avoiding abelian
squares of period at least 2. Bottom: the same exhaustive search restricted
to the prefixes of Lyndon words.

We checked using a computer program that there are only finitely many
binary Lyndon words avoiding abelian cubes of period at least 2. The pro-
gram takes approximately 3 hours to find all 2 732 711 352 such prefixes of
Lyndon words. The longest word has a length of 290. Using Lemma 3.4 we
deduce that there is no infinite binary word avoiding abelian cubes of period
at least 2.

We can reformulate the question and ask more generally:

Problem 3.6. Is there a p ∈ N such that one can avoid abelian cubes of
period at least p over two letters ?

For p = 3, we found a word of length 2 500. Theorem 3.5 also motivates
us to study a similar weakening of the Problem 3.1:

Problem 3.7. Is there a p ∈ N such that one can avoid abelian squares of
period more than p over three letters ?

32

We show in Section 3.3 that the answer is yes for p = 5.

3.2 Deciding if a morphic word contains large
abelian powers

In this section, we use the results and definitions from Chapter 1 to show
that under some conditions one can decide whether a morphic word avoids
long abelian repetitions.

Proposition 3.8. Let h : A∗ 7→ A∗ and g : A∗ 7→ A′∗ be two morphisms
and Mh and Mg be the matrix associated to those morphisms. If Mh has
no eigenvalue of absolute value 1 and Ee(Mh) ∩ ker(Mg) = {−→0 }, then for
any template t′ one can compute a finite set S that contains any template
realizable by h and parent of t′ by g.

Proof. The proof is similar to the computation of parents in Section 1.3.
Let Mh = PJP−1 be a Jordan decomposition of Mh. Let κ = dim ker(Mg)
and Λ = ker(Mg) ∩ Zκ. We use the Smith decomposition of Mg to get
the matrix B, whose columns form an integral basis of Λ. Assume t =
[a1, . . . , ak+1,d1, . . . ,dk−1] is realizable by h and parent of t′ = [a′1, . . . , a

′
k+1,

d′1, . . . ,d
′
k−1] by g. Then there are p1, s1, . . . , pk+1, sk+1 ∈ A∗ such that:

— ∀i, g(ai) = pia
′
isi

— ∀i, d′i = Mgdi + Ψ(si+1pi+2)−Ψ(sipi+1).

There are finitely many choices for the ai, si and pi. We need to be able
to compute all the possible values for dm for some m with fixed a1, . . . , ak+1

and p1, s1, . . . , pk+1, sk+1. Then dm is an integer solution of Mgx = v, with
v = d′m + Ψ(smpm+1)−Ψ(sm+1pm+2). We will see that we have only finitely
many choices for dm. As already explained in Section 1.2, if such a solution
exists, then dm ∈ x0+Λ, and x0 can be found with the Smith decomposition
of Mg.

Let Q be the rectangular submatrix of P−1 such that the ith line of P−1

is a line of Q if and only if |λb(i)| < 1. For every x ∈ Cκ \{−→0 }, Bx ∈ ker(Mg)

by definition of B. Then, by hypothesis, Bx 6∈ Ee(Mh) and QBx 6= −→0 since
the lines of Q generate the subspace orthogonal to Ee(Mh). Thus we have
rank(QB) = κ which implies that there is a submatrix Q′ of Q such that
Q′B is invertible.

33

From Proposition 1.16, for all i ∈ {1, . . . , κ}, there is ci ∈ R such that for
any two factors u and v of Fact∞(h), |(Q′(Ψ(u)−Ψ(v)))i| ≤ ci.

Let X = {x ∈ x0 + Λ : ∀i ∈ {1, . . . , κ}, |(Q′x)i| ≤ ci}. Since we are only
interested in realizable solutions, dm has to be in X. Let XB = {x ∈ Zκ :
(x0 + Bx) ∈ X} and x ∈ XB. Then for all i, |(Q′(Bx + x0))i| ≤ ci thus
|(Q′(Bx))i| ≤ ci + |(Q′x0)i|. Then ||Q′Bx||2 ≤ ∑l

i=1(ci + |(Q′x0)i|)2 = c.
From Proposition 1.7, if µmin is the smallest eigenvalue of (Q′B)∗(Q′B), we
have µmin||x||2 ≤ ||Q′Bx||2 ≤ c. Since Q′B is invertible, µmin 6= 0 and
||x|| ≤

√
c

µmin
. Then XB and X are finite, and we can easily compute

them.

We can easily adapt the proof of Lemma 1.12 to get:

Proposition 3.9. If no parent of the k-template [ε, . . . , ε,
−→
0 , . . . ,

−→
0] by g is

realizable by h then g(Fact∞(h)) avoids abelian k-th powers of period larger
than maxa∈A |g(a)|.

The condition of Proposition 3.9 can be easily checked by a computer
using Proposition 3.8 and Theorem 1.9. If one wants to decide whether
g(Fact∞(h)) avoids abelian k-th powers of period at least p ≤ maxa∈A |g(a)|,
then one can use Proposition 3.9 and check if g(Fact∞(h)) does not contain
an abelian k-th power of period l for every p ≤ l < maxa∈A |g(a)|. If p >
maxa∈A |g(a)|, then one can take a large enough integer k such that p ≤
maxa∈A |g(hk(a))|, and do the computation on g ◦ hk instead of g. Note that
if Ee(Mh)∩ker(Mg) = {−→0 }, then for every k ∈ N, Ee(Mh)∩ker(Mg◦hk) = {−→0 }.
Otherwise, for the sake of contradiction let x ∈ (Ee(Mh)∩ker(Mg◦hk))\{−→0 }.
Then Mk

hx ∈ ker(Mg). Moreover x ∈ Ee(Mh) \ {−→0 }, so Mk
hx ∈ Ee(Mh)

and Mk
hx 6=

−→
0 . Thus Mk

hx ∈ Ee(Mh) ∩ ker(Mg) \ {−→0 }, and we have a
contradiction.

Consequently we have the following theorem.

Theorem 3.10. Let h : A∗ → A∗ be a primitive morphism with no eigen-
value of absolute value 1, let g : A∗ → A′∗ be a morphism, and let p, k ∈ N.
If Ee(Mh) ∩ ker(Mg) = {−→0 } then one can decide whether g(h∞(a)) avoids
abelian k-th powers of period larger than p.

In Section 3.3, we present a morphic word over 3 letters which avoids
abelian squares of period more than 5.

34

3.3 Results

We use the algorithm described in Section 3.2 to give an answer to Prob-
lem 3.7. We also show that this result implies that additive squares are
avoidable over Z2, which gives another proof of Theorem 2.5 from Chapter
2. We provide a computer program 1 that applies the algorithm described in
the previous section in order to show Theorem 3.11.

3.3.1 Mäkelä’s Problem on squares

Let h6 be the morphism that we already used in Section 1.4:

h6 :

a→ ace b→ adf
c→ bdf d→ bdc
e→ afe f → bce.

Let g3 be the following morphism:

g3 :

a→ bbbaabaaac
b→ bccacccbcc
c→ ccccbbbcbc
d→ ccccccccaa
e→ bbbbbcabaa
f → aaaaaaabaa.

Theorem 3.11. The word obtained by applying g3 to the fixed point of h6,
that is g3(hω6 (a)), avoids abelian squares of period more than 5.

The kernel of g3 is of dimension 3, but using the bounds on the 3 null
eigenvalues of h6 we can compute that [ε, . . . , ε,

−→
0 , . . . ,

−→
0] has at most 16214

parents by g3 realizable by h6. This is checked using Theorem 3.10. This
gives an answer to a weak version of Problem 3.1.

Theorem 3.12. There is an infinite word over 3 letters avoiding abelian
squares of period more than 5.

The optimal value for this result is probably not 5, so we ask the following
question:

1. https://arxiv.org/abs/1511.05875

35

https://arxiv.org/abs/1511.05875

Problem 3.13. What is the smallest p ∈ N such that one can avoid abelian
squares of period more than p over three letters ?

The proof technique presented here could be helpful to solve this problem.
Note that we know that 2 ≤ p ≤ 5.

In fact, g3(hω6 (a)) contains 34 different abelian squares. We could also ask
to minimize the number of different abelian squares.

3.3.2 Link between long abelian powers and additive
powers

There is a strong relation between avoidability of long abelian powers and
additive powers over Zd. For instance, the next theorem shows that Theorem
2.5 from Chapter 2 is in fact a corollary of Theorem 3.12.

Theorem 3.14. For any alphabet A and integer k, if long abelian k-th powers
are avoidable over A then additive k-th powers are avoidable over a finite
subset of Z|A|−1.

Proof. Let f : Z|A| 7→ Z|A|−1 be the projection that takes a vector and forgets
the last coordinate. That is f is the left multiplication by the |A|× (|A|− 1)
matrix:

1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

0 0 . . . 1 0

 .

Then for any w ∈ A∗ and i, Ψ(w)i =

{
f(Ψ(w))i if i ∈ [1, |A| − 1]
|w| − ||f(Ψ(w))||1 if i = |A|

So for any two words u, v ∈ A∗, Ψ(u) = Ψ(v) if and only if |u| = |v| and
f(Ψ(u)) = f(Ψ(v)).

Now let w ∈ A∗ be a word avoiding abelian k-th powers of period at
least p. Let s = (si)i∈N be the sequence such that for all i ∈ N, si =
f(Ψ(wipwip+1 . . . w(i+1)p−1)). Assume for the sake of contradiction that this
sequence contains an additive k-th power. Then there are u1, u2, . . . , uk such
that u1u2 . . . uk is a factor of w, and for all i, j, |uj| = |ui| ≥ p and f(Ψ(uj)) =
f(Ψ(ui)). This implies that for all i, j, ui ≈a uj and |uj| = |ui| ≥ p . So for
any additive k-th power in s there is an abelian k-th power of period at least
p in w.

36

Thus s avoids k-th additive powers. Moreover for all i, ||si||1 ≤ p, so there
are finitely many different elements in s. We can deduce that k-th powers
are avoidable over a finite subset of Z|A|−1.

This theorem by itself cannot be used to show anything new since Z2 is
not 2-repetitive, Z is not 3-repetitive and that long abelian squares are not
avoidable over the binary alphabet. But the proof do not use any of these
results and is constructive.

From Theorem 3.12, we know that additive squares are avoidable over
Z2. From the construction from Keränen (Theorem 1.1, [34]), we also get
the following corollary:

Corollary 3.15. There is an infinite additive-square-free word over the al-

phabet

1

0
0

 ,

0
1
0

 ,

0
0
1

 ,

0
0
0

 .

Since abelian squares are not avoidable over 3 letters, the alphabet size
is clearly optimal in this result.

37

38

Chapter 4

Avoidability of k-Abelian Powers

The notion of k-abelian repetition was introduced recently by Karhumäki
et al. as a generalization of both repetitions and abelian repetitions [33,
31]. For u,w ∈ Σ∗, we denote by |u|w = |{i : uiui+1 . . . ui+|w|−1 = w}| the
number of occurrences of the factor w in u. Two words u and v are k-abelian
equivalent (for k ≥ 1), denoted u ≈a,k v, if for every w ∈ Σ∗ such that
|w| ≤ k, |u|w = |v|w. Note that 1-abelian equivalence is exactly abelian
equivalence and that as k goes to infinity k-abelian equivalence tends toward
equality.

A word u1u2 . . . un is a k-abelian n-th power if it is non-empty, and u1 ≈a,k
u2 ≈a,k . . . ≈a,k un. Its period is |u1|. A k-abelian square (resp. k-abelian
cube) is a k-abelian 2-nd power (resp. k-abelian 3-rd power). For instance,
abacbacbab is a 2-abelian square, but not a 3-abelian square.

By definition any (k + 1)-abelian n-th power is a k-abelian n-th power,
and any n-th power is a k-abelian n-th power. By combining that with results
about avoidability of usual powers and abelian powers we can deduce some
results about k-abelian powers avoidability. For every k:

— over 4 letters or more k-abelian squares are avoidable, since abelian
squares are avoidable [34];

— over the ternary alphabet k-abelian cubes are avoidable, since abelian
cubes are avoidable [22];

— over the binary alphabet k-abelian 4-th powers are avoidable, since
abelian 4-th powers are avoidable [22], but k-abelian squares are not
avoidable since usual squares are not avoidable.

It is then natural to ask what is the smallest value of k such that k-abelian

39

cubes are avoidable over the binary alphabet. It was first proven that k ≤ 8
[31], then that k ≤ 5 [40], k ≤ 3 [39] and finally k = 2 [53].

Likewise we can ask what is the smallest k such that k-abelian squares
are avoidable over the ternary alphabet. It was proven that k ≥ 3 [30], then
that k ≤ 64 [29] and finally that k = 3 [53].

Entringer, Jackson and Schatz answered a question from Erdős by prov-
ing that it is possible to avoid arbitrarily long ordinary squares on binary
words, but not arbitrarily long abelian squares. In fact, Fraenkel and Simp-
son showed that there is an infinite binary word containing only the squares
02, 12, (01)2 [27] and this result is optimal since every infinite binary word
contains at least 3 different squares. It is natural to ask whether this property
can be extended to the k-abelian case:

Problem 4.1 (Rao, [53]). What is the smallest k (if any) such that arbitrarily
long k-abelian squares can be avoided over a binary alphabet ?

More generally let g(k) be the minimal number of distinct k-abelian
squares that an infinite binary word must contain.

In Subsection 4.2.1, we show that g(3) = g(4) = 4 and that g(k) = 3 for
every k ≥ 5. Then using a more complicated construction based on Theorem
3.11, we show that 5 ≤ g(2) ≤ 734. In Subsection 4.2.2, we show that there
is a ternary word containing only the 2-abelian square 22. This result is
optimal since 2-abelian squares are not avoidable over the ternary alphabet
[30]. This last result is a new result, while the other results presented in this
chapter are joint work with Michaël Rao and are part of the articles [54] and
[55].

4.1 Proving that a morphic word avoids long
k-abelian squares

A word is (l, k)-abelian n-th power-free if it does not contain any k-abelian
n-th power of period at least l. A morphism is said to be (l, k)-abelian n-
th power-free if the image of every abelian n-th power-free word by h is
(l, k)-abelian n-th power-free. Carpi gave a set of sufficient conditions for a
morphism to be abelian n-th power-free (that is (1, 1)-abelian n-th power-
free) [10]. Rao generalized this result in order to obtain sufficient conditions
for a morphism to be k-abelian n-th power-free (that is (1, k)-abelian n-th

40

power-free) [53]. Here we adapt the result and the proof of Rao in order to
get sufficient conditions for a morphism to be (l, k)-abelian n-th power-free.

We need to introduce the following notions before the statement of the
theorem. For a set S ⊂ Σ∗ and a word w ∈ Σ∗, we denote by ΨS(w) the
vector indexed by S such that for every s ∈ S, ΨS(w)[s] = |w|s. We may
write Ψk(w) instead of ΨΣk(w) if Σ is clear in the context.

For any matrix M , we denote by Im(M) the image of the matrix M .
For all u ∈ Σ∗, i ≤ |u|, let prefi(u) be the prefix of size i of u and

suffi(u) be the suffix of size i of u. There are equivalent definitions of k-
abelian equivalence (see [33]). Two words of size at most 2k−1 are k-abelian
equivalent if and only if they are equal. For every two words u and v of size
at least k − 1, the following conditions are equivalent:

— u and v are k-abelian equivalent (i.e. u ≈a,k v),
— Ψk(u) = Ψk(v) and prefk−1(u) = prefk−1(v),
— Ψk(u) = Ψk(v) and suffk−1(u) = suffk−1(v).

Theorem 4.2. Let k ≥ 1, n ≥ 2, l ≥ 1, two alphabets A and B and a
morphism h : A∗ 7→ B∗. Suppose that:

1. Let d = max(k,maxa∈A |h(a)|). For every abelian n-th power-free word
w ∈ A∗ such that |h(w[2..|w| − 1])| ≤ dn, h(w) is (l, k)-abelian n-th
power-free.

2. There are p, s ∈ Bk−1 such that for every a ∈ A, p = prefk−1(h(a)p)
and s = suffk−1(sh(a)).

3. The matrix N indexed by Bk×A, with N [w, x] = |h(x)p|w has rank |A|.
Let S ⊆ B be such that the matrix M indexed by S×A, with M [w, x] =
|h(x)p|w is invertible. Let ΨS(v, u) = ΨS(vp) + ΨS(su)− ΨS(sp). For
every (a0, . . . , an) ∈ A and ui, vi ∈ A∗ with h(ai) = uivi,∀i ∈ [0, n] such
that:
(a) ∀i ∈ [1, n− 1], prefk−1(vi−1p) = prefk−1(vip),
(b) ∀i ∈ [1, n− 1], M−1(ΨS(vi−1, ui)−ΨS(vi, ui+1)) is an integer vec-

tor,
(c) ∀i ∈ [1, n− 1], Ψk(vi−1, ui)−Ψk(vi, ui+1) ∈ Im(N).
There are α0, . . . , αn ∈ {0, 1} such that for every i ∈ [1, n− 1]:

M−1(ΨS(vi−1, ui)−ΨS(vi, ui+1)) =

(1− αi−1)Ψ(ai−1) + (2αi − 1)Ψ(ai)− αi+1Ψ(ai+1).

41

Then h is (l, k)-abelian n-th power-free.

