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Abstract

The notion of (σ, ρ)-dominating set generalizes many notions includ-
ing dominating set, induced matching, perfect codes or independent sets.
Bounds on the maximal number of such (maximal, minimal) sets were
established for di�erent σ and ρ and di�erent classes of graphs. In partic-
ular, Rote showed that the number of minimal dominating sets in trees of
order n is at most 95

n
13 and Golovach et Al. computed the asymptotic of

the number of (σ, ρ)-dominating sets in paths for all σ and ρ.
Here, we propose a method to compute bounds on the number of

(σ, ρ)-dominating sets in graphs or bounded pathwidth, trees and forests,
under the conditions that σ and ρ are �nite unions of (possibly in�nite)
arithmetic progressions. It seems that this method shouldn't always work,
but in practice we are able to give many sharp bounds by direct application
of the method. Moreover, in the case of graphs of bounded pathwidth,
we deduce the existence of an algorithm that can output abritrarily good
approximations of the growth rate.

Telle introduced the notion of (σ, ρ)-domination as a generalization of domination-
type problems [7]. Given two sets σ and ρ of non-negative integers, a ver-
tex subset D ⊆ V is a (σ, ρ)-dominating set of a given graph G = (V,E),
if |N(v) ∩ D| ∈ σ for all v ∈ D and |N(v) ∩ D| ∈ ρ for all v ∈ V \ D. This
framework can be used to express several well-known graph problems, like Dom-
inating Set (σ = N, ρ = N+), Independent Set (σ = {0}, ρ = N), Independent
Dominating Set (σ = {0}, ρ = N+), Induced Matching (σ = {1}, ρ = N), etc.

Bounding the number of such sets is of certain interest for algorithmic. For
instance, the celebrated bound by Moon and Moser of 3

n
3 on the maximal

number of maximal independent sets in a graph of order n was used by Lawler
to give an algorithm computing an optimal coloring of a graph in O∗((1+3

1
3 )n)

[3, 2]. Recently Rote showed that the maximal number of minimal dominating
sets of trees of order n is 95

n
13 [5, 6]. On the other hand, Golovach et Al. gave

asymptotics on the number of (all, minimal, maximal) (σ, ρ)-dominating sets in
paths (remark that in the case of path there are only �nitely many interesting σ
and ρ) [4]. Here, we generalize the approach of these two articles and we describe
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a computer assisted technique that computes sharp bounds on the number of
(all, minimal, maximal) (σ, ρ)-dominating sets. We require σ and ρ to be �nite
unions of arithmetic progressions, which is the case for many classical problems
(in particular, if σ and ρ are �nite or co-�nite). In theory this method might
not work all the time, but in practice we can use it to give many bounds in the
last section.

We start by giving some useful and non standard de�nitions in Section 1.
In Section 2, we give a general algorithm to count the number of (all, mini-
mal, maximal) (σ, ρ)-dominating sets in graphs of bounded pathwidth, trees,
and forests. Finally, in Section 3, we use the fact that the operations of the
algorithm are (multi)linear operations to compute the bounds. Then using a
C++ implementation of the described technique, we can give some examples of
bounds that we were able to compute.

We allow ourself to omit a lot of proof details, most of them being rather
trivial but painful to write and to read.

1 De�nitions and notations

We denote the set of all non-negative integers by N and the set of positive
integers by N+.

For any given graph G = (V,E) and any vertex v ∈ V , let NG(v) be the
neighbors of v in G. We will omit the G and write N(v) when G is clear in the
context. The order of a graph is the number of vertices of the graph.

For any set X ⊆ N, we denote by 1X : N 7→ {0, 1} the indicator function of
X, that is:

1X(n) =

{
1 if n ∈ X
0 otherwise

For any positive integers a and b, we denote by a mod b the remainder of
the euclidean division of a by b.

Let τ : N3 7→ N be the function such that for all p, n ∈ N and q ∈ N+:

τ(p, q, n) =

{
n if n < p
((n− p) mod q) + p otherwise

Remark that for any m,n ∈ N, τ(p, q, n+m) = τ(p, q, τ(p, q, n) +m).
For any vector v ∈ Rn, vi−1 is the ith coordinate of v. For any two vectors

v,v′ ∈ Rn, v ≤ v′ means that for all i ∈ {0, . . . , n− 1}, vi ≤ v′i.
Let F be a family of sets over a ground set T , then a set X is 1-minimal if

for all x ∈ X, X \{x} 6∈ F and it is 1-maximal if for any x ∈ T \X, X∪{x} 6∈ F .

1.1 Recognizable sets of integers

We say that a set of integers X ⊆ N is recognizable if the language {an|n ∈ X}
is recognizable. It is a standard result that X ⊆ N is recognizable if and only if
it is the �nite union of arithmetic progressions (and this is the last mention of
�arithmetic progressions� in this article).
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By standard manipulations of automatons over one letter, we can get the
following result:

Lemma 1. For any recognizable set of integers S, there exist pS , qS ∈ N such
that for all n, 1S(n) = 1S(τ(n, pS , qS)).

Remark that this is equivalent to say that 1S is ultimately periodic.
We will also need a slightly stronger version:

Lemma 2. Let σ, ρ ⊆ N be recognizable sets of integers. Then there are p, q ∈ N
such that:

• for all n, (1σ(n), 1ρ(n)) = (1σ(τ(n, p, q)), 1ρ(τ(n, p, q))),

• (1σ(p− 1), 1ρ(p− 1)) = (1σ(p+ q − 1), 1ρ(p+ q − 1)).

This can be deduced from the previous Lemma and by taking p = max(pρ, pσ)+
1 and q = gcd(qρ, qσ).

1.2 Pathwidth, trees and forests

We give the de�nitions of trees, forests, and graphs of pathwidth k. These
de�nitions are not the standard de�nitions, but it is not hard to see that they
are equivalent and it is left to the interested reader to check it.

A k-distinguished graph is a pair (G(V,E), S,<S) where G(V,E) is a graph,
S is a subset of V with |S| = k and (S × S) ∩ E = ∅ and <S is a strict total
order on S. We say that the vertices of S are the distinguished vertices of the
k-distinguished graph.

We say that a graph G′(V ′, E′) is obtained by completing a k-distinguished
graph (G(V,E), S,<S), if E′ = E∪(E′∩(S′×S′)). In other words, one completes
a k-distinguished graph by adding some edges between the elements of S.

Pathwidth We say that a k-distinguished graph (G′(V ′, E′), S′, <S′) is ob-
tained by extending (G(V,E), S,<S), if there exists n ∈ V ′ and o ∈ S∪{n} such
that:

• V ′ is the disjoint union of V and {n},

• S′ = (S ∪ {n}) \ {o},

• E′ = E ∪ (E′ ∩ ({o} × S′)),

• for any a, b ∈ S \ {o, n}, a <S b ⇐⇒ a <S′ b and n <S′ a ⇐⇒ o <S a.

In other words, we add to G and to S a new vertex n that has no neighbor, we
remove one vertex o from S and we can add any edges between o and S ∪ {n}.
Remark that the vertex removed from S can be the new vertex. The only
possible change in the ordering on the distinguished vertex is that o is possibly
replaced by n in the order (unless o = n and then <S′=<S).

3



A k-distinguished graph has pathwidth k, if it can be obtained from a se-
quence of extensions starting from (G(S, ∅), S,<S). The pathwidth of a graph
G is the smallest integer k such that G can be obtained by completing a k-
distinguished graph of pathwidth k.

Intuitively the set of distinguished vertices correspond to a separator of a
path-decomposition of the graph.

Trees and forest In order to build trees an forests, we will use 1-distinguished
graphs (that can be seen as rooted trees or rooted forests). The ordering on the
distinguished set for 1-distinguished graphs is trivial (since it is a singleton) and
we omit it.

The composition of two 1-distinguished graphs (G1(V1, E1), {a1}) and (G2(V2, E2), {a2})
is the 1-distinguished graph (G(V1 ∪ V2, E1 ∪E2 ∪ {(a1, a2)}), {a1}). That is, G
is the disjoint union of G1 and G2 in which we add an edge between a1 and a2
and where the distinguished vertex is a1.

We are now ready to give the following inductive de�nition of a 1-tree:

• (G(a, ∅), {a}) is a 1-tree,

• the 1-distinguished graph obtained by the composition of two 1-trees is a
1-tree.

A graph is a tree if it can be obtained by completing a 1-tree.
The union of two 1-distinguished graphs (G1(V1, E1), {a1}) and (G2(V2, E2), {a2})

is the 1-distinguished graph (G(V,E), {a1}) where G is the disjoint union of G1

and G2. Remark that the union of 1-distinguished trees is not a commutative
operation (the same can be said of the composition).

We are now ready to give the de�nition of 1-forest :

• (G(a, ∅), {a}) is a 1-forest,

• the 1-distinguished graph obtained by the composition or the union of two
1-forests is a 1-forest.

A graph is a forest if it can be obtained by completing a 1-forest.

2 Counting the number of (σ, ρ)-dominating sets

Let σ and ρ be two recognizable sets and k be a positive integer. In this
Section, we give dynamic algorithms to compute the number of (all, minimal,
maximal) (σ, ρ)-dominating sets. The existence of these dynamic algorithms
shouldn't be a surpise to anybody familiar with path-width (and tree-width)
and we are not really interested by the existence of these algorithms. However,
these algorithms consist of applying (multi)linear operators that correspond to
the operations used to build the k-distinguished graph. In the next Section, we
explain how to deduce from these sets of (multi)linear operators sharp upper
bounds on the number of (all, minimal, maximal) (σ, ρ)-dominating sets.
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2.1 Counting the (σ, ρ)-dominating sets

The de�nitions being a bit obtuse one should try to follow with the two �rst
examples of Subsection 3.1.1.

First, we need to generalize the notion of (σ, ρ)-dominating set to k-distinguished
graph. For any k-distinguished graph (G(V,E), S,<S) and any set D ∈ V , we
say that D is a (σ, ρ)-dominating set of (G(V,E), S,<S) if |N(v) ∩D| ∈ σ for
all v ∈ D \ S and |N(v) ∩ D| ∈ ρ for all v ∈ V \ (D ∪ S). That is, we do not
require the elements of S to be properly dominated.

For any k-distinguished graph g = (G(V,E), S,<S) and any extension g′ =
(G′(V ′, E′), S′, <′S) of g, if D is a (σ, ρ)-dominating set of g′ then D ∩ V is a
(σ, ρ)-dominating set of g. Moreover, we will show that given a (σ, ρ)-dominating
set D of g′ it is �easy� to check if it is or if can be extended to a (σ, ρ)-dominating
set of g′. This will allow us to compute all the (σ, ρ)-dominating sets of g′ from
the (σ, ρ)-dominating sets of g.