Proof. For the sake of contradiction let us assume that h is not (l, k)-abelian
n-th power-free. There is w ∈ A∗ such that h(w) contains an (l, k)-abelian n-
th power and w contains no abelian n-th power. There are q0, q1, . . . , qn, qn+1 ∈
B∗ such that h(w) = q0q1 . . . qnqn+1 and for all i ∈ [1, n], qi ≈a,k q1 and
|qi| ≥ l.

From (1), we know that for all i ∈ [1, n], |qi| ≥ d ≥ maxa∈A |h(a)|. Thus
there are r0, r1, . . . , rn+1 ∈ A∗, a0, a1, . . . , an ∈ A and u0, v0, u1, v1 . . . , un, vn ∈
B∗ such that:

— w = r0a0r1a1 . . . anrn+1,
— for all i, h(ai) = uivi,
— for all i ∈ [1, n], qi = vih(ri)ui.
For all i ∈ [1, n], Ψk(qi) = Ψk(vi−1h(ri)ui) = Ψk(vi−1p) + Ψk(h(ri)p) +

Ψk(sui) − Ψk(sp) = Ψk(vi−1, ui) + NΨ(ri). Moreover for all i ∈ [1, n − 1],
Ψk(qi) = Ψk(qi+1) and thus

Ψk(vi−1, ui)−Ψk(vi, ui+1) = N(Ψ(ri+1)−Ψ(ri)) (4.1)
M−1(ΨS(vi−1, ui)−ΨS(vi, ui+1)) = Ψ(ri+1)−Ψ(ri) (4.2)

Equation 4.2 implies condition (b) and Equation 4.1 implies condition (c).
Moreover for all i ∈ [1, n − 1], prefk−1(vi−1h(ri)ui) = prefk−1(vih(ri+1)ui+1)
which implies condition (a).

Since we have all the conditions of (3.), there are α0, . . . , αn ∈ {0, 1} such
that for every i ∈ [1, n− 1]:

M−1(ΨS(vi−1,ui)−ΨS(vi,ui+1))=(1−αi−1)Ψ(ai−1)+(2αi−1)Ψ(ai)−αi+1Ψ(ai+1) (4.3)

For all i ∈ [1, n], let r′i = a
1−αi−1

i−1 ria
αi
i , then clearly r′1r′2 . . . r′n is a factor

of w. Moreover for all i ∈ [1, n− 1]:

Ψ(r′i)−Ψ(r′i+1)=(1−αi−1)Ψ(ai−1)+Ψ(ri)+(2αi−1)Ψ(ai)−Ψ(ri+1)−αi+1Ψ(ai+1)

=M−1(ΨS(vi−1,ui)−ΨS(vi,ui+1))+Ψ(ri)−Ψ(ri+1) (From 4.3)

= 0 (From 4.2)

Thus w contains an abelian k-th power and we get a contradiction. It con-
cludes the proof that h is (l, k)-abelian n-th power-free.

For any given morphism all the conditions of Theorem 4.2 are easy to
check. We wrote a C++ code that checks all the conditions, and we can use
it to check whether a morphism is (l, k)-abelian n-th power-free.

42

4.2 Results

4.2.1 Minimum number of distinct k-abelian squares in
binary words

We want to compute for all k, g(k) the minimal number of distinct k-
abelian squares that an infinite binary word must contain. Any (k+1)-abelian
square is a k-abelian square so g is non-increasing. Every binary infinite word
contains at least three distinct squares thus for all k, g(k) ≥ 3 [27].

Proposition 4.3. The morphism h3 (defined in Table 4.1) is (3, 5)-abelian
square-free. Moreover, for every abelian square-free word w, h3(w) contains
only 3 distinct 5-abelian squares: 02, 12 and (01)2.

The conditions from Theorem 4.2 can be verified on h3 by a computer
program. Then one has to check the small 5-abelian squares that could occur.
Since abelian squares are avoidable over 4 letters, g(k) ≤ 3 for every k ≥ 5,
and so g(k) = 3. Note that this result implies the result from Fraenkel and
Simpson. Propositions 4.4 and 4.5 give us that g(3) = g(4) = 4.

Proposition 4.4. Every word of size more than 87 over the binary alphabet
contains at least 4 different 4-abelian squares.

This can be verified by an exhaustive computer search using the technique
presented in Section 3.1.

Proposition 4.5. Let:

h4 :

0→ 0001100101001101011000101010001011101011000101
1→ 0001100101001101011001110101011100011101011000101
2→ 0001100101001110001010001100101100011101011000101
3→ 000110010100111001010100111000101100101011000101.

Then h4 is (3, 3)-abelian square-free. Moreover, for every abelian square-free
word w, h4(w) contains only 4 distinct 3-abelian squares: 02, 12, (01)2 and
(10)2.

The proof that h4 is (3, 3)-abelian square-free can be done by checking
the conditions from Theorem 4.2. One can then check that (00)2 and (11)2

do not appear as factors of any image of a two-letter word.
Using again an exhaustive search and the technique from Section 3.1, we

can give the lower bound g(2) ≥ 5.

43

h3 :

0→ u1001011000101110001100101100010111001011000111001011100011001011000
10111001011001110001011000111001011100011001011000101110010110001110
01011100011001011000111001011001110001100101100011100101110001100101
10001011100101100011100101110001100101100011100101100111000101100011
10010110001011100101100111000101110010110001011100011001011000111001
0110011100010111001011000111001011100011v

1→ u0001110010110011100011001011000111001011001110001011100101100011100
10111000110010110001110010110011100011001011000111001011100010110001
11001011001110001100101100011100101100111000101100011100101100010111
00011001011000111001011001110001100101100011100101110001100101100010
11100101100011100101110001100101100011100101100111000110010110001110
0101110001100101100010111001011001110v

2→ u0001110010110011100011001011000111001011001110001011100101100011100
10111000110010110001011100101100111000101100011100101100010111001011
00111000101110010110001110010111000110010110001011100101100111000101
11001011000101110001100101100010111001011001110001011000111001011001
11000110010110001110010111000110010110001011100101100111000101110010
110001011100011001011000101110010110011100011v

3→ u0001110010110001011100011001011000101110010110001110010111000110010
11000111001011001110001100101100011100101110001011000111001011001110
00110010110001110010110011100010110001110010110001011100011001011000
10111001011001110001011000111001011100010110011100011001011000111001
01100111000101100011100101100010111001011001110001011100101100011100
101110001100101100010111001011001110v

Where:

u = 11000110010110001011100101100111000101100011100101100
01011100101100111000101110010110001011100011001011000
111001011001110001100101100010111001011001110001011

v = 00101100011100101100111000110010111000101100111000101
11001011000101110001100101110001011001110001100101100
01110010111000101100011100101100111000101100011100101

Table 4.1 – A (3, 5)-abelian square-free morphism, with only three distinct
5-abelian squares: 00, 11 and 0101.

44

Proposition 4.6. Every word of size more than 92 over the binary alphabet
contains at least 5 distinct 2-abelian squares.

For the upper bound on g(2) we have:

Theorem 4.7. Let:

h2 :

a→ 111111111000
b→ 101011110100
c→ 101011000000.

h2 is (8, 2)-abelian square-free.

h2 fulfills the conditions from Theorem 4.2 for l = 8, k = 2. This mor-
phism is less obvious to use since there is no abelian square free ternary
word. But recall that we showed in Chapter 3 that there is a ternary word
w = g3(hω6 (a)) that avoids abelian squares of length more than 5. By looking
at the proof of Theorem 4.2, we also get that 2-abelian squares in h2(w) that
are greater than 8 are factor of the image of an abelian square concatenated
with at most 2 letters. Thus there are no 2-abelian square in h2(w) of period
more than 12× 7 = 84.

We can check every factors of h2(w) of length at most 168 and obtain
the exact list of 2-abelian squares. We get that there are only 734 different
2-abelian squares in h2(g3(hω6 (a))), all of them of period at most 63. We
deduce the following Corollary.

Corollary 4.8. g(2) ≤ 734.

This Corollary answers Problem 4.1 and we know that long 2-abelian
squares are avoidable over the binary alphabet.

For every k 6= 2, we know the exact minimal number of different k-abelian
square in an infinite binary word so we naturally ask the following question:

Problem 4.9. What is the minimal number of distinct 2-abelian squares that
an infinite binary word must contain?

Note that any improvement on the upper bound in Problem 3.13 will
improve the upper bound for this problem. Nonetheless in order to find
the exact value of g(2) one probably has to apply directly a morphism to
an abelian square free word. Moreover the proof technique from Chapter
1 could be adapted in order to decide k-abelian powers freeness of morphic
words under similar conditions.

45

4.2.2 2-abelian squares over a ternary alphabet

Rao showed that one can build an infinite word that avoids 3-abelian
squares over a ternary alphabet [53]. The longest 2-abelian square-free
ternary word has a length of 537 [30]. We showed in Chapter 3 that one
can avoid abelian squares of period at least 6 over the ternary alphabet.
It implies that 2-abelian square of period at least 6 are avoidable over the
ternary alphabet, but we can show that one can avoid 2-abelian squares of
period at least 2 over the ternary alphabet.

Let:

h2 :

0→ 00021
1→ 00111
2→ 01121
3→ 01221.

Theorem 4.10. h2 is (2, 2)-abelian square-free.

We can apply Theorem 4.2 with S = {00, 01, 02, 11}.
In fact we can show the following stronger result:

Theorem 4.11. Let

h′2 :

0→ 20212210201
1→ 20222010201
2→ 21012010201
3→ 22120122201.

The only 2-abelian square contained in the image of any abelian square free
word by h′2 is 22.

We use Theorem 4.2 to show that h′2 is 2-abelian square free, and clearly
00 and 11 do not appear on any image by this morphism. Since 2-abelian
squares are not avoidable over the ternary aphabet this result is optimal in
number of different squares.

Since there are exponentially many abelian square free words over 4 letters
(see [11, 36]), we get the following corollary:

Corollary 4.12. There are exponentially many ternary words that contain
at most one 2-abelian square.

46

Chapter 5

Avoidability of Binary Formulas

A pattern p is a non-empty finite word over an alphabet ∆ whose letters
are called variables . Let ∆ = {A,B, . . .}, that is we denote elements of ∆
by capital letters. An occurrence of a pattern p in a word w is a non-erasing
morphism h : ∆∗ → Σ∗ such that h(p) is a factor of w. The avoidability
index λ(p) of a pattern p is the size of the smallest alphabet Σ such that
there exists an infinite word over Σ avoiding occurrences of p, or ∞ if there
is no such finite Σ. We say that a pattern p is k-avoidable if λ(p) ≤ k. In
fact, the original question that motivated Thue’s work was whether or not
for any finite word p and infinite word w there is a non-erasing morphism h
such that h(p) is a factor of w. In our terminology, he asked whether they
are avoidable patterns and he showed that AAA is avoidable over 2 letters,
that is λ(AAA) = 2 [59].

Since the work of Thue on the avoidability of patterns many authors
worked on the classification of avoidable patterns [13, 44, 58]. Bean, Ehren-
feucht, and McNulty [6] and Zimin [61] characterized unavoidable patterns,
i.e., such that λ(p) =∞. Roth proved in [57] that binary patterns of length
greater than 6 are avoidable over the binary alphabet. Cassaigne [14] began
and Ochem [42] finished the determination of the avoidability index of every
pattern with at most 3 variables.

A variable that appears only once in a pattern is said to be isolated .
Following Cassaigne [14], we associate to a pattern p the formula f obtained
by replacing every isolated variable in p by a dot. The factors between the
dots are called fragments .

An occurrence of f in a word w is a non-erasing morphism h : ∆∗ → Σ∗

such that the h-image of every fragment of f is a factor of w. The avoidability

47

index λ(f) of a formula f is the size of the smallest alphabet over which
there is an infinite word containing no occurrence of f . Clearly, every word
avoiding f also avoids p, so λ(p) ≤ λ(f). An infinite word is recurrent if
every finite factor appears infinitely many times. It is a classical result that
if there exists an infinite word over Σ avoiding p, then there exists an infinite
recurrent word over Σ avoiding p. This recurrent word also avoids f , so that
λ(p) = λ(f). Without loss of generality, a formula is such that no variable is
isolated and no fragment is a factor of another fragment. A formula is said
to be binary if it has at most 2 variables. We say that an avoidable formula
f is exponential if there are a > 0 and b > 1 such that the number of words
in Σn

λ(f) avoiding f is lower bounded by a.bn. Similarly, an avoidable formula
f is polynomial if there is a polynomial P such that the number of words in
Σn
λ(f) avoiding f is upper bounded by P (n).
In this chapter, we determine the avoidability index of every binary for-

mula. Formulas are either unavoidable if they divide ABA, or avoidable over
the ternary alphabet so we only need to distinguish between avoidability in-
dex 2 and 3. We then determine which formulas are exponential and which
are polynomial. We also give a formula that characterize the language of the
Thue-Morse word in Section 5.5. All the results presented in this Chapter are
joint work with Pascal Ochem. The formula characterizing the Thue-Morse
language is new and the rest is part of the article [46].

5.1 Classification of binary formulas

We say that a formula f is divisible by a formula f ′ if f does not avoid
f ′, that is, there is a non-erasing morphism h such that the image of any
fragment of f ′ by h is a factor of a fragment of f . If f is divisible by f ′,
then every word avoiding f ′ also avoids f and thus λ(f) ≤ λ(f ′). Moreover,
the reverse fR of a formula f satisfies λ(fR) = λ(f). For example, the fact
that ABA.AABB is 2-avoidable implies that ABAABB and BAB.AABB
are 2-avoidable. See Cassaigne [14] and Clark [16] for more information on
formulas and divisibility.

First, we check that every avoidable binary formula is 3-avoidable. Since
λ(AA) = 3, every formula containing a square is 3-avoidable. Then, the only
square free avoidable binary formula is ABA.BAB with avoidability index 3
(ABACBAB is of avoidability index 3 [14]). Thus, we have to distinguish
between avoidable binary formulas with avoidability index 2 and 3. A binary

48

formula is minimally 2-avoidable if it is 2-avoidable but not divisible by any
non-equivalent 2-avoidable binary formula. A binary formula f is maximally
2-unavoidable if it is 2-unavoidable but every non-equivalent binary formula
that is divisible by f is 2-avoidable.

We are now ready to give the two main theorems of this chapter:

Theorem 5.1.
Up to symmetry, the maximally 2-unavoidable binary formulas are:
— AAB.ABA.ABB.BBA.BAB.BAA

— AAB.ABBA

— AAB.BBAB

— AAB.BBAA

— AAB.BABB

— AAB.BABAA

— ABA.ABBA

— AABA.BAAB

Up to symmetry, the minimally 2-avoidable binary formulas are:
— AA.ABA.ABBA (polynomial)

— ABA.AABB (polynomial)

— AABA.ABB.BBA (polynomial)

— AA.ABA.BABB (exponential)

— AA.ABB.BBAB (exponential)

— AA.ABAB.BB (exponential)

— AA.ABBA.BAB (exponential)

— AAB.ABB.BBAA (exponential)

— AAB.ABBA.BAA (exponential)

— AABB.ABBA (exponential)

— ABAB.BABA (exponential)

— AABA.BABA (exponential)

— AAA (exponential)

— ABA.BAAB.BAB (exponential)

— AABA.ABAA.BAB (exponential)

— AABA.ABAA.BAAB (exponential)

49

— ABAAB (exponential)

Given a binary formula f , we can use Theorem 5.1 to find λ(f). Now,
we also consider the problem whether an avoidable binary formula is poly-
nomial or exponential. If λ(f) = 3, then either f contains a square or
f = ABA.BAB, so f is exponential. Thus, we consider only the case
λ(f) = 2. If f is divisible by an exponential 2-avoidable formula given
in Theorem 5.1, then f is known to be exponential. This leaves open the
cases such that f is only divisible by polynomial 2-avoidable formulas. The
next result settles every open case.

Theorem 5.2. The following formulas are polynomial:
— BBA.ABA.AABB

— AABA.AABB

The following formulas are exponential:
— BAB.ABA.AABB

— AAB.ABA.ABBA

— BAA.ABA.AABB

— BBA.AABA.AABB

To obtain the 2-unavoidability of the formulas in the first part of The-
orem 5.1, we use a standard backtracking algorithm. Figure 5.1 gives the
maximal length and number of binary words avoiding each maximally 2-
unavoidable formula.

In Section 5.3, we consider the polynomial formulas in Theorems 5.1
and 5.2. The proof uses a technical lemma given in Section 5.2. Then we
consider in Section 5.4 the exponential formulas in Theorems 5.1 and 5.2.

5.2 The useful lemma

Let b3 be the ternary Thue-Morse word, that is the fixed point of 0 7→ 012,
1 7→ 02, 2 7→ 1.

Let w and w′ be infinite (right infinite or bi-infinite) words. We say that
w and w′ are equivalent if they have the same set of finite factors. We write
w ∼ w′ if w and w′ are equivalent. A famous result of Thue [59] can be
stated as follows:

50

Maximal length of a Number of binary
Formula binary word avoiding words avoiding

this formula this formula
AAB.BBAA 22 1428

AAB.ABA.ABB.BBA.BAB.BAA 23 810
AAB.BBAB 23 1662
AABA.BAAB 26 2124
AAB.ABBA 30 1684
AAB.BABAA 42 71002
AAB.BABB 69 9252
ABA.ABBA 90 31572

Figure 5.1 – The number and maximal length of binary words avoiding the
maximally 2-unavoidable formulas.