Let pσ, pρ, qσ, qρ ∈ N be as in Lemma 1. Let n = pσ + pρ + qσ + qρ. Given
a (σ, ρ)-dominating set D of a k-distinguished graph (G(V,E), S,<S) the state
corresponding to D of a vertex v of V is an integer s ∈ [0, n− 1] where:

s =

{
τ(pσ, qσ, |N(v) ∩D|) if v ∈ D,
τ(pρ, qρ, |N(v) ∩D|) + pσ + qσ otherwise.

The state of S corresponding to D is the function that maps every vertex of
v to its state corresponding to D. The idea is that knowing the state of S is
enough to know what happens to a (σ, ρ)-dominating set when we extend the
k-distinguished graph:

Lemma 3. Let g = (G(V,E), S,<S) and g′ = (G′(V ′, E′), S′, <S′) be two k-
distinguished graphs, and o and n be two vertices of V ′ such that g′ is obtained by
extending g where n is the new vertex and o is the vertex removed from S∪{n}.
Let D be a (σ, ρ)-dominating set of (G(V,E), S,<S).

Given the state of S associated to D in (G(V,E), S,<S), E′ \ E), o and n,
one can decide if D ∪{n} is a (σ, ρ)-dominating set of (G′(V ′, E′), S′, <S′) and
can compute the associated state of S′ in (G′(V ′, E′), S′, <S′).

Proof. The new edges are only between o and S, so any vertex from V \ S that
was properly (σ, ρ)-dominated by D in (G(V,E), S,<S) is still (σ, ρ)-dominated
by D ∪ {n} in (G′(V ′, E′), S′, <S′).

If o 6= n then we know the state of o in (G(V,E), S,<S), otherwise if o = n
then o has no neighbor in V \ S. So in both cases, if o ∈ D (resp. o 6∈ D) we
know τ(pσ, qσ, |NG(o) ∩ D|) (resp. τ(pρ, qρ, |NG(o) ∩ D|)). But since we also
know E′ \ E, we can easily compute:

τ(pσ, qσ, |NG′(o) ∩D|) = τ(pσ, qσ, τ(pσ, qσ, |NG(o) ∩D|) + |NG′(v) ∩ S ∩D|)

(or τ(pρ, qρ, |NG′(v)∩D|)). Thus we can decide if D∪{n} is a (σ, ρ)-dominating
set of (G′(V ′, E′), S′, <S′).

Finally, for any vertex v of S′:
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• if (o, v) ∈ E′ and o ∈ D ∪ {n}, we can use the following equality:

τ(p, q, |N ′G(v)∩D|) = τ(p, q, |NG(v)∩D|+1) = τ(p, q, τ(p, q, |NG(v)∩D|)+1)

• otherwise, the state of v in (G′(V ′, E′), S′, <S′) with D is the same as in
(G(V,E), S,<S) with D ∪ {n}.

This concludes the proof.

The essential point of this Lemma is that we need only look at E′ \ E and
we need not know anything about the rest of the graph.

We can show exactly the same Lemma for D instead of D ∪ {n}:

Lemma 4. Let g = (G(V,E), S,<S) and g′ = (G′(V ′, E′), S′, <S′) be two k-
distinguished graphs, and o and n be two vertices of V ′ such that g′ is obtained by
extending g where n is the new vertex and o is the vertex removed from S∪{n}.
Let D be a (σ, ρ)-dominating set of g.

Given the state of S associated to D in g, E′ \ E, o and n, one can decide
if D is (σ, ρ)-dominating set of g′ and can compute the associated state of S′ in
g′.

Note that the distinguished set has nk possible states. We can order them
with the lexicographic order: a state s1 of S is smaller than another state s2 if
there is a vertex v of S such that:

• for all vertices v′ <S v, v
′ has the same state in s1 and s2,

• the state of v is smaller in s1 than in s2.

For any k-distinguished graph g = (G(V,E), S,<S), let si be the ith possible

state of S and let Ψσ,ρ(g) ∈ Nnk

be the vector whose ith coordinate is the
number of (σ, ρ)-dominating sets D of g such that si corresponds to D.

Using Lemma 3 and Lemma 4, we can easily deduce the following one:

Lemma 5. Let g = (G(V,E), S,<S) and g′ = (G′(V ′, E′), S′, <S′) be two k-
distinguished graphs, and o and n be two vertices of V such that g′ is obtained by
extending g where n is the new vertex and o is the vertex removed from S∪{n}.

Given E′ \ E, o and n, one can compute a matrix M such that:

Ψσ,ρ(g
′) = MΨσ,ρ(g) .

Once again, the crucial point of this Lemma is thatM only depends on E′\E,
o and n. Given a set S there are only �nitely many choices of o, n and edges
to add between S and o. Thus there are only �nitely many possible matrices
associated to an extension of a k-distinguished graph and one can compute all
of these matrices.

Similarly, we get the following Lemma:
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Lemma 6. Let g = (G(V,E), S,<S) be a k-distinguished graph and G′(V ′, E′)
be a graph obtained by completing g.

Given E′ \ E, one can compute a vector p such that the number of (σ, ρ)-
dominating sets of G′ is p ·Ψσ,ρ(g).

We can now compute the number of (σ, ρ)-dominating sets of a graph G of
pathwidth at most k: First, compute the sequence of extensions followed by a
completion that turn g0 = (G0(S, ∅), S,>S) into G, then apply to Ψσ,ρ(g0) the
sequence of matrices corresponding to the sequence of extensions and compute
the dot product of the result with the vector corresponding to the completion.
Remark that in g0 there is no edge yet, so a vertex has state 0 or pσ + qσ, which
implies that we can easily �nd Ψσ,ρ(g0).

Remark that every extension increases the order of the k-distinguished graph
by 1. We can then deduce the following Lemma, that is crucial to bound the
number of (σ, ρ)-dominating sets:

Lemma 7. Let σ and ρ be two recognizable sets of positive integers. Then there
is an integer m, a �nite set of matrices Aσ,ρ ⊆ Nm×m, a vector vσ,ρ ∈ Nm and a
set of vectors Pσ,ρ ⊆ Nm such that: for any integer N , N is the number of (σ, ρ)-
dominating sets of some graph of order n > k if and only if there is a sequence
(Mi)1≤i≤n−k ∈ An−kσ,ρ and a vector p ∈ Pσ,ρ such that N = p · (

∏n−k
i=1 Mi)vσ,ρ.

Trees and forests The idea for trees and forests is the same. We will use the
same states and we need to be able to compute the state of the distinguished
vertex after a composition or a union.

Lemma 8. There exists a bilinear map Φ(σ,ρ) : Rn×Rn 7→ Rn such that for all
1-distinguished graphs g1 and g2 and g where g is obtained by composition of g1
and g2:

Ψσ,ρ(g) = Φ(σ,ρ)(Ψσ,ρ(g1),Ψσ,ρ(g2))

Proof. LetD1 andD2 be two (σ, ρ)-dominating sets of respectively g1 = (G1(V1, E1), {a1})
and g2 = (G2(V2, E2), {a2}). Let g = (G(V,E), {a1}) be the composition of g1
and g2. First, recall that τ(p, q, n + 1) = τ(p, q, τ(p, q, n) + 1) for all p, n ∈ N
and q ∈ N+, thus the states of a1 and a2 are easy to compute in g with the
(possibly) dominating set D1∪D2. Then D1∪D2 is a (σ, ρ)-dominating set of g
if and only if a2 is properly (σ, ρ)-dominated by D1 ∪D2 which is easy to check
using its new state. We also get the state of a1. Moreover, given a dominating
set D, the dominating sets D1 and D2 always exist and are unique.

We can deduce a function F such that for every pair of states of (s1, s2):

• if D1 ∪D2 is not a dominating set of g then F (s1, s2) = −1 with any D1

and D2 where si is the state of ai corresponding to Di in gi,

• otherwise F (s1, s2) is the state of a1 in g with any dominating set D1∪D2

where si is the state of ai corresponding to Di in gi.
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Clearly the value of F (s1, s2) only depends on the si and not on the Di. We
can now write the following formula, for any 0 ≤ i ≤ n− 1:

Ψσ,ρ(g)i =
∑

0≤s1,s2≤n−1
F (s1,s2)=i

Ψσ,ρ(g1)s1Ψσ,ρ(g2)s2

Thus every coordinate of Ψ(g) is bilinear in Ψσ,ρ(g1) and Ψσ,ρ(g2).

Now that we have this Lemma we can describe the algorithm. Given a tree
G: �nd the compositions that build the given tree, then apply the corresponding
bilinear map, and �nish by using the dot product with the vector corresponding
to the completion.

We can deduce the following Lemma:

Lemma 9. Let σ and ρ be two recognizable sets of positive integers. Then
there is an integer m, a bilinear map Φσ,ρ : Nm × Nm 7→ Nm, and two vectors
vσ,ρ,pσ,ρ ∈ Nm such that:

If Fσ,ρ ⊆ (Nn × N) is the smallest set such that

• (vσ,ρ, 1) ∈ Fσ,ρ,

• if (v, i), (u, j) ∈ Fσ,ρ then (Φσ,ρ(u, v), i+ j) ∈ Fσ,ρ.

then there is a tree of order n that admits N (σ, ρ)-dominating sets if and only
if there exists u such that (u, n) ∈ Fσ,ρ and N = pσ,ρ · u.

Similarly, one can compute a bilinear map for unions:

Lemma 10. There exists a bilinear map ∆(σ,ρ) : Rn × Rn 7→ Rn such that for
all 1-distinguished graphs g1 and g2 and g where g is obtained by union of g1
and g2:

Ψσ,ρ(g) = ∆(σ,ρ)(Ψσ,ρ(g1),Ψσ,ρ(g2))

And we can deduce the following Lemma:

Lemma 11. Let σ and ρ be two recognizable sets of positive integers. Then
there is an integer m, two vectors vσ,ρ,pσ,ρ ∈ Nm and two bilinear maps
Φσ,ρ,∆σ,ρ ∈ (Nm)N

m×Nm

, such that:

If Fσ,ρ ⊆ (Nn × N) is the smallest set such that

• (vσ,ρ, 1) ∈ Fσ,ρ,

• if (v, i), (u, j) ∈ Fσ,ρ then (Φσ,ρ(u, v), i+ j) ∈ Fσ,ρ and (∆σ,ρ(u, v), i+ j) ∈
Fσ,ρ.

then there is a forest of order n that admits N (σ, ρ)-dominating sets if and only
if there exists u such that (u, n) ∈ Fσ,ρ and N = pσ,ρ · u.
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2.2 Counting the 1-minimal (σ, ρ)-dominating sets

The idea for counting the number of 1-minimal (σ, ρ)-dominating sets is similar,
but we will need more states in order to know if a vertex should really be on
the (σ, ρ)-dominating set.

First we need to introduce the notion of certi�cate. Let G be a graph and
D be a (σ, ρ)-dominating set of G the set C of certi�cates is the set of vertices
that would not be dominated when losing one neighbor in D, that is: C = {v ∈
D : |N(v) ∩D| − 1 6∈ σ} ∪ {v 6∈ D : |N(v) ∩D| − 1 6∈ ρ}. We say that a vertex
v ∈ D has a certi�cate if one of its neighbor is a certi�cate. It is is self-certi�ed
if |N(v) ∩D| 6∈ ρ.