Theorem 5.3. [59] Every bi-infinite ternary word avoiding 010, 212, and
squares is equivalent to b3.

Given an alphabet Σ and a set of forbidden factors S, we say that a finite
set W of infinite words over Σ essentially avoids S if every word in W avoids
S and every bi-infinite words over Σ avoiding S is equivalent to one of the
words in W . If W contains only one word w, we denote the set W by w
instead of {w}. Then we can restate Theorem 5.3: b3 essentially avoids 010,
212, and squares

The results in the next section involve b3. We have tried without success
to prove them by using Theorem 5.3. We need the following stronger property
of b3:

Lemma 5.4. b3 essentially avoids 010, 212, XX with 1 ≤ |X| ≤ 3, and
2Y Y with |Y | ≥ 4.

Proof. From Theorem 5.3, b3 clearly avoids 010, 212, XX with 1 ≤ |X| ≤ 3,
and 2Y Y with |Y | ≥ 4. Thus we only need to show that any word avoiding
this set of factors is equivalent to b3.

We start by checking by computer that b3 has the same set of factors
of length 100 as every bi-infinite ternary word avoiding 010, 212, XX with
1 ≤ |X| ≤ 3, and 2Y Y with |Y | ≥ 4. On one side we compute the set of
factors of a given size of b3. On the other side we compute the set of words
of length 120 that avoid 010, 212, XX with 1 ≤ |X| ≤ 3, and 2Y Y with

51

|Y | ≥ 4 and we extract the factor of length 100 in the middle. Then we only
need to check the equality of these two sets.

We can check that the set of minimal forbidden factors of b3 of length
at most 4 is F = {00, 11, 22, 010, 212, 0202, 2020, 1021, 1201}. To finish the
proof, we use Theorem 5.3 and we suppose for contradiction that w is a bi-
infinite ternary word that contains a large square MM and avoids both F
and large factors of the form 2Y Y .

Case M = 0N . Then w contains MM = 0N0N . Since 00 ∈ F and
2Y Y is forbidden, w contains 10N0N . Since {11, 010} ⊂ F , w contains
210N0N . If N = P1, then w contains 210P10P1, which contains 2Y Y with
Y = 10P . So N = P2 and w contains 210P20P2. If P = Q1, then w
contains 210Q120Q12. Since {11, 212} ⊂ F , the factor Q12 implies that
Q = R0 and w contains 210R0120R012. Moreover, since {00, 1201} ⊂ F ,
the factor 120R implies that R = 2S and w contains 2102S01202S012.
Then there is no possible prefix letter for S: 0 gives 2020, 1 gives 1021, and
2 gives 22. This rules out the case P = Q1. So P = Q0 and w contains
210Q020Q02. The factor Q020Q implies that Q = 1R1, so that w contains
2101R10201R102. Since {11, 010} ⊂ F , the factor 01R implies that R = 2S,
so that w contains 21012S102012S102. The only possible right extension
with respect to F of 102 is 102012. So w contains 21012S102012S102012,
which contains 2Y Y with Y = S102012.

Case M = 1N . Then w contains MM = 1N1N . In order to avoid 11 and
2Y Y , w must contain 01N1N . If N = P0, then w contains 01P01P0. So w
contains the large square 01P01P and this case is covered by the previous
item. So N = P2 and w contains 01P21P2. Then there is no possible prefix
letter for P : 0 gives 010, 1 gives 11, and 2 gives 212.

Case M = 2N . Then w contains MM = 2N2N . If N = P1, then w
contains 2P12P1. This factor cannot extend to 2P12P12, since this is 2Y Y
with Y = P12. So w contains 2P12P10. Then there is no possible suffix
letter for P : 0 gives 010, 1 gives 11, and 2 gives 212. This rules out the case
N = P1. So N = P0 and w contains 2P02P0. This factor cannot extend
to 02P02P0, since this contains the large square 02P02P and this case is
covered by the first item. Thus w contains 12P02P0. If P = Q1, then w
contains 12Q102Q10. Since {22, 1021} ⊂ F , the factor 102Q implies that

52

Q = 0R, so that w contains 120R1020R10. Then there is no possible prefix
letter for R: 0 gives 00, 1 gives 1201, and 2 gives 0202. This rules out the
case P = Q1. So P = Q2 and w contains 12Q202Q20. The factor Q202
implies that Q = R1 and w contains 12R1202R120. Since {00, 1201} ⊂ F ,
w contains 12R1202R1202, which contains 2Y Y with Y = R1202.

5.3 Polynomial formulas

In this section, we show that the formulas announced in Theorems 5.1
and 5.2 to be polynomial are avoidable over 2 letters and are indeed poly-
nomial. In order to do that we first need to introduce the words that avoid
this formulas. Let:

gx(0) = 01110,
gx(1) = 0110,
gx(2) = 0.

gy(0) = 0111,
gy(1) = 01,
gy(2) = 00.

gz(0) = 0001,
gz(1) = 001,
gz(2) = 11.

gt(0) = 01011011010,
gt(1) = 01011010,
gt(2) = 010.

Let w denote the word obtained from the (finite or bi-infinite) binary
word w by exchanging 0 and 1. Obviously, if w avoids a given formula, then
so does w. A (bi-infinite) binary word w is self-complementary if w ∼ w. The
words gx(b3), gy(b3), and gt(b3) are self-complementary. Since the frequency
of 0 in gz(b3) is 5

9
, gz(b3) is not self-complementary. Then gz is obtained from

gz by exchanging 0 and 1, so that gz(b3) = gz(b3).

Lemma 5.5.

— {gx(b3), gy(b3), gz(b3), gz(b3)} essentially avoids AA.ABA.ABBA.

— gx(b3) essentially avoids AABA.ABB.BBA.

— Let f be either ABA.AABB, BBA.ABA.AABB, or AABA.AABB.
Then {gx(b3), gt(b3)} essentially avoids f .

We can deduce that the formulas that appear on this lemma are polyno-
mially avoidable over 2 letters.

The rest of the section is devoted to its proof. Let us first state interesting
properties of the morphisms and the formulas in Lemma 5.5.

Lemma 5.6. For every p, s ∈ Σ3, Y ∈ Σ∗3 with |Y | ≥ 4, and g ∈ {gx, gy, gz, gz, gt},
the word g(p2Y Y s) contains an occurrence of AABA.AABBA.

53

Proof. Since 0 is a prefix and a suffix of the gx-image of every letter, there
are U, V,W ∈ Σ+

3 such that gx(p2Y Y s) = V 000U00U00W , which contains
an occurrence of AABA.AABBA with A = 0 and B = 0U0.

Since 0 is a prefix of the gy-image of each letter, there are U, V ∈ Σ+
3 such

that gy(2Y Y s) = 000U0U0V . It contains an occurrence of AABA.AABBA
with A = 0 and B = 0U .

Since 1 is a suffix of the gz-image of each letter, gz(p2Y Y) = 111U1U1
contains an occurrence of AABA.AABBA with A = 1 and B = 1U .

Since gz(p2Y Y) = gz(p2Y Y) and gz(p2Y Y) contains an occurrence of
AABA.AABBA, gz(p2Y Y) contains an occurrence of AABA.AABBA.

Since 010 is a prefix and a suffix of the gt-image of every letter, there
are U, V,W ∈ Σ+

3 such that gt(p2Y Y s) = V 010010010U010010U010010W .
Thus gt(p2Y Y s) contains an occurrence of AABA.AABBA with A = 010
and B = 010U010.

It is straightforward to check the following lemma:

Lemma 5.7. AABA.AABBA is divisible by every formula in Lemma 5.5.

We are now ready to prove Lemma 5.5. To prove the avoidability, we have
implemented Cassaigne’s algorithm that decides, under mild assumptions,
whether a morphic word avoids a formula [14]. And by running this algorithm
we conclude that the formulas are avoided. So we only need to check that any
other word is equivalent to one of the word from the list. We have to explain
how the long enough binary words avoiding a formula can be split into 4 or
2 distinct incompatible types. A similar phenomenon has been described for
AABB.ABBA [43].

First, consider any infinite binary word w avoiding AA.ABA.ABBA.
A computer check shows by backtracking that w must contain the factor
01110001110. In particular, w contains 00. Thus, w cannot contain both
010 and 0110, since it would produce an occurrence of AA.ABA.ABBA.
Moreover, a computer check shows by backtracking that w cannot avoid both
010 and 0110. So, w must contain either 010 or 0110 (this is an exclusive or).
By symmetry, w must contain either 101 or 1001. There are thus at most
4 possibilities for w, depending on which subset of {010, 0110, 101, 1001}
appears among the factors of w, see Figure 5.2.

Also, consider any infinite binary word w avoiding f , where f is either
ABA.AABB, BBA.ABA.AABB, or AABA.AABB. Notice that the for-
mulas BBA.ABA.AABB and AABA.AABB are divisible by ABA.AABB.

54

gy(b3) gx(b3)

010

101 1001

gz(b3)

gz(b3)

0110

Figure 5.2 – The four infinite binary words avoiding AA.ABA.ABBA.

We check by backtracking that no infinite binary word avoids f , 0010, and
00110. A word containing both 0010 and 00110 contains an occurrence of
AABA.AABBA, and thus an occurrence of f by Lemma 5.7. So w does
not contain both 0010 and 00110. Thus, there are two possibilities for w
depending on whether it contains 0010 or 00110.

Now, our tasks of the form "prove that a set of morphic words essentially
avoids one formula" are reduced to (more) tasks of the form "prove that one
morphic word essentially avoids one formula and a set of factors".

Since all the proofs of such reduced tasks are very similar, we only detail
the proof that gy(b3) essentially avoids AA.ABA.ABBA, 0110, and 1001.
We check that the set of prolongable binary words of length 100 avoiding
AA.ABA.ABBA, 0110, and 1001 is exactly the set of factors of length 100
of gy(b3). Using Cassaigne’s notion of circular morphism [14], this is sufficient
to prove that every bi-infinite binary word of this type is the gy-image of some
bi-infinite ternary word w3. It also ensures that w3 and b3 have the same set
of small factors. Suppose for contradiction that w3 6∼ b3. By Lemma 5.4,
w3 contains a factor 2Y Y with |Y | ≥ 4. Since w3 is bi-infinite, w3 even
contains a factor p2Y Y s with p, s ∈ Σ3. By Lemma 5.6, gy(w3) contains
an occurrence of AABA.AABBA and by Lemma 5.7, gy(w3) contains an
occurrence of AA.ABA.ABBA. This contradiction shows that w3 ∼ b3. So
gy(b3) essentially avoids AA.ABA.ABBA, 0110, and 1001.

55

5.4 Exponential formulas
In this section, we show that the exponential formulas from Theorems 5.1

and 5.2 are avoidable over 2 letters and exponential. We first give a construc-
tion for each formula and then we explain how to show that the constructions
work. We need to introduce a few more definitions.

Given a morphism g : Σ∗3 → Σ∗2, a sqf-g-image is the image by g of a
(finite or infinite) ternary square free word. In this section, with an abuse
of language, we say that g avoids a formula f if every sqf-g-image avoids
f . The set of word avoiding squares over 3 letters is exponential [9], so if
we can show that a morphism g from the ternary alphabet to the binary
alphabet avoids a formula f , then we know that f is exponential. For every
2-avoidable exponential formula f from Theorems 5.1 and 5.2, we give below
a uniform morphism g that avoids f .

For the sake of completeness, we detail some stronger properties of this
morphisms. If possible, we simultaneously avoid the reverse formula fR of
f . We also avoid large squares. Let SQt denote the pattern corresponding
to squares of period at least t, that is, SQ1 = AA, SQ2 = ABAB, SQ3 =
ABCABC, and so on. The morphism g avoids SQt with t as small as
possible. Since λ(SQ2) = 3, a binary word avoiding SQ3 is necessarily best
possible in terms of length of avoided squares.

f = AA.ABA.BABB. This 22-uniform morphism avoids
{
f, fR, SQ6

}
:

0 7→ 0001101101110011100011
1 7→ 0001101101110001100011
2 7→ 0001101101100011100111

This 44-uniform morphism avoids {f, SQ5}:
0 7→ 00010010011000111001001100010011100100100111
1 7→ 00010010011000100111001001100011100100100111
2 7→ 00010010011000100111001001001100011100100111

Notice that
{
f, fR, SQ5

}
is 2-unavoidable and {f, SQ4} is 2-unavoidable.

f = AA.ABB.BBAB. This 60-uniform morphism avoids
{
f, fR, SQ11

}
:

0 7→ 000110011100011001110011000111000110011100011100110001110011
1 7→ 000110011100011001110001110011000111000110011100110001110011
2 7→ 000110011100011001110001100111000111001100011100110001110011

56

Notice that {f, SQ10} is 2-unavoidable.

f = AA.ABAB.BB. f is self-reverse. This 11-uniform morphism avoids
{f, SQ4}:

0 7→ 00100110111
1 7→ 00100110001
2 7→ 00100011011

Notice that {f, SQ3} is 2-unavoidable.

f = AA.ABBA.BAB. f is self-reverse. This 30-uniform morphism avoids
{f, SQ6}:

0 7→ 000110001110011000110011100111
1 7→ 000110001100111001100011100111
2 7→ 000110001100011001110011100111

Notice that {f, SQ5} is 2-unavoidable.

f = AAB.ABB.BBAA. f is self-reverse. This 30-uniform morphism avoids
{f, SQ5}:

0 7→ 000100101110100010110111011101
1 7→ 000100101101110100010111011101
2 7→ 000100010001011101110111010001

Notice that {f, SQ4} is 2-unavoidable.

f = AAB.ABBA.BAA. f is self-reverse. This 38-uniform morphism avoids
{f, SQ5}:

0 7→ 00010001000101110111010001011100011101
1 7→ 00010001000101110100011100010111011101
2 7→ 00010001000101110001110100010111011101

Notice that {f, SQ4} is 2-unavoidable.

57

f = AABB.ABBA. This 193-uniform morphism avoids {f, SQ16}:

0 7→ 00010001011011101100010110111000101101110111000101100010001011
011101100010110111011100010110111011000101101110001011011101110001
01100010001011011100010110111011100010110111011000101101110001011
1 7→ 00010001011011101100010110111000101101110111000101100010001011
011100010110111011100010110111011000101101110001011011101110001011
00010001011011101100010110111011100010110111011000101101110001011
2 7→ 00010001011011100010110111011100010110001000101101110110001011
011101110001011011101100010110111000101101110111000101100010001011
01110110001011011100010110111011100010110111011000101101110001011

Notice that
{
f, fR

}
is 2-unavoidable and {f, SQ15} is 2-unavoidable. Pre-

vious papers [42, 43] have considered a 102-uniform morphism to avoid
{f, SQ27}.

f = ABAB.BABA. f is self-reverse. This 50-uniform morphism avoids
{f, SQ3}, see [42]:

0 7→ 00011001011000111001011001110001011100101100010111
1 7→ 00011001011000101110010110011100010110001110010111
2 7→ 00011001011000101110010110001110010111000101100111

Notice that a binary word avoiding {f, SQ3} contains only the squares 00,
11, and 0101 (or 00, 11, and 1010).

f = AABA.BABA. A case analysis of the small factors shows that a re-
current binary word avoids

{
f, fR, SQ3

}
if and only if it contains only the

squares 00, 11, and 0101 (or 00, 11, and 1010). Thus, the previous 50-
uniform morphism that avoids {ABAB.BABA, SQ3} also avoids

{
f, fR, SQ3

}
.

f = AAA. f is self-reverse. This 32-uniform morphism avoids {f, SQ4}:

0 7→ 00101001101101001011001001101011
1 7→ 00101001101100101101001001101011
2 7→ 00100101101001001101101001011011

Notice that {f, SQ3} is 2-unavoidable.

58

f = ABA.BAAB.BAB. f is self-reverse. This 10-uniform morphism avoids
{f, SQ3}:

0 7→ 0001110101
1 7→ 0001011101
2 7→ 0001010111

f = AABA.ABAA.BAB. f is self-reverse. This 57-uniform morphism
avoids {f, SQ6}:

0 7→ 000101011100010110010101100010111001011000101011100101011
1 7→ 000101011100010110010101100010101110010110001011100101011
2 7→ 000101011100010110010101100010101110010101100010111001011

Notice that {f, SQ5} is 2-unavoidable.

f = AABA.ABAA.BAAB. f is self-reverse. This 30-uniform morphism
avoids {f, SQ3}:

0 7→ 000101110001110101000101011101
1 7→ 000101110001110100010101110101
2 7→ 000101110001010111010100011101

f = ABAAB. This 10-uniform morphism avoids
{
f, fR, SQ3

}
, see [42]:

0 7→ 0001110101
1 7→ 0000111101
2 7→ 0000101111

f = BAB.ABA.AABB. f is self-reverse. This 16-uniform morphism avoids
{f, SQ5}:

0 7→ 0101110111011101
1 7→ 0100010111010001
2 7→ 0001010111010100

Notice that {f, SQ4} is 2-unavoidable.