The following Lemma should be clear from the de�nitions:

Lemma 12. Let G be a graph and D be a (σ, ρ)-dominating set of G. Then D
is a 1-minimal (σ, ρ)-dominating set of G if and only if for any vertex v ∈ D, v
is self-certi�ed or has a certi�cate.

We want to generalize the notion of certi�cate to k-distinguished graphs,
with the previous Lemma in mind. A set C is a set of certi�cates of a (σ, ρ)-
dominating set of (G(V,E), S) if all the vertices of C \ S are certi�cates. The
idea is that the neighborhood of any element of S may change, so we predict
from the start if it is or not a certi�cate and when the vertex leaves S we check
if it respects the prediction.

Let g = (G(V,E), S) be a k distinguished graph, C be a set of certi�cates
of D a (σ, ρ)-dominating set of g. Then we say that D is a (1, C)-minimal
(σ, ρ)-dominating set of g if all the vertices of D \S have a neighbor in C or are
self-certi�ed. For the sake of brevity we will say that (D,C) is a good pair of g
if D is a (1, C)-dominating set of g and C is a set of certi�cates of D.

Given a k distinguished graph g and a good pair (D,C) of g it is easy to
decide whether D is a 1-minimal (σ, ρ)-dominating set of a given completion of
g and if C is the corresponding set of certi�cates. In order to make that more
precise we can �nally introduce the states.

Let σ, ρ ⊆ N and p and q be as in Lemma 2. For any k distinguished
graph g = (G(V,E), S) and good pair (D,C) of g, the state of a vertex v that
corresponds to (D,C) is the triplet(

1D(v) · (1 + 1N(v)∩C 6=∅), 1C(v), τ(p, q, |N(v) ∩D|)
)
.

Let us give meaning to the 3 possible values of 1D(v) · (1 + 1N(v)∩C 6=∅):

0. v is not in D,

1. v is in D but has no certi�cate,

2. v is in D and has a certi�cate.

The state of S is the function that maps every vertex from S to its state.
As in the previous section, we can de�ne a strict total ordering on the states of
S based on >S and on the lexicographical order to de�ne a vector: Ψσ,ρ,min(g)
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whose ith coordinate counts the number of good pairs of g that correspond to
the ith state of S. We do not give the details on the chosen ordering since it
can be any strict total ordering.

We can now give the following Lemma:

Lemma 13. Let g = (G(V,E), S,<S)) and g′ = (G′(V ′, E′), S′, <S′)) be two k-
distinguished graphs, and o and n be two vertices of V ′ such that g′ is obtained by
extending g where n is the new vertex and o is the vertex removed from S∪{n}.

Given E′\E one can compute a matrixM such that Ψσ,ρ,min(g′) = MΨσ,ρ,min(g).

The idea behind this Lemma is really similar to Lemma 5 so we sketch the
proof.

Proof. Given a state of S with a good pair (D,C), only few things change when
extending:

• if o is in D then the last coordinate of the state of each of its new neighbors
in S′ is incremented,

• if o is in C then the �rst coordinate of the state of each of its new neighbors
become 2 if it was 1,

• the last coordinate of the state of o is increased by 1 for each new neighbor
in D,

• the �rst coordinate of the state of o is set to 2 if it was 2 and if o has a
new neighbor in C.

Thus the new states of the elements of S′ and of o only depends on the former
states of the element of S and on the set of new edges. To check if the new pair
is still a good pair, one can check that o has a certi�cate or is self-certi�ed if
it belongs to D, is properly dominated and a certi�cate if and only if its state
says so. This can be veri�ed by checking the following conditions:

• if the �rst coordinate of o is 1 then τ(p, q, |N(o) ∪D|) 6∈ ρ,

• if the �rst coordinate of o is 0 (resp. 2 or 1) then τ(p, q, |N(o) ∪D|) ∈ ρ
(resp. τ(p, q, |N(o) ∪D|) ∈ σ ),

• if the �rst coordinate of o is 0 (resp. 2 or 1) 1C(o) = 1 if and only if
τ(p, q, |N(o) ∪D|)− 1 6∈ ρ (resp. τ(p, q, |N(o) ∪D|)− 1 6∈ σ ).

So the state of S′ after an extension only depends on the state of S before the
extension a and on the set of new edges. It is then easy to deduce the matrix
M .

Similarly we have the following Lemma:

Lemma 14. Let g = (G(V,E), S,<S) be a k-distinguished graph and G′(V ′, E′)
be a graph obtained by completing g.

Given E′\E, one can compute a vector p such that the number of 1-minimal
(σ, ρ)-dominating set of G′ is p ·Ψσ,ρ,min(g).
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In order to compute the number of 1-minimal (σ, ρ)-dominating sets of a
graph G of pathwidth at most k, one can �nd a sequence of extensions to
apply to g0 = (G0(S, ∅), S,>S) followed by a completion that gives G. Then
the number of 1-minimal (σ, ρ)-dominating sets can be obtained by multiplying
Ψσ,ρ,min(g0) by the matrices corresponding to the extensions applied and �nally
compute the dot product with the vector corresponding to the completion.

We deduce the following Lemma:

Lemma 15. Let σ and ρ be two recognizable sets of positive integers. Then there
is an integerm, a �nite set of matrices Aσ,ρ,min ⊆ Nm×m, a vector vσ,ρ,min ∈ Nm
and a set of vectors Pσ,ρ,min ⊆ Nm such that: for any integer N , N is the number
of 1-minimal (σ, ρ)-dominating sets of some graph of order n > k if and only if
there is a sequence (Mi)1≤i≤n−k ∈ An−kσ,ρ,min and a vector p ∈ Pσ,ρ,min such that

N = p · (
∏n−k
i=1 Mi)vσ,ρ,min.