59

f = AAB.ABA.ABBA. f is avoided with its reverse. This 84-uniform
morphism avoids

{
f, fR, SQ5

}
:

0 7→ 00010001011100011101000100010111011101000101110001110100010
1110111010001110001011101
1 7→ 00010001011100011101000100010111010001110001011101110100010
1110001110100010111011101
2 7→ 00010001011100011101000100010111010001110001011101000100010
1110001110100010111011101

Notice that {f, SQ4} is 2-unavoidable.

f = BAA.ABA.AABB. This 304-uniform morphism avoids {f, SQ7}:

0 7→ 00011000110011100011100110001100111001110011000110001100111001
100011100011001110011100110001100111000111001100011000110011100110
001110001100111001110011000110001100111000111001100011001110011100
110001110001100111001100011000110011100111001100011001110001110011
00011000110011100111001100011100011001110011
1 7→ 00011000110011100011100110001100111001110011000110001100111001
100011100011001110011100110001100111000111001100011000110011100110
001110001100111001110011000110001100111000111001100011001110011100
110001100011001110011000111000110011100111001100011001110001110011
00011000110011100111001100011100011001110011
2 7→ 00011000110011100011100110001100111001110011000110001100111001
100011100011001110011100110001100011001110001110011000110011100111
001100011100011001110011000110001100111001110011000110011100011100
110001100011001110011000111000110011100111001100011000110011100011
10011000110011100111001100011100011001110011

Using the morphism gw below and the technique in [4], we can show that
gw(b3) essentially avoids {f, SQ6}:

gw(0) = 011100111001110001100111001100011000110
gw(1) = 011100111001100011000110
gw(2) = 001110011000110

Notice that
{
f, fR

}
is 2-unavoidable and {f, SQ5} is 2-unavoidable.

60

f = BBA.AABA.AABB. This 160-uniform morphism avoids
{
f, fR, SQ21

}
:

0 7→ 00010110010111000101110010110001011100010110010111001011000101
110010110001011001011100101100010111000101100101110001011100101100
01011001011100101100010111001011
1 7→ 00010110010111000101110010110001011100010110010111001011000101
110010110001011001011100010110010111001011000101110001011100101100
01011001011100101100010111001011
2 7→ 00010110010111000101100101110010110001011100010110010111000101
110010110001011001011100101100010111000101110010110001011001011100
01011001011100101100010111001011

This 202-uniform morphism avoids {f, SQ5}:
0 7→ 00011010011101101000110101000111011010011011010100011101101000
110101000111011010100011010011101101001101101010001101001110110101
000111011010001101010001110110101000110100111011010100011101101001
10110101
1 7→ 00011010011101101000110101000111011010011011010100011010011101
101010001110110100011010100011101101010001101001110110101000111011
010011011010100011010011101101001101101010001110110100011010100011
10110101
2 7→ 00011010011101101000110101000111011010011011010100011010011101
101010001110110100011010100011101101010001101001110110100110110101
000111011010001101010001110110101000110100111011010100011101101001
10110101

Notice that
{
f, fR, SQ20

}
is 2-unavoidable and {f, SQ4} is 2-unavoidable.

In the rest of this section we explain how to show that for every formula
f above and corresponding morphism g, g avoids f . We start by checking
that every morphism is synchronizing, that is, for every letters a, b, c ∈ Σ3,
the factor g(a) only appears as a prefix or a suffix in g(bc).

For every q-morphism g, the sqf-g-images are claimed to avoid SQt with
2t < q. Let us prove that SQt is avoided. We check exhaustively that the
sqf-g-images contain no square uu such that t ≤ |u| ≤ 2q − 2. Now suppose
for contradiction that an sqf-g-image contains a square uu with |u| ≥ 2q− 1.
The condition |u| ≥ 2q− 1 implies that u contains a factor g(a) with a ∈ Σ3.
This factor g(a) only appears as the g-image of the letter a because g is
synchronizing. Thus the distance between any two factors u in an sqf-g-
image is a multiple of q. Since uu is a factor of an sqf-g-image, we have

61

q divides |u|. Also, the center of the square uu cannot lie between the g-
images of two consecutive letters, since otherwise there would be a square
in the pre-image. The only remaining possibility is that the ternary square
free word contains a factor aXbXc with a, b, c ∈ Σ3 and X ∈ Σ+

3 such that
g(aXbXc) = bsY psY pe contains the square uu = sY psY p, where g(X) = Y ,
g(a) = bs, g(b) = ps, g(c) = pe. Then, we also have a 6= b and b 6= c since
aXbXc is square free. Then abc is square free and g(abc) = bspspe contains
a square with period |s|+ |p| = |g(a)| = q. This is a contradiction since the
sqf-g-images contain no square with period q.

Notice that f is not square free, since the only avoidable square free
binary formula is ABA.BAB, which is not 2-avoidable. We distinguish two
kinds of formula.

A formula is easy if every appearing variable is contained in at least one
square. Every potential occurrence of an easy formula then satisfies |A| < t
and |B| < t since SQt is avoided. The longest fragment of every easy formula
has length 4. So, to check that g avoids an easy formula, it is sufficient to
consider the set of factors of the sqf-g-images with length at most 4(t− 1).

A formula is tough if one of the variables is not contained in any square.
The tough formulas areABA.BAAB.BAB, AABA.ABAA.BAAB, ABAAB
and AABA.ABAA.BAB. They have been named so that the variable that
does not appear in any square is B. As before, every potential occurrence
of a tough formula satisfies |A| < t since SQt is avoided. Suppose for con-
tradiction that |B| ≥ 2q − 1. By previous discussion, the distance between
any two occurrences of B in an sqf-g-image is a multiple of q. The case
of ABA.BAAB.BAB can be settled as follows. The factor BAAB implies
that q divides |BAA| and the factor BAB implies that q divides |BA|. This
implies that q divides |A|, which contradicts |A| < t. For the other formulas,
only one fragment contains B twice. This fragment is said to be important.
Since |A| < t, the important fragment is a repetition which is “almost” a
square. The important fragment is BAB for AABA.ABAA.BAB, BAAB
for AABA.ABAA.BAAB, and ABAAB for ABAAB. Informally, this al-
most square implies a factor aXbXc in the ternary pre-image, such that
|a| = |c| = 1 and 1 ≤ |b| ≤ 2. If |X| is small, then |B| is small and we check
exhaustively that there exists no small occurrence of f . If |X| is large, there
would exist a ternary square free factor aY bY c with |Y | small, such that
g(aY bY c) contains the important fragment of an occurrence of f if and only
if g(aXbXc) contains the important fragment of a smaller occurrence of f .

62

5.5 A formula characterizing b3

In Lemma 5.4, we gave a characterization of b3. In the proof of Theorem
5.1, every minimally 2-avoidable binary formula, and thus every 2-avoidable
binary formula, is avoided by some morphic image of b3. The next theorem is
also a characterization of b3, but is based on a formula. Let b3(0↔1) be b3 where
we exchange 0 and 1, that is we applied the morphism 0 7→ 1, 1 7→ 0, 2 7→ 2.
Similarly let b3(2↔1) be the image of b3 by 0 7→ 0, 1 7→ 2, 2 7→ 1.

Theorem 5.8. Let w be a recurrent ternary word avoiding the formula F =
ABCAB.BAC.ACA. Then w is equivalent to a word from {b3, b3(0↔1), b3(2↔1)}.

Proof. Let w be ternary recurrent word avoiding F . For the sake of contra-
diction assume that F contains a square uu. Then since w is recurrent there
is a non empty factor v such that uuvuu is a factor of w. Clearly uuvuu does
not avoid F , so we reach a contradiction. Thus w has to be square-free.

The longest ternary word avoiding 012 and squares has length 29, so w
contains 012, 021, 102, 120, 201 and 210. Since w contains 102 but avoids
F we deduce that it avoids 01201 or 020 (by considering A 7→ 0, B 7→ 1,
C 7→ 2 in F). Thus 01201 and 020 cannot be both factors of w, and we can
reproduce this for any permutation of the letters.

Moreover, if the factor 01201 appears then the factor 1012010 appears
because any other extension of 012010 contains a square. So if 01201 appears
101 appears and thus 12012 cannot appear. Finally we get that 01201 and
12012 cannot both be factors of w. If we do that for every permutation of
the letter we get the graph from Fig. 5.3.

An edge between two factors in Fig. 5.3 means that the 2 factors cannot
both appear in w because they imply an occurrence of the formula. A dashed
edge means that the 2 factors cannot both appear in w because one of them
contains a factors that has an edge with the other one.

One can check, that if we forbid the 6 long factors from Fig.5.3, F and
squares the longest ternary word has length 32. So w contains at least one of
the long factors. But again we can show that if we allow 10210, but forbid all
the other long factors, F and squares the longest ternary word has length 43.
So we know that we have to allow at least 2 long factors. Up to a permutation
of the alphabet there are only 2 possibilities:

— w contains the factors 10210 and 01201, then w avoids 121 and 020 so
from Theorem 5.3, w is equivalent to b3(2↔1).

63

0|10210|1

2|02102|0

2|12012|1

0|20120|21|21021|2

1|01201|0

101

020

212202

010

121

Figure 5.3 – The incompatibility graph.

— w contains the factors 10210 and 20120, then w avoids 121 and 212,
and one can check that the longest word avoiding 121, 212, squares and
F has length 21.

Thus w avoids squares and one of the 3 sets {121, 020}, {101, 202} or
{010, 212}. By Theorem 5.3, w is equivalent to one of {b3, b3(0↔1), b3(2↔1)}.

Note that this implies that ABCAB.BAC.ACA is a polynomial formula.

5.6 Remarks about polynomial languages
It seems interesting to find more polynomial languages defined by simple

sets of forbidden factors. They are different examples in the literature [4, 5,
59]. Two of them are:

— b3 essentially avoids AA, 010, and 212.
— The binary Thue-Morse word essentially avoids ABABA, 000, and 111

(or equivalently ABABA and AAA).
Now we can extend this list:

— gx(b3) essentially avoids AAB.BAA.BBAB.
— {gx(b3), gt(b3)} essentially avoidsABA.AABB (or equivalentlyABACAABB),

BBA.ABA.AABB, orAABA.AABB (or equivalentlyAABACAABB).
— {gx(b3), gy(b3), gz(b3), gz(b3)} essentially avoids AA.ABA.ABBA.

64

— ABCAB.BAC.ACA is polynomial.
The last formula gave a new characterization of the polynomial language

of the factors of the ternary Thue-Morse word. It would be interesting to
have a similar characterization for the binary Thue-Morse word.

Problem 5.9. Is there a formula F such that any (recurrent) word avoiding
F is equivalent to the Thue-Morse word?

65

66

Chapter 6

Avoidability of Binary Patterns in
the Abelian Sense

We gave in Chapter 5 the usual definition of the realization of a pat-
tern, that is a word w realizes a pattern P ∈ ∆∗, if there is a non-erasing
morphism h such that h(P) = w. Equivalently, w realizes the pattern P
if w = w1w2 . . . w|P | such that ∀i, j, Pi = Pj =⇒ wi = wj. Based on
this second definition, there is a natural generalization of patterns to abelian
equivalence or any other equivalence relation.

Let P = P1P2 . . . Pn be a pattern, where the Pi are letters. Then we say
that a word w ∈ A∗ realizes P in the abelian sense if there are w1, . . . , wn ∈
A+ such that w = w1w2 . . . wn and ∀i, j, Pi = Pj =⇒ wi ≈a wj. If a
word w has no factor that realizes a pattern P in the abelian sense, then w
avoids P in the abelian sense. We say that a pattern is abelian-k-avoidable
if there is a word from an alphabet of size k that avoids this pattern. For
any pattern P ∈ ∆∗, the abelian-avoidability index of P , denoted by λa(P),
is the smallest integer k such that P is abelian-k-avoidable or ∞ if there is
no such k. It is an abelian analog of the usual avoidability index of a pattern
P .

For example, λa(AA) = 4 since abelian squares are avoidable over 4 letters
[34]. Likewise we can deduce from Dekking’s results that λa(AAA) = 3 and
λa(AAAA) = 2 [22]. We can also deduce λa(ABA) = λa(ABACABA) =∞
from the fact that these two patterns are not avoidable in the usual sense
[61]. In [20] authors showed that binary pattern of length greater than 118
are abelian-2-avoidable and asked for a more precise characterization. In
Section 6.2, we show that under some conditions one can decide if the fixed

67

point of a morphism avoids a given pattern. The results presented in this
chapter are part of the article [56].

6.1 Divisibility and easy results

This section contains simple results about λa, the abelian-avoidability
index function. The first proposition tells us that an abelian realization of a
pattern can also be given by a morphism.

Proposition 6.1. For any word u and pattern P = P1P2 . . . P|P | the 2 fol-
lowing conditions are equivalent:

— u is an abelian realization of P ,

— there exist a morphism ψ : ∆∗ 7→ A∗ and u1, u2, . . . , u|P | ∈ A∗ such
that u = u1u2 . . . u|P | and for all i ∈ [1, |P |], ui ≈a ψ(Pi).

Patterns are words so we can extend the definition of the occurrence of
a pattern in a word to the occurrence of a pattern in a pattern. For any
alphabet Σ (in particular one can take Σ = A ∪∆), ≤a is the relation over
Σ∗ such that for all u, v ∈ Σ∗, u ≤a v if and only if v contains an abelian
occurrence of u.

Theorem 6.2. ≤a is a preorder on Σ∗.

Proof. The reflexivity of ≤a is clear, we need to show the transitivity. Let
x, y, z ∈ Σ∗ such that x ≤a y and y ≤a z. From Proposition 6.1, we have:

— There are i1 < . . . < i|x|+1 ∈ [1, |y| + 1] and a morphism φ1 : Σ∗ 7→ Σ∗

such that for all k ∈ [1, |x|], yikyik+1 . . . yik+1−1 ≈a φ1(xk).

— There are j1 < . . . < j|y|+1 ∈ [1, |z| + 1] and a morphism φ2 : Σ∗ 7→ Σ∗

such that for all k ∈ [1, |y|], zjkzjk+1 . . . zjk+1−1 ≈a φ2(yk).

68

Then, for all k ∈ [1, |x|]:

Ψ(zjikzjik+1 . . . zjik+1
−1) =

ik+1−1∑
l=ik

Ψ(zjlzjl+1 . . . zjl+1−1)

Ψ(zjikzjik+1 . . . zjik+1
−1) =

ik+1−1∑
l=ik

Ψ(φ2(yl))

Ψ(zjikzjik+1 . . . zjik+1
−1) = Ψ(φ2(yik)φ2(yik+1) . . . φ2(yik+1−1))

Ψ(zjikzjik+1 . . . zjik+1
−1) = Ψ(φ2(yikyik+1 . . . yik+1−1))

Ψ(zjikzjik+1 . . . zjik+1
−1) = Ψ(φ2(φ1(xk))).

Thus z contains an abelian occurrence of x given by the morphism φ2 ◦ φ1.
Hence x ≤a z and ≤a is transitive.

The transitivity of ≤a can be used to show the following property:

Theorem 6.3. The function λa : ∆∗ 7→ N ∪ {∞} is anti-monotone, that is,
for any pattern P and P ′ such that P ≤a P ′, λa(P) ≥ λa(P

′).

Proof. Let P, P ′ ∈ ∆∗ such that P ≤a P ′. If λa(P) = ∞ then by definition
λ(P ′) ≤ λa(P). Otherwise there is an infinite word w over the alphabet
A = {1, 2, . . . , λa(P)} that avoids P in the abelian sense. If w contains
an abelian occurrence of P ′, w also contains an abelian occurrence of P by
transitivity of ≤a, which is a contradiction. Thus w avoids P ′ in the abelian
sense, and λa(P ′) ≤ λa(P).

The next corollary is a simple example of application of Theorem 6.3.

Corollary 6.4. For any n ∈ N, if there is a pattern P such that λa(P) = n
then there is an integer N such that every pattern of length at least N over
an alphabet of size n− 1 has abelian avoidability index at most n.

Proof. Let P be such a pattern, then there is an integer N such that every
pattern P ′ of length at least N over an alphabet of size λa(P) − 1 contains
an abelian occurrence of P , P ≤a P ′. Thus by Theorem 6.3, λa(P ′) ≤
λa(P).

From this corollary combined with the fact that λa(AA) = 4 and λa(AAA) =
3 we deduce that long enough binary patterns are abelian-3-avoidable and
long enough ternary pattern are abelian-4-avoidable.

69

In fact, one can check by exhaustive search that every binary pattern of
length greater than 9 contains an abelian cube, and every ternary pattern
of length greater than 7 contains an abelian square. We can deduce the
following:

Proposition 6.5. Binary patterns of length greater than 9 are abelian-3-
avoidable. Ternary patterns of length greater than 7 are abelian-4-avoidable.

We can also deduce the exact list of binary patterns that are not abelian-
4-avoidable:

Proposition 6.6. Let P ∈ {A,B}+. If P ∈ {A,B,AB,BA,ABA,BAB},
then λa(P) =∞ otherwise λa(P) ≤ 4.

Proof. It is easy to check that the list {A,B,AB,BA,ABA,BAB} is the
complete list of binary patterns avoiding AA. Moreover, λa(AA) = 4 and
thus by Theorem 6.3 if P /∈ {A,B,AB,BA,ABA,BAB}, λa(P) ≤ 4.

This leads to ask which binary patterns are abelian-3-avoidable and which
are abelian-2-avoidable. It was proven in [20] that binary pattern of length
greater than 118 are abelian-2-avoidable. We can show that binary pattern
of length greater than 14 are abelian-2-avoidable. For that, we need to find
a list of abelian-2-avoidable patterns and then to apply Theorem 6.3.

6.2 Decidability of pattern freeness in the abelian
sense

In this section we present an algorithm do decide under some conditions
whether the fixed-point of a morphism avoids a given pattern in the abelian
sense. The basic ideas are similar to the ideas used in Chapter 1. We
generalize the notion of k-templates introduced in [19] that was also used in
Chapter 1.

Let ∆ and A be two alphabets, and P a pattern over ∆. A P -template
over A is a 2(|P | + 1)-tuple of the form: [w0, v1, w1, v2 . . . , v|P |, w|P |] where
for all i, wi ∈ A∗ and vi ∈ Z|A|. A word w ∈ A∗ realizes (or is a realization
of) a P -template t = [w0, v1, . . . , v|P |, w|P |] if there are u1, . . . , u|P | ∈ A+ such
that w = w0u1w1u2 . . . u|P |w|P | and Pi = Pj =⇒ Ψ(ui) − Ψ(uj) = vi − vj,
for all i, j ∈ [1, |P |].

70

Each template can be associated to its set of realizations, but many tem-
plates are associated to the same set. We associate to any pattern P the
function ϕP : [1, |P |] 7→ [1, |P |] such that ϕP (i) = min{j : Pj = Pi} is
the position of the first occurrence of the letter Pi in P . We say that a P -
template is normalized if for all i ∈ [1, |P |], ϕP (i) = i =⇒ vi =

−→
0 . For any

P -template, we can compute a normalized template that is realized by the
same set of words. Since one doesn’t change the set of realizations by adding
the same vector to all vectors corresponding to the same letter, one get the
normalization of a template by taking for all i, v′i = vi − vϕP (i) and w′i = wi.
Note that there is a natural bijection between the set of k-templates from
Chapter 1 and the set of normalized Ak-templates. In the following, we only
use normalized templates.

We say that a morphism h : A∗ → A∗ is convenient if its associated
matrix Mh is invertible, ‖M−1

h ‖2 < 1 and ∀a ∈ A, |h(a)| > 1. We can now
state the main theorem:

Theorem 6.7. For any alphabets ∆ and A, pattern P ∈ ∆∗, P -template t,
convenient morphism h : A∗ 7→ A∗ and any letter a ∈ A such that h(a) = as
for some non-empty s, it is possible to decide if hω(a) avoids t.

By definition, w avoids the P -template [ε,
−→
0 , ε, . . . ,

−→
0 , ε,

−→
0 , ε], if and

only if w avoids P . From that we can deduce the following corollary:

Corollary 6.8. For any alphabets ∆ and A, pattern P ∈ ∆∗, any convenient
morphism h : A∗ 7→ A∗ and any letter a ∈ A such that h(a) = as for some
non-empty s, it is possible to decide if hω(a) is avoids P in the abelian sense.

The rest of this section is devoted to the proof of Theorem 6.7. The main
idea of the proof is that we can compute S, a set of templates, such that
t ∈ S and hn+1(a) avoids any template of S if and only if hn(a) avoids any
template of S. Thus hω(a) avoids t if and only if a avoids any template of
S which is easy to check. The set S corresponds to what we call the set of
special ancestors. In the following ∆ will always be the alphabet of patterns
and A the alphabet of words and templates.

6.2.1 Parents, ancestors and specialization of a tem-
plate

Let t = [w0, v1, . . . , v|P |, w|P |] and t′ = [w′0, v
′
1, . . . , v

′
|P |, w

′
|P |] be two nor-

malized P -templates. We say that t′ is a parent of t by h if there are

71

p0, s0, . . . , p|P |, s|P | ∈ A∗ such that:

— ∀i ∈ [0, |P |], pi is a prefix of the image of the first letter of w′i, si is a
suffix of the image of the last letter of w′i and h(w′i) = piwisi,

— ∀i, j ∈ [1, |P |], Pi = Pj =⇒ vi − vj = (Ψ(si−1) + Mhv
′
i + Ψ(pi)) −

(Ψ(sj−1) +Mhv
′
j + Ψ(pj)).

For any normalized template t we denote Parh(t) the set of parents of t
by h. The ancestors of t by h is the set Ancestorsh(t) = ∪∞i=0 Parih(t). The
relation “is an ancestor” is the transitive and reflexive closure of the relation
“is a parent”. Note that by definition a pattern is an ancestor of itself.

Intuitively this notion of parent and ancestor is similar to what we have for
k-template. In particular, the idea is that the set of parent of a P -template
t correspond to the preimages of the long realizations of t. We can show the
first direction:

Lemma 6.9. For any word w and any P -templates t and t′ ∈ Parh(t), if w
is a realization of t′ then h(w) contains a realization of t.

Proof. Let t = [w0, v1, . . . , v|P |, w|P |] and t′ = [w′0, v
′
1, . . . , v

′
|P |, w

′
|P |] ∈ Parh(t).

Then by definition there are p0, s0, . . . , p|P |, s|P | ∈ A∗ such that:

— ∀i ∈ [1, |P |], h(w′i) = piwisi,

— ∀i, j ∈ [1, |P |], Pi = Pj =⇒ vi − vj = (Ψ(si−1) + Mhv
′
i + Ψ(pi)) −

(Ψ(sj−1) +Mhv
′
j + Ψ(pj)).

Assume that there is a word w realizing t′. Then there are u′1, . . . , u′|P | ∈
A+ such that w = w′0u

′
1w
′
1u
′
2w
′
2 . . . u

′
|P |w

′
|P | and ∀i, j, Pi = Pj =⇒ Ψ(u′i) −

Ψ(u′j) = v′i − v′j. Then h(w) = p0w0s0h(u′1)p1w1 . . . s|P |−1h(u′|P |)p|P |w|P |s|P |.
For all i let ui = si−1h(u′i)pi, then W = w0u1w1u2w2 . . . u|P |w|P | is a factor of
h(w).

Moreover for all i, j ∈ [1, |P |], if Pi = Pj then:

Ψ(ui)−Ψ(uj) = Ψ(si−1h(u′i)pi)−Ψ(sj−1h(u′j)pj)

= (Ψ(si−1) + Ψ(h(u′i)) + Ψ(pi))− (Ψ(sj−1) + Ψ(h(u′j)) + Ψ(pj))

= (Ψ(si−1) +Mhv
′
i + Ψ(pi))− (Ψ(sj−1) +Mhv

′
j + Ψ(pj))

= vi − vj.

So W realizes t and is a factor of h(w).

72

By induction, we know that if one of the ancestors of t is not avoided
by hn(a) for some n ∈ N, then there is m ≥ n such that t is not avoided
by hm(a). Lemma 6.9 has similar statement and proof as Lemma 1.11. On
the other side, the notion of long realization is more complicated than in the
k-template case since the wi corresponding to different letters in P can have
arbitrarily different size. We need to introduce the notion of P -template
specialization to give an analog of Theorem 1.14.

Let P ∈ ∆∗ and L ⊆ ∆ then we denote by P|L the pattern which
is obtained by deleting from P every letter from ∆ − L. For instance,
ABCBBCCA|{A,C} = ACCCA.

Let Pos(P,L) : [1, |P|L|] 7→ [1, |P |] be such that Pos(P,L)(i) = min{j :
|(P1 . . . Pj)|L| = i}, where Pi is the i-th letter of P . That is, Pos(P,L)(i) is the
position of the letter in P that ends in position i in P|L.

For any P -template t = [w0, v1, w1, . . . , v|P |, w|P |] and any P|L-template
t|L = [w′0, v

′
1, w

′
1, . . . , v

′
|P|L|, w

′
|P|L|], we say that t|L is a L-specialization of t if

there are (ui)i:Pi 6∈L ∈ A+ such that:
— ∀i, v′i = vPos(P,L)(i),
— ∀i, j, Pi = Pj 6∈ L =⇒ Ψ(ui)−Ψ(uj) = vi − vj,
— ∀i, w′i = wibuib+1wib+1 . . . wie−1uiewie , where ib = Pos(P,L)(i) and ie =

Pos(P,L)(i+ 1)− 1.
The Lemma 6.10 states that the set of realizations of a specialization of

a P -template t is a subset of the realizations of t. We omit the proof of this
lemma which is technical but straightforward.

Lemma 6.10. Let P ∈ ∆∗ be a pattern and L ⊆ ∆. For any P -template
t and any L-specialization t|L of t if there is a word w realizing t|L then w
realizes t.

With this definition a P -template t has infinitely many L-specializations,
but in most cases the parents of a given L-specialization are included in the L-
specializations of the parents. We introduce the set of small L-specializations
in order to keep a finite subset of them. A L-specialization of a P -template
t is a small L-specialization if, with the notations from the definition of L-
specialization, for any A ∈ ∆ − L there is i ∈ [1, |P |] such that Pi = A and
|ui| ≤ 2 ·maxa∈A |h(a)|.

The set of special ancestors of a P -template t by h is the smallest set of
templates containing t and any ancestor and any small L-specialization of
any of its element.

73

Now we show that this set allows us to decide if the morphism’s fixed
point avoids the template.

Theorem 6.11. For any pattern P ∈ ∆+, any normalized P -template t, any
convenient morphism h and any word w ∈ A+, if there is a factor f of h(w)
that realizes t, then there is a factor f ′ of w that realizes a special ancestor
of t.

In fact we show that f ′ realizes the parent of an L-specialization of t for
some well chosen set L. The only thing we do is to unfold the definitions
with this set L.

Proof. Let t = [w0, v1, w1, . . . , v|P |, w|P |] be a normalized P -template and
assume there is a factor f of h(w) that realizes t. Then by definition there
are u1, . . . , u|P | ∈ A+ such that f = w0u1w1u2w2 . . . u|P |w|P | and

∀i, j Pi = Pj =⇒ Ψ(ui)−Ψ(uj) = vi − vj. (6.1)

Let us introduce the set L:

L =

{
A ∈ ∆ : ∀i, Pi = A =⇒ |ui| > 2 ·max

a∈A
|h(a)|

}
. (6.2)

Take the P|L-template t|L = [w′0, v
′
1, w

′
1, . . . , v|P|L|, w|P|L|] such that:

— ∀i, v′i = vPos(P,L)(i),
— ∀i, w′i = wibuib+1wib+1 . . . wie−1uiewie , where ib = Pos(P,L)(i) and ie =

Pos(P,L)(i+ 1)− 1.
From the equality (6.1) and the definition of L, t|L is a small L-specialization
of t. Let (u′i)1≤i≤|P|L| be such that for all i, u′i = uPos(P,L)(i). Then f =
w′0u

′
1w
′
1 . . . u

′
|P|L|w

′
|P|L|. Then from the equality (6.1) we can deduce:

∀i, j [P|L]i = [P|L]j =⇒ Ψ(u′i)−Ψ(u′j) = v′i − v′j. (6.3)

So f is a realization of the P|L-template t|L.
Since f is a factor of h(w) there is a factor f ′ of w such that h(f ′) =

p0fs|P|L|, where p0 ∈ prefixes(h(f ′1)) and s|P|L| ∈ suffixes(h(f ′|f ′|)). By con-
struction, for all i, |u′i| > 2 · maxa∈A |h(a)| so we know that each of the u′i
contains at least the full image of one letter. So there are u′′1, . . . , u′′|P|L| ∈ A

+,
w′′0 , . . . , w

′′
|P|L| ∈ A

∗ and s0, p1, s1, . . . , s|P|L|−1, p|P|L| ∈ A∗ such that f ′ =

w′′0u
′′
1w
′′
1u
′′
2 . . . u

′′
|P|L|w

′′
|P|L| and for all i ∈ [0, |P |]:

74

— pi is a prefix of the image of the first letter of w′′i ,

— si is a suffix of the image of the last letter of w′′i ,

— h(w′′i) = piw
′
isi,

— u′i = si−1h(u′′i)pi.

For all i ∈ [1, |P|L|], let v′′i = Ψ(u′′i) − Ψ(u′′ϕP|L (i)) and let t′′ be the P|L-
template t′′ = [w′′0 , v

′′
1 , w

′′
1 , v
′′
2 , . . . , v

′′
|P|L|, w

′′
|P|L|]. Then t

′′ is the normalization of
the P|L-template [w′′0 ,Ψ(u′′1), w′′1 ,Ψ(u′′2), . . . ,Ψ(u′′|P|L|), w

′′
|P|L|] which is realized

by f ′, thus f ′ is a realization of t′′.
From u′i = si−1h(u′′i)pi we get:

Ψ(u′i) = Ψ(si−1) +MhΨ(u′′i) + Ψ(pi). (6.4)

Let i, j ∈ [1, |P|L|] such that [P|L]i = [P|L]j then ϕP|L(i) = ϕP|L(j) and hence

Ψ(u′′ϕP|L (i)) = Ψ(u′′ϕP|L (j)). (6.5)

Now if we put all of that together we get:

v′i − v′j =Ψ(u′i)−Ψ(u′j) (from (6.3))
=(Ψ(si−1) +MhΨ(u′′i) + Ψ(pi))− (Ψ(sj−1) +MhΨ(u′′j) + Ψ(pj)) (from (6.4))
=(Ψ(si−1) +Mhv

′′
i + Ψ(pi))− (Ψ(sj−1) +Mhv

′′
j + Ψ(pj)) (from (6.5)).

Thus t′′ is a parent of t|L. So t′′ is a parent of a specialization of t and is
realized by a factor f ′ of w.

Theorem 6.11 together with the fact that, by definition, a special ancestor
of a special ancestor of t is itself a special ancestor of t gives:

Theorem 6.12. For any pattern P ∈ ∆∗, any normalized P -template t, any
convenient morphism h and any letter a ∈ A, if there is a positive integer n
and a factor of hn(a) that realizes t, then a realizes a special ancestor of t.

We also need the converse, that is:

Theorem 6.13. For any pattern P ∈ ∆∗, any normalized P -template t, any
convenient morphism h and any letter a ∈ A, if a realizes a special ancestor
t′ of t, then there is a positive integer n and a factor of hn(a) that realizes t′.

75

Proof. We first take the sequence of parent and L-specialization that reaches
t′ from t. Then we use Lemmas 6.9 and 6.10 to reverse operations on a and
we reach the factor of hn(a) that realizes t.

From Theorem 6.12 and Theorem 6.13 we deduce the following one:

Theorem 6.14. For any pattern P ∈ ∆∗, any normalized P -template t, any
convenient morphism h and any letter a ∈ A, hω(a) avoids t if and only if a
does not realize any special ancestor of t.

Now we have to show that the set of special ancestors of a template is
finite and computable under the conditions from Theorem 6.7.

6.2.2 Computing the set of special ancestors

Lemmas 6.15, 6.16 and 6.17 tell us that the set of ancestors of a given
template is computable.

Lemma 6.15. For any convenient morphism h : A∗ 7→ A∗ and normalized
P -template t, the set Parh(t) is finite and computable.

Proof. Since the template t is normalized we know that:

Mhv
′
i =

{
0 if ϕP (i) = i
vi −Ψ(si−1)−Ψ(pi) + Ψ(sϕP (i)−1) + Ψ(pϕP (i)) if ϕP (i) 6= i.

SinceMh is invertible, there is at most one parent for a given valuation of
(w′i)0≤i≤|P |, (si)0≤i≤|P | and (pi)0≤i≤|P |. Moreover the possibilities for the si, pi
and hence for the w′i are finite (if h is injective there is at most one possibility
for each w′i). So we can try all the valuations for (w′i)0≤i≤|P |, (si)0≤i≤|P | and
(pi)0≤i≤|P | and we get all the parents.

Lemma 6.16. For any convenient morphism h : A∗ 7→ A∗ and normal-
ized P -template t there are (r1, . . . , r|P |) ∈ R+ such that for any normalized
ancestor t′ = [w′0, v

′
1, w

′
1, v
′
2 . . . , v|P |, w|P |] of t by h then for all i, ‖v′i‖2 < ri.

We omit the details of the proof of Lemma 6.16 which is similar to the
proof of Lemma 4 in [19], or can be derived from Proposition 1.18. Let vi be
the i-th vector of t, then v′i = M−nvi +

∑n−1
j=0 M

−j(Ψ(sj) + Ψ(pj)−Ψ(s′j)−
Ψ(p′j)) for some sj, s′j and pj, p

′
j being respectively suffixes and prefixes of

images of letters by h. Moreover ‖M−1
h ‖2 < 1, so ‖v′i‖2 is bounded.

76

Lemma 6.17. For any normalized P -template t the set of ancestors of t by
h is finite and computable.

Proof. Let t′ = [w0, v1, w1, v2 . . . , v|P |, w|P |] be an ancestor of t by h. From
Lemma 6.16, each of the vi is bounded and since vi ∈ Z|A| there are finitely
many choices for each of the vi. Moreover, since for all a ∈ A, |h(a)| > 1,
the length of the wi is bounded and there are finitely many different values
for the wi. It implies that there are only finitely many possible ancestors.

In order to compute the set of ancestors, one starts with the singleton
S = {t} and repeats the operation S = S ∪ Parh(S) (computable thanks
to Lemma 6.15) until S reaches a fixed point, which will eventually happen
since the set of ancestors is finite.

Now we need to show that the set of specialization of a P -template is
computable.