Trees and forests The idea for trees and forests is once again the same. We
could show the following Lemmas:

Lemma 16. There exists a bilinear map Φ(σ,ρ,min) : Rn × Rn 7→ Rn such that
for all 1-distinguished graphs g1 and g2 and g where g is obtained by composition
of g1 and g2:

Ψσ,ρ,min(g) = Φ(σ,ρ,min)(Ψσ,ρ,min(g1),Ψσ,ρ,min(g2))

Lemma 17. There exists a bilinear map ∆(σ,ρ,min) : Rn × Rn 7→ Rn such that
for all 1-distinguished graphs g1 and g2 and g where g is obtained by union of
g1 and g2:

Ψσ,ρ,min(g) = ∆(σ,ρ,min)(Ψσ,ρ,min(g1),Ψσ,ρ,min(g2))

Then the number of 1-minimal (σ, ρ)-dominating sets of a graph G can be
computed by applying the operation corresponding to the decomposition of G.

We deduce the following Lemmas:

Lemma 18. Let σ and ρ be two recognizable sets of positive integers. Then
there is an integer m, two vectors vσ,ρ,min,pσ,ρ,min ∈ Nm and a bilinear map
Φσ,ρ,min : Nm × Nm 7→ Nm such that:

If Fσ,ρ,min ⊆ (Nn × N) is the smallest set such that

• (vσ,ρ,min, 1) ∈ Fσ,ρ,min,

• if (v, i), (u, j) ∈ Fσ,ρ,min then (Φσ,ρ,min(u, v), i+ j) ∈ Fσ,ρ,min.

then there is a tree of order n that admits N (σ, ρ)-dominating sets if and only
if there exists u such that (u, n) ∈ Fσ,ρ,min and N = pσ,ρ,min · u.
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Lemma 19. Let σ and ρ be two recognizable sets of positive integers. Then
there is an integer m, two vectors vσ,ρ,min,pσ,ρ,min ∈ Nm and two bilinear maps
Φσ,ρ,min : Nm × Nm 7→ Nm and : ∆(σ,ρ,min) : Nm × Nm 7→ Nm, such that:

If Fσ,ρ,min ⊆ (Nn × N) is the smallest set such that

• (vσ,ρ,min, 1) ∈ Fσ,ρ,min,

• for any (v, i), (u, j) ∈ Fσ,ρ,min then (Φσ,ρ,min(u, v), i + j) ∈ Fσ,ρ,min and
(∆σ,ρ,min(u, v), i+ j) ∈ Fσ,ρ,min.

then there is a forest of order n that admits N (σ, ρ)-dominating sets if and only
if there exists u such that (u, n) ∈ Fσ,ρ,min and N = pσ,ρ,min · u.

2.3 Counting the 1-maximal (σ, ρ)-dominating sets

For any graph G(V,E) and (σ, ρ)-dominating sets D, D is 1-maximal if V \D is
1-minimal. So we can de�ne a notion of certi�cate for the vertices of V \D and
use the sames ideas as in the previous Section. A vertex is a certi�cate if is not
properly dominated when we give him one more vertex in D, that is, the set of
certi�cates is: {v ∈ D : |N(v)∩D|+1 6∈ σ}∪{v 6∈ D : |N(v)∩D|+1 6∈ ρ}. Then
a (σ, ρ)-dominating set D of G(V,E) is 1-maximal if and only if any vertex from
V \D has a certi�cate among its neighbors or is self-certi�ed (|N(v)∩D| 6∈ σ).

We can then generalize this notion of certi�cate to k-distinguished graphs
and show the following Lemmas:

Lemma 20. Let σ and ρ be two recognizable sets of positive integers. Then there
is an integer m, a �nite set of matrices Aσ,ρ,max ⊆ Nm×m, a vector vσ,ρ,max ∈
Nm and a set of vectors Pσ,ρ,max ⊆ Nm such that: for any integer N , N is the
number of 1-minimal (σ, ρ)-dominating sets of some graph of order n > k if and
only if there is a sequence (Mi)1≤i≤n−k ∈ An−kσ,ρ,max and a vector p ∈ Pσ,ρ,max

such that N = p · (
∏n−k
i=1 Mi)vσ,ρ,max.

Lemma 21. Let σ and ρ be two recognizable sets of positive integers. Then
there is an integer m, two vectors vσ,ρ,max,pσ,ρ,max ∈ Nm and a bilinear map
Φσ,ρ,max : Nm × Nm 7→ Nm, such that:

If Fσ,ρ,max ⊆ (Nn × N) is the smallest set such that

• (vσ,ρ,max, 1) ∈ Fσ,ρ,max,

• if (v, i), (u, j) ∈ Fσ,ρ,max then (Φσ,ρ,max(u, v), i+ j) ∈ Fσ,ρ,max.

then there is a tree of order n that admits N (σ, ρ)-dominating sets if and only
if there exists u such that (u, n) ∈ Fσ,ρ,max and N = pσ,ρ,max · u.
Lemma 22. Let σ and ρ be two recognizable sets of positive integers. Then
there is an integer m, two vectors vσ,ρ,max,pσ,ρ,max ∈ Nm and two bilinear
maps Φσ,ρ,max : Nm × Nm 7→ Nm and ∆σ,ρ,max : Nm × Nm 7→ Nm, such that:

If Fσ,ρ,max ⊆ (Nn × N) is the smallest set such that

12



• (vσ,ρ,max, 1) ∈ Fσ,ρ,max,

• for any (v, i), (u, j) ∈ Fσ,ρ,max then (Φσ,ρ,max(u, v), i + j) ∈ Fσ,ρ,max and
(∆σ,ρ,max(u, v), i+ j) ∈ Fσ,ρ,max.

then there is a forest of order n that admits N (σ, ρ)-dominating sets if and only
if there exists u such that (u, n) ∈ Fσ,ρ,max and N = pσ,ρ,max · u.

3 The bounds

3.1 Graph of bounded pathwidth

Let σ and ρ be two recognizable sets of positive integers and #σ,ρ(n) be the
maximal number of (σ, ρ)-dominating sets (resp. 1-minimal (σ, ρ)-dominating
sets, 1-maximal (σ, ρ)-dominating sets) in graph of pathwidth at most k of order
n.

Then we can use Lemma 7(resp. Lemma 15, Lemma 20) to �nd an integer
m, a set of matrices A ⊆ Nm×m, a vector vσ,ρ ∈ Nm and a set of vectors
P ⊆ Nm such that for any integer N that corresponds to the number of (all, 1-
minimal, 1-maximal) (σ, ρ)-dominating sets of a graph of patwidth k and order
n > k there is a sequence (Mi)1≤i≤n−k ∈ An−k and a vector p ∈ P such that

N = p · (
∏n−k
i=1 Mi)vσ,ρ. Thus in particular:

#σ,ρ(n) = max

{
p ·

(
n−k∏
i=1

Mi

)
vσ,ρ : p ∈ P, (Mi)1≤i≤n−k ∈ An−k

}
.

The goal of this subsection is to explain how we bound this quantity.
First, we need to simplify the set of matrices. We say that the i-th coordinate

is accessible if there is a sequence (Mi)1≤i≤n−k ∈ An−k such that the i-th

coordinate of (
∏n−k
i=1 Mi)vσ,ρ is non-zero. Similarly the ith coordinate is co-

accessible if there is a sequence (Mi)1≤i≤n−k ∈ An−k and p ∈ P such that

p · (
∏n−k
i=1 Mi)vσ,ρ is non-zero. Note that the sets of accessible and co-accessible

coordinates can easily be computed by a recursive algorithm. The motivation
of these de�nitions is that we can ignore coordinates that are not accessible or
not co-accessible since they do not in�uence the result of the product.

Let m̃ be the number of accessible and co-accessible coordinates. Let C ∈
Nm̃×m be the matrix that maps the i-th coordinate to the i-th accessible and
co-accessible coordinate and let: Ã = {CMCT : M ∈ A}, ṽσ,ρ = Cvσ,ρ and

P̃ = {Cp : p ∈ P}. Then by de�nition:

#σ,ρ(n) = max

{
p ·

(
n−k∏
i=1

Mi

)
ṽσ,ρ : p ∈ P̃ , (Mi)1≤i≤n−k ∈ Ãn−k

}
.

We can �nally explain how to compute this quantity. For any set of points
X, we denote by conv(X) the convex hull of X. We can now give the following
Theorem:
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Theorem 23. Let α be a positive real, A ⊆ R+m×m be a set of matrices and
vσ,ρ ∈ R+m. Let X ⊆ R+m be a bounded set of vectors such that:

• vσ,ρ ∈ conv(X),

• ∀x ∈ X, for all M ∈ A, 1
αMx ∈ conv(X).

Then for any p ∈ R+m there exists a constant C such that for all integers n

max

{∣∣∣∣∣p ·
(
n−k∏
i=1

Mi

)
vσ,ρ

∣∣∣∣∣ : (Mi)1≤i≤n−k ∈ An−k
}
< Cαn

Proof. First remark that ∀x ∈ conv(X), for all M ∈ A, 1
αMx ∈ conv(X). Thus

by induction on n, for any sequence vσ,ρ : (Mi)1≤i≤n−k ∈ An−k, (
∏n−k
i=1

1
αMi)vσ,ρ ∈

conv(X). This implies that:∣∣∣∣∣p ·
(
n−k∏
i=1

1

α
Mi

)
vσ,ρ

∣∣∣∣∣ < max
x∈X
|p · x|∣∣∣∣∣p ·

(
n−k∏
i=1

Mi

)
vσ,ρ

∣∣∣∣∣ < αn max
x∈X

|p · x|
αk

This concludes the proof.

For any X ∈ R+m, let conv≤(X) = {x ∈ R+m : x′ ∈ conv(X),x ≤ x′}.
Remark that conv≤(X) is also a convex set so we get the following Corollary:

Corollary 24. Let α be a positive real, A ⊆ R+m×m be a set of matrices and
vσ,ρ ∈ R+m. Let X ⊆ R+m be a bounded set of vectors such that:

• vσ,ρ ∈ conv<(X),

• ∀x ∈ X, for all M ∈ A, 1
αMx ∈ conv<(X).

Then for any p ∈ R+m there exists a constant C such that for all integers n

max

{∣∣∣∣∣p ·
(
n−k∏
i=1

Mi

)
vσ,ρ

∣∣∣∣∣ : (Mi)1≤i≤n−k ∈ An−k
}
< Cαn

Remark that using linear programming it is not signi�cantly more expensive
to check whether a point belongs to conv≤(X) instead of conv(X). However, it
seems that in many cases it would give us much smaller set X.