Lemma 6.18. For any pattern P ∈ ∆∗, P -template t and L ⊆ ∆ the set of
small L-specializations of t is finite and computable.

Proof. Let P ∈ ∆∗, t = [w0, v1, w1, . . . , v|P |, w|P |] be a P -template and L ⊆ ∆.
Let t|L = [w′0, v

′
1, w

′
1, . . . , v|P|L|, w|P|L|] be a small L-specialization of t. Since

t|L is a small L-specialization of t, for any letter A 6∈ L there is an index
iA such that PiA = A and |uiA| ≤ 2 · maxa∈A|h(a)|, and there are only
finitely many possible values for the uiA . Then from the definition for all j,
(Pj = A and j 6= iA) =⇒ Ψ(uj) = Ψ(uiA) + vPj

− vPiA
. So there are only

finitely many possible values for each uj.
Once we have chosen the (ui)i:Pi 6∈L the w′i and v′i are fixed. Hence by

trying all the possible values for (ui)i:Pi 6∈L we can compute the set of all small
L-specializations of t.

We denote by SmallSpecL(t) the set of small L-specializations of a P -
template t. Now using Lemma 6.17 and Lemma 6.18 we can explain how to
compute the set of special factors of a template.

Theorem 6.19. For any alphabets ∆ and A, pattern P ∈ ∆∗, normalized
P -template t and convenient morphism h : A∗ 7→ A∗, one can compute the
set of special ancestors of t by h.

Proof. Algorithm 2 computes this set for any P , t and h.

77

Input : P , t, h.
Output: The set S of special ancestors of t.
S = Ancestorsh(t);
for i = |∆| − 1 . . . 0 do

for L ⊆ ∆, |L| = i do
S = S ∪ SmallSpecL(S);

S = S ∪ Ancestorsh(S);
Algorithm 2: How to compute special ancestors.

This algorithm halts because if S is finite then by Lemma 6.17 and 6.18
one can execute S = S ∪Ancestors(S) and S = S ∪ SmallSpecL(S) and keep
S finite.

For any D ⊆ L ⊆ ∆ and any pattern P ∈ ∆∗, (P|D)|L = P|D. So for any
L-specialization tDL of a D-specialization tD of a P -template t, tDL = tD.
It implies that at the end for any L ⊆ ∆, every element of S has all of its
small L-specializations in S. Since the last operation of the algorithm adds
the ancestors, every ancestor of any element of S is in S.

In some reasonable implementation of the algorithm, it is important to
use for S a data-structure that allows to check if a template is already in S in
logarithmic time. Moreover, we are careful with specialization so that we do
not obtain twice the same template by two different paths of specialization
(dropping the letter A and then the letter B is the same than dropping B
and then A).

Under the conditions of Theorem 6.7, one can compute the set of special
ancestors of a template, thanks to Theorem 6.19. Since we can compute the
set of special ancestors and compare it to the letter a, we can decide if hω(a)
avoids t by Theorem 6.14. This concludes the proof of Theorem 6.7.

We implemented this algorithm in C++ and thus we can check if a pattern
is avoided by the fixed point of a morphism.

6.2.3 Small eigenvalues and morphic words

All the techniques from Chapter 1 can be used in order to improve this
algorithm. In Theorem 6.7, we need Mh to be invertible and ‖M−1

h ‖2 < 1,
but this can be replaced by “Mh has no eigenvalues of norm 1”. We can use
Proposition 1.16 and Proposition 1.18 to compute a subset of the realizable
ancestors and the rest stays unchanged.

78

Similarly, we can use the techniques from Chapter 3 in order to be able
to decide whether a morphic word avoids a pattern in the abelian sense. We
need the same conditions than in Theorem 3.10. In particular, there are
probably some binary patterns that we were not able to avoid, but can be
avoided by the image of the fixed point of h : a 7→ ac, b 7→ dc, c 7→ b, d 7→ ab
by a second morphism. Our implementation of this algorithm was not able
to terminate on the candidates pair of morphisms that we found due to the
huge number of special ancestors between the bounds from Proposition 1.16.
This would be interesting to find a way to improve this algorithm, maybe
by finding a way to discard most of the special ancestors by using a second
criteria or better bounds.

6.3 Results and open questions

In this section we use Corollary 6.8 as a black box that can decide if a
pattern is avoided by the fixed-point of a morphism.

6.3.1 Abelian-3-avoidability of binary patterns

The first application is to improve Theorem 6.5 :

Theorem 6.20. Binary patterns of length at least 9 are abelian-3-avoidable.
More precisely every pattern that does not appear up to symmetry on the
following list is abelian-3-avoidable:

A, AA, AB, AAB, ABA, AABA, AABB, ABAB, ABBA, AABAA, AABAB, AABBA,
ABAAB, ABABA, AABAAB, AABABA, AABABB, AABBAA, ABAABA, AABAABA,
AABABAA, ABBABBA, AABAABAA, ABAABAAB.

Proof. It is well known that AAA is abelian-3-avoidable [22] and it is already
enough to show the upper bound. Moreover, we can use the algorithm from
Theorem 6.7 to show that any fixed point of a 7→ aabaac, b 7→ cbbbab, c 7→
cbccac avoids AABBAB in the abelian sense. So we only need to find ex-
haustively all the words that avoid AAA, AABBAB and ABAABB. We
get the list of Theorem 6.20.

Conversely, if there is a word that avoids AABAA, there is also a recurrent
word w that avoids AABAA and then w avoids AA, thus λa(AABAA) = 4.

79

So the patterns A,AA,AB,AAB,ABA,AABA,AABAA are not abelian-3-
avoidable. But, for the rest of the list, we do not know which of them are
abelian-3-avoidable

Problem 6.21. Which of the following patterns are abelian-3-avoidable?
AABB, ABAB, ABBA, AABAB, AABBA, ABAAB, ABABA, AABAAB, AABABA,

AABABB, AABBAA, ABAABA, AABAABA, AABABAA, ABBABBA, AABAABAA,
ABAABAAB.

There is a direct link with the first Mäkelä’s question. In Chapter 3 we
showed that abelian squares of the form uv where |u| ≥ 6 are avoidable over
the ternary alphabet. If we can avoid abelian squares of period more than 2
over the binary alphabet then all the patterns from Problem 6.21 other than
AABB are abelian-3-avoidable.

6.3.2 Abelian-2-avoidability of binary patterns

For the binary case it was shown in [20] that:

Theorem 6.22 (J. D. Currie, T. I. Visentin). Binary patterns of length
greater than 118 are abelian-2-avoidable.

They also asked:

Problem 6.23 (J. D. Currie, T. I. Visentin). Characterize which binary
patterns are abelian-2-avoidable.

Using the algorithm from Theorem 6.7 we can improve this result and
lower the 118 to 14. First we use the algorithm to check that:

Lemma 6.24. The fixed points of the morphisms on the left avoid in the
abelian sense the corresponding patterns in the right:

80

morphisms avoided patterns
AABBBAAAB, ABAAABBBA, AAABABABBB,

AAABABBABB,AAABABBBAB, AABBBABAAB,
AABBBABABA, ABAABABBBA, ABAABBBABA,

a 7→ aabaa ABABAABBBA, ABBBABAAAB, AABAABBBAB,
b 7→ bbabb AABBBAABAB, AABBBAABAAB, AAABABBAAAB,

AABBBABBBAA, ABABABBBABA, ABABBABBABA,
AAABAAABBAB, AAABBABAAAB, AAABAABAABAB,

AAABABAAABAB, AABAAABABAAB, AAABAAABABBA,
AAABAABABAAB, AAABABAABAAB, ABBABAAABAAB,

ABABBBABBBABA.
ABAABBBAAB, AAABBABABB, AAABBABBAB,
AABAABBABB, AABABABBBA, AABABBABBA,

a 7→ aaaab AABABBBAAB, AABABBBABA, AABBAABBBA,
b 7→ abbab AABBABABBA, AABBABBAAB, AABBABBABA,

AABBBAABBA, ABAABBABBA, AABBABABBBA,
AABABBBABBBA,

AAAA, AAABAABBB, AAABBBABB,
AABBABBBA, AABBBABBA, AAABBAAABB,

a 7→ abb AABABAAABB, ABBBAABBBA, AAABAABBAB,
b 7→ aaab AAABAABAABB, AAABBAABAAB, AABAABAABBA,

AABAABBAAAB, AABABABAAAB, AAABBAAABAB,
AABAAABABAB, AABAAABBAAB, AAABAABAAABAB,

a 7→ aaab AAABABBBAA, AAABBAABBB, AAABBABBAA,
b 7→ bbba ABABAAABBB, ABABBBAABBA, AABABBAAABA,

AABBABAAABA,
a 7→ abaa AABBABBABBA, AABABBABBBA, AABBBABBBABA,
b 7→ babb ABABBABBABBA, ABABBABBBABA, ABABBBABABBA,

ABBABABBABBA,
a 7→ aaaba ABAABBBAAA,
b 7→ babbb AABABBBAAA,

a 7→ aababbaaaba AABAAABAAABAB, ABBBABBBABBBA,
b 7→ babbbaababb AAABAAABAAABAAA,

It implies that, if a pattern contains any of the patterns from Lemma 6.24,
then it can be avoided by a binary word. One can check by an exhaustive
search that any binary pattern of length greater than 14 contains at least
one of the patterns from the Lemma 6.24. It implies:

Theorem 6.25. Binary patterns of length greater than 14 are abelian-2-
avoidable.

In fact, up to symmetry, there are only 284 patterns that avoid all patterns
of Lemma 6.24. We give the list of the 284 patterns in Appendix A.

81

Theorem 6.26. The patterns from the following list are abelian-2-unavoidable:
A, AA, AB, AAA, AAB, ABA, AAAB, AABA, AABB, ABAB, ABBA, AAABA, AAABB,
AABAA, AABAB, AABBA, ABAAB, ABABA, ABBBA, AAABAA, AAABAB, AABAAB,
ABAAAB, AAABAAA.

Proof. Let assume that AAABAAA is abelian-2-avoidable, then we can find
a recurrent word that avoids AAABAAA in the abelian sense and this words
necessarily avoids AAA which is not possible. Thus AAABAAA is abelian-
2-unavoidable.

For all the other patterns one can do an exhaustive search using Propo-
sition 3.3 and check that they are abelian-2-unavoidable.

For the 260 other patterns we don’t know which are abelian-2-avoidable
and which are not.

We are left with some interesting questions:

Problem 6.27. What is the length of the longest abelian-2-unavoidable bi-
nary pattern?

We know that the answer is between 7 and 14.

Problem 6.28. What is the exact list of the abelian-2-unavoidable binary
patterns?

It is probably related somehow to the second question from Mäkelä (Prob-
lem 3.2) which seems hard. For instance, if we can avoid abelian cubes of
period more than 4 we can add AAABAAABAAAB and many other formu-
las to the list of abelian-2-avoidable patterns. A proof that abelian cubes of
the form uvw where |u| ≥ 3 are avoidable over two letters would imply that
many of the 260 patterns are also abelian-2-avoidable.

Finally we have some more general questions:

Problem 6.29. For any finite alphabet ∆ is it true that:

— ∃N ∈ N, such that any pattern over ∆ of length greater than N is
abelian-avoidable?

— ∃N ∈ N, such that any pattern over ∆ of length greater than N is
abelian-|∆|-avoidable?

— ∃N ∈ N, such that any pattern over ∆ of length greater than N is
abelian-2-avoidable?

82

6.3.3 Possible generalizations

We can also generalize the algorithm form Theorem 6.7 with the tech-
niques from Chapter 2. We say that a word w over the alphabet S ⊆ Zk
realizes the pattern P in the additive sense if w = w1w2 . . . w|P | such that
for all i and j such that Pi = Pj, wj and wi are additive equivalent. We can
then ask:

Problem 6.30. What are the binary patterns (or ternary patterns) that are
avoidable in the additive sense over the alphabet {0, 1, 2, . . . , n− 1}?

Since we can avoid additive cubes over {0, 1, 3, 4} and we can avoid abelian
cubes over the binary alphabet we know that every long enough binary pat-
tern is additive avoidable over {0, 1, 3, 4}. We could use the technique from
this chapter to show more precise results.

We could also ask the same question for pattern avoidability in the
k-abelian sense and again the algorithm presented in this section can be
adapted to this problem.

83

84

Chapter 7

Conclusion

In the first part of this document, we study the avoidability of different
generalizations of abelian powers in words. We first show that abelian n-th
power freeness of morphic word is decidable as long as the matrix associated
to the morphism has no eigenvalues of norm 1. Our result is a generalization
of a result from Currie and Rampersad for matrices with every eigenvalues
greater than 1. Being able to decide when the morphism has eigenvalues
of norm less than 1 is really useful for Chapter 2 and Chapter 3. Using
properties of this kind of morphisms, we show that we can decide whether a
morphic word avoids long abelian powers or additive powers.

We use these results to show that additives squares are avoidable over
Z2. We then show that abelian squares of period more than 5 are avoidable
over the ternary alphabet. In fact, this second result implies the first one,
and there is a strong link between long abelian powers and additive powers.
We also show using an exhaustive search that abelian cubes of period more
than 2 are not avoidable over the binary alphabet.

In Chapter 4, we give sufficient conditions for a morphism to be (l, k)-
abelian n-th power free. Using this and the exhaustive search technique
from Chapter 3, we provide new results about the avoidability of long k-
abelian squares. We first compute the minimal number of k-abelian squares
in an infinite binary word for every k ≥ 3, and we show that long 2-abelian
squares are avoidable over the binary alphabet. Finally, we show that there
is an infinite ternary word that contains only a single 2-abelian square.

In tables 7.1 and 7.2, we summarize what we know about avoidability
of (long) k-abelian n-th powers, for every k and every n. In particular, it
includes most results from Chapter 3 and Chapter 4. We identify “∞-abelian

85

n-th powers” with n-th powers. From Dekking result about the avoidability
of abelian 4-th powers over 2 letters [22], we know that for any n ≥ 4, k ≥ 1
and alphabet A of size at least 2, k-abelian n-th powers are avoidable over
A.
HH

HHHHk
|A| 2 3 4

1
∞ 1 ≤? ≤ 34 0

([23]) (Th. 3.12, Pb. 3.13) ([34])

2
5 ≤? ≤ 734 1 0

(Prop. 4.6,Th. 4.7, Pb. 4.9) (Th. 4.11)

3, 4
4 0 0

(Prop. 4.4, 4.5) ([53]) 0
≥ 5 3 (Th. 4.3) 0 0
∞ 3 ([23]) 0 0

Figure 7.1 – The minimal number of different k-abelian squares in infinite
words over A.

H
HHH

HHk
|A| 2 3

1 3 ≤? (Th. 3.5, Pb. 3.6) 0 ([22])
≥ 2 0 ([53]) 0
∞ 0 0

Figure 7.2 – The minimal number of different k-abelian cubes in infinite
words over A.

There are 3 open questions in these tables:

Problem 3.6. Is there a p ∈ N such that one can avoid abelian cubes of
period at least p over two letters ?

Problem 3.13. What is the smallest p ∈ N such that one can avoid abelian
squares of period more than p over three letters ?

Problem 4.9. What is the minimal number of distinct 2-abelian squares that
an infinite binary word must contain?

The main open question regarding avoidability of additive powers is:

86

Problem 2.13 ([49]). Are additive squares avoidable over Z?

It seems also interesting to find a characterization of the subsets of Z over
which additive cubes are avoidable. It leads to the following question:

Problem 2.12. Are additive cubes avoidable over {0, 1, 2, 3}? {0, 1, 4}?
{0, 2, 5}?

In the second part of the document, we studied two different variations
of patterns. First we studied formulas, and were able to give a complete
characterization of the formulas that are avoidable over the binary alpha-
bet, and we distinguished formulas which are exponentially avoidable from
formulas that are polynomially avoidable. We were also able to find a new
characterization for the language of the ternary Thue-Morse word.

In the last chapter, we studied the avoidability of patterns in the abelian
sense. First we showed that the decision algorithm for abelian powers can
be adapted to decide pattern freeness of morphic words in the abelian sense.
Then, using this algorithm and an exhaustive search among patterns, we
showed that every binary pattern of length more than 14 is avoidable over
the binary alphabet. It is a significant improvement of the previous bound
which was 118 but we still don’t know if 14 is optimal. We note that this
algorithm could be adapted to decide pattern freeness in the additive sense
or in the k-abelian sense and there are probably interesting results about the
avoidability of these patterns.

87

88

Chapter 8

Conclusion

Dans la première partie de ce document, nous étudions l’évitabilité de
différentes généralisations des puissances abéliennes. Nous commençons par
montrer que l’évitement des puissances n-ème abéliennes par un mot mor-
phique est décidable si la matrice associée ne possède pas de valeur propre
de norme 1. Notre résultat est une généralisation d’un résultat de Currie et
Rampersad avec des matrices dont toutes les valeurs propres sont de norme
supérieure à 1. Être capable de décider dans le cas où le morphisme possède
des valeurs propres de norme inférieure à 1 est crucial pour les Chapitres 2 et
3. En utilisant les propriétés de tels morphismes, nous expliquons comment
décider si un mot morphique évite les longues puissances abéliennes ou les
puissances additives.

Nous commençons par utiliser ce résultat pour montrer que les carrés
additifs sont évitables sur Z2. Nous montrons ensuite que les carrés abéliens
de période plus que 5 sont évitables sur l’alphabet ternaire. En fait, ce
second résultat implique le premier et les longues puissances abéliennes sont
très liées aux puissances additives. Nous montrons aussi par une recherche
exhaustive que les cubes abéliens de période plus que 2 ne sont pas évitables
sur l’alphabet binaire.

Dans le Chapitre 4, nous donnons des conditions suffisantes pour qu’un
morphisme soit “sans puissances n-ème (l, k)-abéliennes” ((l, k)-abelian n-th
power free). En utilisant ce résultat et la technique de recherche exhaustive
présentée au Chapitre 3, nous donnons de nouveaux résultats concernant
l’évitabilité des longs carrés k-abéliens. Nous commençons par calculer le
nombre minimal de carrés k-abéliens qu’un mot binaire infini doit contenir
pour tout k ≥ 3 et nous montrons que les longs carrés 2-abéliens sont évita-

89

bles sur l’alphabet binaire. Enfin, nous montrons qu’il existe un mot ternaire
qui ne contient qu’un seul carré 2-abélien, ce qui est le minimum possible.

Nous résumons dans les tables 8.1 et 8.2, ce qui est connu de l’évitabilité
des (longues) puissances n-ème k-abéliennes, pour tout k et n. Elles contien-
nent les résultats des Chapitres 3 et 4. Nous identifions les puissances n-ème
∞-abéliennes avec les puissances n-ème. D’après le résultat de Dekking à
propos de l’évitabilité des puissances 4-ème abéliennes sur l’alphabet binaire
[22], nous savons que pour tout n ≥ 4, k ≥ 1 et alphabet A de taille au
moins 2, les puissances n-ème k-abéliennes sont évitables sur A.
H
HHH

HHk
|A| 2 3 4

1
∞ 1 ≤? ≤ 34 0

([23]) (Th. 3.12, Pb. 3.13) ([34])

2
5 ≤? ≤ 734 1 0

(Prop. 4.6,Th. 4.7, Pb. 4.9) (Th. 4.11)

3, 4
4 0 0

(Prop. 4.4, 4.5) ([53]) 0
≥ 5 3 (Th. 4.3) 0 0
∞ 3 ([23]) 0 0

Figure 8.1 – Le nombre minimal de carrés k-abéliens différents que contient
un mot infini sur A.

HHH
HHHk
|A| 2 3

1 3 ≤? (Th. 3.5, Pb. 3.6) 0 ([22])
≥ 2 0 ([53]) 0
∞ 0 0

Figure 8.2 – Le nombre minimal de cubes k-abéliens différents que contient
un mot infini sur A.

Il reste trois questions ouvertes dans cette table :

Problème 3.6. Existe-t-il un entier p ∈ N tel que les cubes abéliens de
période au moins p sont évitables sur l’alphabet binaire?

Problème 3.13. Quel est le plus petit entier p ∈ N tel que les carrés abéliens
de période au moins p sont évitables sur l’alphabet ternaire?

90

Problème 4.9. Quel est le nombre minimal de carrés 2-abéliens différents
qu’un mot binaire infini doit contenir?

La question principale à propos de l’évitabilité des puissances additives
est :

Problème 2.13 ([49]). Les carrés additifs sont-ils évitables sur Z ?

Il semble aussi intéressant de caractériser les sous-ensembles de Z sur
lesquels les cubes additifs sont évitables. Cela mène à la question suivante :

Problème 2.12. Les cubes additifs sont-ils évitables sur {0, 1, 2, 3}? {0, 1, 4}?
{0, 2, 5}?

Dans la seconde partie du document, nous avons étudié deux variations
des motifs. Nous avons d’abord étudié les formules, et avons pu donner
une classification complète des formules en fonction de leur évitabilité sur
l’alphabet binaire et de la croissance exponentielle ou polynomiale du langage
associé. Nous avons aussi donné une nouvelle caractérisation du langage du
mot ternaire de Thue-Morse basée sur une unique formule.

Dans le dernier chapitre, nous avons étudié l’évitabilité des motifs au
sens abélien. Nous avons montré que l’algorithme de décision du premier
chapitre peut s’adapter pour décider si un mot morphique évite un motif au
sens abélien. Puis, en utilisant cet algorithme et une recherche exhaustive,
nous avons montré que tous les motifs binaires de longueur plus que 14 sont
évitables sur l’alphabet binaire. C’est une amélioration significative de la
précédente borne de 118, mais nous ne savons pas si 14 est optimale. Nous
remarquons que cet algorithme peut être adapté pour l’étude des motifs au
sens additif ou au sens k-abélien.

91

92

Appendix A

Abelian Avoidability Index of
Binary Patterns

In Chapter 6, we gave different results about the abelian avoidability
index of binary patterns. The following table contains the results from The-
orem 6.20, Theorem 6.25 and Theorem 6.26.

The mirror of a word w = w1w2 . . . wn is the word rw = wnwn−1 . . . w2w1.
Let φ : {A,B}∗ 7→ {A,B}∗ be the morphism such that φ(A) = B and
φ(B) = A.

For any pattern P ∈ {A,B}, we clearly have: λa(P) = λa(φ(P)) =
λa(

rP) = λa(φ(rP)). And we only include P in the following list if it is the
lexicographically smallest pattern from this list of 4 patterns. If none of the
4 equivalent patterns appears in the list, the pattern is abelian-2-avoidable.

For instance, if P = ABBBABBB, φ(rP) = AAABAAAB ≤lex P and
we can find AAABAAAB in the list and so 2 ≤ λa(P) ≤ 3. For P =
BBBAAABBBA, we have to look for φ(P) = AAABBBAAAB which is
not in the list so we know that P is abelian-2-avoidable, and we can even use
Lemma 6.24 to find a word avoiding it.

A λa =∞ AA λa = 4
AAA λa = 3 AAAB λa = 3
AAABA λa = 3 AAABAA λa = 3
AAABAAA λa = 3 AAABAAAB 2 ≤ λa ≤ 3
AAABAAABA 2 ≤ λa ≤ 3 AAABAAABAA 2 ≤ λa ≤ 3
AAABAAABAAA 2 ≤ λa ≤ 3 AAABAAABAAAB 2 ≤ λa ≤ 3
AAABAAABAAABA 2 ≤ λa ≤ 3 AAABAAABAAABAA 2 ≤ λa ≤ 3

93

AAABAAABAAABB 2 ≤ λa ≤ 3 AAABAAABAAABBA 2 ≤ λa ≤ 3
AAABAAABAAB 2 ≤ λa ≤ 3 AAABAAABAABA 2 ≤ λa ≤ 3
AAABAAABAABAA 2 ≤ λa ≤ 3 AAABAAABAABAAA 2 ≤ λa ≤ 3
AAABAAABAB 2 ≤ λa ≤ 3 AAABAAABABA 2 ≤ λa ≤ 3
AAABAAABABAA 2 ≤ λa ≤ 3 AAABAAABABAAA 2 ≤ λa ≤ 3
AAABAAABABB 2 ≤ λa ≤ 3 AAABAAABB 2 ≤ λa ≤ 3
AAABAAABBA 2 ≤ λa ≤ 3 AAABAAABBAA 2 ≤ λa ≤ 3
AAABAAABBAAA 2 ≤ λa ≤ 3 AAABAAB 2 ≤ λa ≤ 3
AAABAABA 2 ≤ λa ≤ 3 AAABAABAA 2 ≤ λa ≤ 3
AAABAABAAA 2 ≤ λa ≤ 3 AAABAABAAAB 2 ≤ λa ≤ 3
AAABAABAAABA 2 ≤ λa ≤ 3 AAABAABAAABAA 2 ≤ λa ≤ 3
AAABAABAAB 2 ≤ λa ≤ 3 AAABAABAABA 2 ≤ λa ≤ 3
AAABAABAABAA 2 ≤ λa ≤ 3 AAABAABAABAAA 2 ≤ λa ≤ 3
AAABAABAB 2 ≤ λa ≤ 3 AAABAABABA 2 ≤ λa ≤ 3
AAABAABABAA 2 ≤ λa ≤ 3 AAABAABABAAA 2 ≤ λa ≤ 3
AAABAABABB 2 ≤ λa ≤ 3 AAABAABB 2 ≤ λa ≤ 3
AAABAABBA 2 ≤ λa ≤ 3 AAABAABBAA 2 ≤ λa ≤ 3
AAABAABBAAA 2 ≤ λa ≤ 3 AAABAB λa = 3
AAABABA 2 ≤ λa ≤ 3 AAABABAA 2 ≤ λa ≤ 3
AAABABAAA 2 ≤ λa ≤ 3 AAABABAAAB 2 ≤ λa ≤ 3
AAABABAAABA 2 ≤ λa ≤ 3 AAABABAAABAA 2 ≤ λa ≤ 3
AAABABAAB 2 ≤ λa ≤ 3 AAABABAABA 2 ≤ λa ≤ 3
AAABABAABAA 2 ≤ λa ≤ 3 AAABABAABB 2 ≤ λa ≤ 3
AAABABAB 2 ≤ λa ≤ 3 AAABABABA 2 ≤ λa ≤ 3
AAABABABAA 2 ≤ λa ≤ 3 AAABABABAAA 2 ≤ λa ≤ 3
AAABABABB 2 ≤ λa ≤ 3 AAABABB 2 ≤ λa ≤ 3
AAABABBA 2 ≤ λa ≤ 3 AAABABBAA 2 ≤ λa ≤ 3
AAABABBAAA 2 ≤ λa ≤ 3 AAABABBAB 2 ≤ λa ≤ 3
AAABABBB 2 ≤ λa ≤ 3 AAABABBBA 2 ≤ λa ≤ 3
AAABB λa = 3 AAABBA 2 ≤ λa ≤ 3
AAABBAA 2 ≤ λa ≤ 3 AAABBAAA 2 ≤ λa ≤ 3
AAABBAAAB 2 ≤ λa ≤ 3 AAABBAAABA 2 ≤ λa ≤ 3
AAABBAAABAA 2 ≤ λa ≤ 3 AAABBAAB 2 ≤ λa ≤ 3
AAABBAABA 2 ≤ λa ≤ 3 AAABBAABAA 2 ≤ λa ≤ 3
AAABBAABB 2 ≤ λa ≤ 3 AAABBAB 2 ≤ λa ≤ 3
AAABBABA 2 ≤ λa ≤ 3 AAABBABAA 2 ≤ λa ≤ 3
AAABBABAB 2 ≤ λa ≤ 3 AAABBABB 2 ≤ λa ≤ 3
AAABBABBA 2 ≤ λa ≤ 3 AAABBB 2 ≤ λa ≤ 3

94

AAABBBA 2 ≤ λa ≤ 3 AAABBBAA 2 ≤ λa ≤ 3
AAABBBAAA 2 ≤ λa ≤ 3 AAABBBAAB 2 ≤ λa ≤ 3
AAABBBAABB 2 ≤ λa ≤ 3 AAABBBAB 2 ≤ λa ≤ 3
AAABBBABA 2 ≤ λa ≤ 3 AAB λa = 4
AABA λa = 4 AABAA λa = 4
AABAAAB 2 ≤ λa ≤ 3 AABAAABA 2 ≤ λa ≤ 3
AABAAABAA 2 ≤ λa ≤ 3 AABAAABAAAB 2 ≤ λa ≤ 3
AABAAABAAABA 2 ≤ λa ≤ 3 AABAAABAAABAA 2 ≤ λa ≤ 3
AABAAABAAABB 2 ≤ λa ≤ 3 AABAAABAAABBA 2 ≤ λa ≤ 3
AABAAABAAB 2 ≤ λa ≤ 3 AABAAABAABA 2 ≤ λa ≤ 3
AABAAABAABAA 2 ≤ λa ≤ 3 AABAAABAABAB 2 ≤ λa ≤ 3
AABAAABAB 2 ≤ λa ≤ 3 AABAAABABA 2 ≤ λa ≤ 3
AABAAABABAA 2 ≤ λa ≤ 3 AABAAABABB 2 ≤ λa ≤ 3
AABAAABABBA 2 ≤ λa ≤ 3 AABAAABB 2 ≤ λa ≤ 3
AABAAABBA 2 ≤ λa ≤ 3 AABAAABBAA 2 ≤ λa ≤ 3
AABAAABBAB 2 ≤ λa ≤ 3 AABAAABBABA 2 ≤ λa ≤ 3
AABAAB 3 ≤ λa ≤ 4 AABAABA 2 ≤ λa ≤ 4
AABAABAA 2 ≤ λa ≤ 4 AABAABAAAB 2 ≤ λa ≤ 3
AABAABAAABA 2 ≤ λa ≤ 3 AABAABAAABAB 2 ≤ λa ≤ 3
AABAABAAABABB 2 ≤ λa ≤ 3 AABAABAAB 2 ≤ λa ≤ 3
AABAABAABA 2 ≤ λa ≤ 3 AABAABAABAA 2 ≤ λa ≤ 3
AABAABAABAB 2 ≤ λa ≤ 3 AABAABAABB 2 ≤ λa ≤ 3
AABAABAB 2 ≤ λa ≤ 3 AABAABABA 2 ≤ λa ≤ 3
AABAABABAA 2 ≤ λa ≤ 3 AABAABABAAB 2 ≤ λa ≤ 3
AABAABABB 2 ≤ λa ≤ 3 AABAABB 2 ≤ λa ≤ 3
AABAABBA 2 ≤ λa ≤ 3 AABAABBAA 2 ≤ λa ≤ 3
AABAABBAB 2 ≤ λa ≤ 3 AABAABBBA 2 ≤ λa ≤ 3
AABAABBBAA 2 ≤ λa ≤ 3 AABAB 3 ≤ λa ≤ 4
AABABA 2 ≤ λa ≤ 4 AABABAA 2 ≤ λa ≤ 4
AABABAAAB 2 ≤ λa ≤ 3 AABABAAABA 2 ≤ λa ≤ 3
AABABAAABAB 2 ≤ λa ≤ 3 AABABAAB 2 ≤ λa ≤ 3
AABABAABA 2 ≤ λa ≤ 3 AABABAABAAB 2 ≤ λa ≤ 3
AABABAABB 2 ≤ λa ≤ 3 AABABAB 2 ≤ λa ≤ 3
AABABABA 2 ≤ λa ≤ 3 AABABABAA 2 ≤ λa ≤ 3
AABABABB 2 ≤ λa ≤ 3 AABABB 2 ≤ λa ≤ 4
AABABBA 2 ≤ λa ≤ 3 AABABBAA 2 ≤ λa ≤ 3
AABABBAAAB 2 ≤ λa ≤ 3 AABABBAB 2 ≤ λa ≤ 3
AABABBBA 2 ≤ λa ≤ 3 AABABBBAA 2 ≤ λa ≤ 3

95

AABABBBAB 2 ≤ λa ≤ 3 AABABBBABBA 2 ≤ λa ≤ 3
AABABBBABBAB 2 ≤ λa ≤ 3 AABB 3 ≤ λa ≤ 4
AABBA 3 ≤ λa ≤ 4 AABBAA 2 ≤ λa ≤ 4
AABBAAAB 2 ≤ λa ≤ 3 AABBAAABA 2 ≤ λa ≤ 3
AABBAAABAB 2 ≤ λa ≤ 3 AABBAAABABA 2 ≤ λa ≤ 3
AABBAAABB 2 ≤ λa ≤ 3 AABBAAABBA 2 ≤ λa ≤ 3
AABBAAABBAA 2 ≤ λa ≤ 3 AABBAAB 2 ≤ λa ≤ 3
AABBAABA 2 ≤ λa ≤ 3 AABBAABAAB 2 ≤ λa ≤ 3
AABBAABAABA 2 ≤ λa ≤ 3 AABBAABB 2 ≤ λa ≤ 3
AABBAB 2 ≤ λa ≤ 3 AABBABA 2 ≤ λa ≤ 3
AABBABAAAB 2 ≤ λa ≤ 3 AABBABAB 2 ≤ λa ≤ 3
AABBABBA 2 ≤ λa ≤ 3 AABBABBAA 2 ≤ λa ≤ 3
AABBABBAB 2 ≤ λa ≤ 3 AABBBA 2 ≤ λa ≤ 3
AABBBAA 2 ≤ λa ≤ 3 AABBBAAB 2 ≤ λa ≤ 3
AABBBAABA 2 ≤ λa ≤ 3 AABBBAB 2 ≤ λa ≤ 3
AABBBABA 2 ≤ λa ≤ 3 AABBBABAB 2 ≤ λa ≤ 3
AABBBABBBA 2 ≤ λa ≤ 3 AABBBABBBAB 2 ≤ λa ≤ 3
AB λa =∞ ABA λa =∞
ABAAAB λa = 3 ABAAABA 2 ≤ λa ≤ 3
ABAAABAAAB 2 ≤ λa ≤ 3 ABAAABAAABA 2 ≤ λa ≤ 3
ABAAABAAABAB 2 ≤ λa ≤ 3 ABAAABAAABBA 2 ≤ λa ≤ 3
ABAAABAAB 2 ≤ λa ≤ 3 ABAAABAABA 2 ≤ λa ≤ 3
ABAAABAABAB 2 ≤ λa ≤ 3 ABAAABAB 2 ≤ λa ≤ 3
ABAAABABA 2 ≤ λa ≤ 3 ABAAABABAAB 2 ≤ λa ≤ 3
ABAAABABAB 2 ≤ λa ≤ 3 ABAAABABABA 2 ≤ λa ≤ 3
ABAAABABBA 2 ≤ λa ≤ 3 ABAAABBA 2 ≤ λa ≤ 3
ABAAABBAAB 2 ≤ λa ≤ 3 ABAAABBAABA 2 ≤ λa ≤ 3
ABAAABBAB 2 ≤ λa ≤ 3 ABAAABBABA 2 ≤ λa ≤ 3
ABAAB 3 ≤ λa ≤ 4 ABAABA 2 ≤ λa ≤ 4
ABAABAAAB 2 ≤ λa ≤ 3 ABAABAAABAB 2 ≤ λa ≤ 3
ABAABAAB 2 ≤ λa ≤ 4 ABAABAABA 2 ≤ λa ≤ 3
ABAABAABAAB 2 ≤ λa ≤ 3 ABAABAABAB 2 ≤ λa ≤ 3
ABAABAABABA 2 ≤ λa ≤ 3 ABAABAABBA 2 ≤ λa ≤ 3
ABAABAB 2 ≤ λa ≤ 3 ABAABABA 2 ≤ λa ≤ 3
ABAABABAAAB 2 ≤ λa ≤ 3 ABAABABAAB 2 ≤ λa ≤ 3
ABAABABAABA 2 ≤ λa ≤ 3 ABAABBA 2 ≤ λa ≤ 3
ABAABBAAAB 2 ≤ λa ≤ 3 ABAABBAB 2 ≤ λa ≤ 3
ABAABBBA 2 ≤ λa ≤ 3 ABAB 3 ≤ λa ≤ 4

96

ABABA 3 ≤ λa ≤ 4 ABABAAAB 2 ≤ λa ≤ 3
ABABAAABAAB 2 ≤ λa ≤ 3 ABABAAABAB 2 ≤ λa ≤ 3
ABABAAABABA 2 ≤ λa ≤ 3 ABABAAABBA 2 ≤ λa ≤ 3
ABABAAB 2 ≤ λa ≤ 3 ABABAABAAAB 2 ≤ λa ≤ 3
ABABAABAAB 2 ≤ λa ≤ 3 ABABAB 2 ≤ λa ≤ 3
ABABABA 2 ≤ λa ≤ 3 ABABABAAAB 2 ≤ λa ≤ 3
ABABABBBA 2 ≤ λa ≤ 3 ABABBA 2 ≤ λa ≤ 3
ABABBAAAB 2 ≤ λa ≤ 3 ABABBABBA 2 ≤ λa ≤ 3
ABABBABBBA 2 ≤ λa ≤ 3 ABABBBA 2 ≤ λa ≤ 3
ABABBBAAB 2 ≤ λa ≤ 3 ABABBBABA 2 ≤ λa ≤ 3
ABABBBABBA 2 ≤ λa ≤ 3 ABABBBABBBA 2 ≤ λa ≤ 3
ABBA 3 ≤ λa ≤ 4 ABBAAAB 2 ≤ λa ≤ 3
ABBAAABAAAB 2 ≤ λa ≤ 3 ABBAAABBA 2 ≤ λa ≤ 3
ABBAAB 2 ≤ λa ≤ 3 ABBAABAAB 2 ≤ λa ≤ 3
ABBAABBBA 2 ≤ λa ≤ 3 ABBABAAAB 2 ≤ λa ≤ 3
ABBABABBA 2 ≤ λa ≤ 3 ABBABABBBA 2 ≤ λa ≤ 3
ABBABBA 2 ≤ λa ≤ 4 ABBABBAAAB 2 ≤ λa ≤ 3
ABBABBABBA 2 ≤ λa ≤ 3 ABBABBABBBA 2 ≤ λa ≤ 3
ABBABBBA 2 ≤ λa ≤ 3 ABBABBBABBA 2 ≤ λa ≤ 3
ABBBA λa = 3 ABBBAAAB 2 ≤ λa ≤ 3
ABBBABABBBA 2 ≤ λa ≤ 3 ABBBABBBA 2 ≤ λa ≤ 3

Table A.1 – List of the 284 patterns from Theorem 6.25.

Note that there are 3 patterns for which there are 3 possible values for the
abelian avoidability index: ABAABA,AABAABA,AABABA,AABABB,
AABAABAA,ABAABAAB,ABBABBA,AABABAA,AABABA,AABABB,
AABBAA.

97

98

Index

P -template, 70
L-specialization, 73
ancestors, 72
normalization P -template, 71
normalized P -template, 71
parents, 71
realization, 70
small L-specialization, 73
special ancestors, 73

k-abelian powers, 39
k-abelian cubes, 39
k-abelian equivalence, 39
k-abelian squares, 39

k-template, 7
ancestor, 8
parents, 7
realizable ancestor, 8
realizable by a morphism, 7
realization, 7
small realization, 10

abelian powers, 1
≈a, 1
abelian cubes, 1
abelian squares, 1
abelian equivalence, 1, 5

contracting eigenspace, 13

essentially avoids, 51

expanding eigenspace, 13

formula, 47
divisibility, 48
exponential, 48
fragments, 47
occurrence, 47
polynomial, 48

free monoid, 3

generalized eigenvetors, 6

infinite words
equivalent, 50

Jordan decomposition, 6
Jordan block, 5

language, 4
factor-closed, 4
prefix-closed, 4
recurrent language, 48

Lyndon words, 30
Lyndon factorization, 31

mirror, 93
morphism, 4

associated matrix, 5
eigenvalues, 5
sqf-g-image, 56

99

abelian k-th power-free, 2
non-erasing, 4
primitive, 5
prolongable, 4
uniform, 4

norm
L1 norm, 7
induced norm of a matrix, 7

Parikh vector, 4
pattern, 47

t-avoidable, 47
abelian realization, 67
abelian-avoidability index, 67
avoidability index, 47
isolated variable, 47
occurrence, 47
realization, 67
variable, 47

power modulo Φ, 21

k-repetitive semigroup, 21
additive powers, 21
equivalence modulo Φ, 21
uniform powers modulo Φ, 21
uniformly k-repetitive, 21

Smith decomposition, 6

word, 3
factor, 4
infinite word, 3
prefix, 4
pure morphic word, 4
suffix, 4
alphabet, 3
letter, 3

empty word, 3
generated by h, 4
morphic word, 4
recurrent word, 48

100

Bibliography

[1] J. P. Allouche and J. Shallit. The Ubiquitous Prouhet-Thue-Morse Se-
quence. Springer London, London, 1999.

[2] K. E. Atkinson. An Introduction to Numerical Analysis, page 488. J.
Wiley, second edition, 1989.

[3] G. Badkobeh. Infinite words containing the minimal number of repeti-
tions. Journal of Discrete Algorithms, 20:38 – 42, 2013. StringMasters
2011 Special Issue.

[4] G. Badkobeh and P. Ochem. Characterization of some binary words
with few squares. Theoretical Computer Science, 588:73–80, 2015.

[5] K. A. Baker, G. F. McNulty, and W. Taylor. Growth problems for
avoidable words. Theoretical Computer Science, 69(3):319 – 345, 1989.

[6] D.R. Bean, A. Ehrenfeucht, and G.F. McNulty. Avoidable patterns in
strings of symbols. Pacific J. of Math., 85:261–294, 1979.

[7] J. Berstel. Axel Thue’s papers on repetitions in words: a translation.
Publications du LaCIM 20, Université du Québec à Montréal, 1995.

[8] F. Blanchet-Sadri and B. Woodhouse. Strict bounds for pattern avoid-
ance. Theoretical Computer Science, 506:17–27, 2013.

[9] F. Brandenburg. Uniformly growing k-th power-free homomorphisms.
Theoretical Computer Science, 23(1):69 – 82, 1988.

[10] A. Carpi. On abelian power-free morphisms. International Journal of
Algebra and Computation, 03(02):151–167, 1993.

[11] A. Carpi. On the number of abelian square-free words on four letters.
Discrete Applied Mathematics, 81(1-3):155–167, 1998.

[12] A. Carpi. On Dejean’s conjecture over large alphabets. Theoretical
Computer Science, 385(1):137 – 151, 2007.

101

[13] J. Cassaigne. Unavoidable binary patterns. Acta Informatica, 30(4):385–
395.

[14] J. Cassaigne. Motifs évitables et régularité dans les mots. PhD thesis,
Université Paris VI, 1994.

[15] J. Cassaigne, J. D. Currie, L. Schaeffer, and J. Shallit. Avoiding three
consecutive blocks of the same size and same sum. Journal of the ACM,
61(2):10:1–10:17, 2014.

[16] R. J. Clark. Avoidable formulas in combinatorics on words. PhD thesis,
University of California, Los Angeles, 2001.

[17] M. Crochemore. Sharp characterizations of squarefree morphisms. The-
oretical Computer Science, 18(2):221 – 226, 1982.

[18] J. Currie and N. Rampersad. A proof of Dejean’s conjecture. Math.
Comp. 80 (2011), 1063-1070.

[19] J. D. Currie and N. Rampersad. Fixed points avoiding abelian k-powers.
Journal of Combinatorial Theory, Series A, 119(5):942–948, July 2012.

[20] J. D. Currie and T. I. Visentin. Long binary patterns are abelian 2-
avoidable. Theoretical Computer Science, 409(3):432 – 437, 2008.

[21] F. Dejean. Sur un théorème de Thue. Journal of Combinatorial Theory,
Series A, 13(1):90 – 99, 1972.

[22] F. M. Dekking. Strongly non-repetitive sequences and progression-free
sets. Journal of Combinatorial Theory, Series A, 27(2):181 – 185, 1979.

[23] R. C. Entringer, D. E. Jackson, and J. A. Schatz. On nonrepetitive
sequences. Journal of Combinatorial Theory, Series A, 16(2):159 – 164,
1974.

[24] P. Erdős. Some unsolved problems. The Michigan Mathematical Journal,
4(3):291–300, 1957.

[25] P. Erdős. Some unsolved problems. Magyar Tud. Akad. Mat. Kutató
Int. Közl., 6:221–254, 1961.

[26] A. A. Evdokimov. Strongly asymmetric sequences generated by a finite
number of symbols. Dokl. Akad. Nauk SSSR, 179:1268–1271, 1968.

[27] A. S. Fraenkel and R. J. Simpson. How many squares must a binary
sequence contain? The Electronic Journal of Combinatorics, 2, 1995.

[28] T. Harju and D. Nowotka. Binary words with few squares. Bulletin of
the EATCS, page 2006.

102

[29] M. Huova. Existence of an infinite ternary 64-abelian square-free word.
RAIRO - Theoretical Informatics and Applications, 48(3):307–314, 007
2014.

[30] M. Huova, J. Karhumäki, A. Saarela, and K. Saari. Local Squares, Peri-
odicity and Finite Automata, pages 90–101. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

[31] M. Huova, J. Karhumäki, and A. Saarela. Problems in between words
and abelian words: k-abelian avoidability. Theoretical Computer Sci-
ence, 454:172 – 177, 2012. Formal and Natural ComputingHonoring the
80th Birthday of Andrzej Ehrenfeucht.

[32] J. Justin. Généralisation du théorème de van der Waerden sur les semi-
groupes répétitifs. Journal of Combinatorial Theory, Series A, 12(3):357
– 367, 1972.

[33] J. Karhumaki, A. Saarela, and L. Q. Zamboni. On a generalization
of Abelian equivalence and complexity of infinite words. Journal of
Combinatorial Theory, Series A, 120(8):2189 – 2206, 2013.

[34] V. Keränen. Abelian squares are avoidable on 4 letters. In ICALP,
pages 41–52, 1992.

[35] V. Keränen. New abelian square-free DT0L-languages over 4 letters.
Manuscript, 2003.

[36] V. Keränen. A powerful abelian square-free substitution over 4 letters.
Theoretical Computer Science, 410(38):3893 – 3900, 2009.

[37] M. Lothaire. Combinatorics on Words. Cambridge University Press,
1997.

[38] R. Mercaş, P. Ochem, A. V. Samsonov, and A. M. Shur. Binary pat-
terns in binary cube-free words: Avoidability and growth. RAIRO -
Theoretical Informatics and Applications, 48(4):369–389, 2014.

[39] R. Mercaş and A. Saarela. 3-Abelian Cubes Are Avoidable on Binary Al-
phabets, pages 374–383. Springer Berlin Heidelberg, Berlin, Heidelberg,
2013.

[40] R. Mercaş and A. Saarela. 5-abelian cubes are avoidable on binary alpha-
bets. RAIRO - Theoretical Informatics and Applications, 48(4):467–478,
10 2014.

[41] M. Noori and J. D. Currie. Dejean’s conjecture and Sturmian words.
European Journal of Combinatorics, 28(3):876 – 890, 2007.

103

[42] P. Ochem. A generator of morphisms for infinite words. RAIRO -
Theoretical Informatics and Applications, 40:427–441, 2006.

[43] P. Ochem. Binary words avoiding the pattern AABBCABBA. RAIRO
- Theoretical Informatics and Applications, 44(1):151–158, 2010.

[44] P. Ochem. Doubled patterns are 3-avoidable. The Electronic Journal of
Combinatorics., 23(1), 2016.

[45] P. Ochem and A. Pinlou. Application of entropy compression in pattern
avoidance. The Electronic Journal of Combinatorics., 21(2), 2014.

[46] P. Ochem and M. Rosenfeld. Avoidability of Formulas with Two Vari-
ables, pages 344–354. Springer Berlin Heidelberg, 2016.

[47] J. Ollagnier. Proof of Dejean’s conjecture for alphabets with 5, 6, 7,
8, 9, 10 and 11 letters. Theoretical Computer Science, 95(2):187 – 205,
1992.

[48] J. Pansiot. A propos d’une conjecture de F. Dejean sur les répétitions
dans les mots. Discrete Applied Mathematics, 7(3):297 – 311, 1984.

[49] G. Pirillo and S. Varricchio. On uniformly repetitive semigroups. Semi-
group Forum, 49(1):125–129, 1994.

[50] P. A. B. Pleasants. Non-repetitive sequences. Mathematical Proceedings
of the Cambridge Philosophical Society, 68:267–274, 9 1970.

[51] N. Rampersad, J. Shallit, and M. Wang. Avoiding large squares in
infinite binary words. Theoretical Computer Science, 339(1):19 – 34,
2005.

[52] M. Rao. Last Cases of Dejean’s Conjecture. Theoretical Computer Sci-
ence, 412(27):3010–3018, June 2011.

[53] M. Rao. On some generalizations of abelian power avoidability. Theo-
retical Computer Science, 601:39 – 46, 2015.

[54] M. Rao and M. Rosenfeld. Avoiding two consecutive blocks of same size
and same sum over Z2. ArXiv e-prints, November 2015.

[55] M. Rao and M. Rosenfeld. Avoidability of long k-abelian repetitions.
Mathematics of Computation, 2016.

[56] M. Rosenfeld. Every binary pattern of length greater than 14 is abelian-
2-avoidable. In 41st International Symposium on Mathematical Founda-
tions of Computer Science, MFCS 2016, August 22-26, 2016 - Kraków,
Poland, pages 81:1–81:11, 2016.

104

[57] P. Roth. Every binary pattern of length six is avoidable on the two-letter
alphabet. Acta Informatica, 29(1):95–107.

[58] U. Schmidt. Avoidable patterns on two letters. Theoretical Computer
Science, 63(1):1 – 17, 1989.

[59] A. Thue. Über unendliche Zeichenreihen. ’Norske Vid. Selsk. Skr. I.
Mat. Nat. Kl. Christiania, 7:1–22, 1906.

[60] A. Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichen-
reihen. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiania,, 10:1–67,
1912.

[61] A. I. Zimin. Blocking sets of terms. Sbornik: Mathematics, 47(2):353–
364, 1984.

105

	Introduction in french
	Introduction
	Deciding Whether a Morphic Word is Abelian k-th Power Free
	Definitions
	Templates
	The decision algorithm
	Parents and pre-images
	Finding the set

	Abelian square-free pure morphic words

	Avoidability of Additive Powers
	Decidability
	Results
	Additive square-free words over the discrete plan
	Additive cubes-free words over the integers

	Avoidability of Long Abelian Powers
	Abelian cubes and Mäkelä's Question 3.2
	Deciding if a morphic word contains large abelian powers
	Results
	Mäkelä's Problem on squares
	Link between long abelian powers and additive powers

	Avoidability of k-Abelian Powers
	Proving that a morphic word avoids long k-abelian squares
	Results
	Minimum number of distinct k-abelian squares in binary words
	2-abelian squares over a ternary alphabet

	Avoidability of Binary Formulas
	Classification of binary formulas
	The useful lemma
	Polynomial formulas
	Exponential formulas
	A formula characterizing b3
	Remarks about polynomial languages

	Avoidability of Binary Patterns in the Abelian Sense
	Divisibility and easy results
	Decidability of pattern freeness in the abelian sense
	Parents, ancestors and specialization of a template
	Computing the set of special ancestors
	Small eigenvalues and morphic words

	Results and open questions
	Abelian-3-avoidability of binary patterns
	Abelian-2-avoidability of binary patterns
	Possible generalizations

	Conclusion
	Conclusion in french
	Abelian Avoidability Index of Binary Patterns