Also remark, that the condition vσ,ρ ∈ conv<(X) could be replaced by the
condition: for all 1 ≤ i ≤ m, there exists v ∈ X such that the ith coordinate of
v is positive (or equivalently: conv≤(X) spans Rm). In deed, we can scale X
without changing the result, and as long as the polytope is of dimension m we
can scale it enough to contain vσ,ρ ∈ conv<(X). We do not explicitely use that
remark, but it helps to �nd set X by hand. This remark, will not hold for trees
and forests (Theorem 45), because in these cases we cannot scale the set X.

In fact, in the case of pathwidth, we can replace the constant C by 1 using
the following Lemma:
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Lemma 25. If there exists α and C such that for all n, #σ,ρ(n) < Cαn then
for all n: #σ,ρ(n) < αn.

Proof. First remark that the number of (1-minimal, 1-maximal) (σ, ρ)-dominating
sets of the disjoint union of two graphs is the product of the numbers of (1-
minimal, 1-maximal) (σ, ρ)-dominating sets of the two graphs. Now suppose
by contradiction that there is an integer N and a positive real ε such that:
#σ,ρ(N) ≥ αN + ε, then by the previous remark that would mean that for any
integer n #σ,ρ(nN) ≥ (αN +ε)n. Then #σ,ρ(n) can't be bounded by Cαn which
is a contradiction.

Nothing says that there always is such a set X that we can compute. But,
in practice, we can often �nd a �nite set X using the following trivial algorithm:

Algorithm 1: Computation of the set X

Data: Ã, ṽσ,ρ, α
Result: A set X that respects the conditions of Corollary 24
X := {ṽσ,ρ};
while ∃M ∈ Ã,∃x ∈ X such that 1

αMs 6∈ conv<(X) do

X ′ := { 1αMx : M ∈ Ã,x ∈ X};
X := Hull≤(X ∪X ′);

Hull≤ is a function that compute the smallest subset of points such that
conv≤(X) = conv≤(Hull≤(X)). One naive way to do that is to simply check for
each point x ∈ X whether or not x ∈ conv≤(X \ {x}), which can easily be done
with linear programming. The algorithm does not necessarily terminate, but if
it does it returns a set X corresponding to the one of Corollary 24.

Although the algorithm is trivial, it is important to have an e�cient imple-
mentation since computing the convex hull of a set of points in high dimension
is expensive (in particular when the coordinates are not rationals, but algebraic

numbers). The joint C++ code described in Annexe generates Ã, P̃ and ṽσ,ρ
for a given choice of σ and ρ and then apply Algorithm 1 with a given choice of
α.

In fact, because of the combinatorial explosion, it probably requires a lot of
work in order to make this technique work for a given choice of (σ, ρ) in path-
width 3 or more. There are many tricks that we do not discuss in details that
we could take advantage of. If a matrix from Ã is smaller in every coordinate
than another one, then we can ignore this matrix (this was used in our imple-
mentation). Another idea it to take another order < in the de�nition of conv≤
(instead of the coordinate-wise comparison) on the vectors and everything still
works as long as left multiplication by the matrices of A is monotone with re-
spect to <. This last idea was used in the speci�c case of minimal dominating
set (and is called majorization) in Section 6.1 of [5, 6].

Finally, while it's great to �nd an upper bound, it is better to know that it is
sharp. A construction that reaches the bound is the best way to know that. If
running with α slightly smaller than the conjectured bound the algorithm will
not terminate, however by inspecting the sequences of product of matrix that
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give the extremal points one can deduce such constructions (it can be partly
automated, and it seems much more e�cient than a brute force approach). In
fact, this is how we found all the sharp examples on more than 3 vertices.

3.1.1 Results and examples in pathwidth 1

Note that in the case of pathwidth 1 we have 4 possible ways of extending a
k-distinguished graph: we can keep either the new or the old node in S, and
they can share an edge or not. Thus we have 4 possible matrices that we will
give in the following order, where v is the vertex that was already distinguished
and n is the new vertex:

1. we keep v and there is an edge between v and n,

2. we keep v and there is no edge between v and n,

3. we keep n and there is an edge between v and n,

4. we keep n and there is no edge between v and n.

We will detail the computations in the case of induced matching and of
perfect total dominating sets to serve as an example.

Induced matching: σ = {1}, ρ = N
First we can compute pσ = 2, qσ = 1, pρ = 0 and qρ = 1. There are 4

possible states for the distinguished vertex s and they correspond to:

0. s is in D and has no neighbor in D,

1. s is in D and has one neighbor in D,

2. s is in D and has at least two neighbors in D,

3. s is not in D.

Since n is the new vertex, it is either in state 0 or 3 before we possibly add
the edge. For the same reason, vσ,ρ = (1, 0, 0, 1)T . Moreover, to be properly
dominated a vertex has to be in state 1 or 3, thus: P = {(0, 1, 0, 1)T }.

Let us detail the computation of the matrices. We start with the �rst matrix,
that is, we keep v and there is an edge between v and n. If n is in state 3 then
it stays in state 3 and is properly dominated and the state of v does not change.
Otherwise if n is in state 0:

v is in state 0: then n and v are now in state 1 so we can forget n,

v is in state 1 or 2: then n is now in state 1 so we can forget it, and v is now
in state 2

v is in state 3: then n is still in state 0, so we cannot forget it and there is no
corresponding (σ, ρ)-dominating set.
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It gives the following matrix:

M1 =


1 0 0 0
1 1 0 0
0 1 2 0
0 0 0 1

 .

Now, if there no edge between n and v and we forget v, n has to be in state
3 and the state of v does not changes which gives:

M2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Now, if there is an edge between n and v and we forget n:

v is in state 0:

n is in state 0: v and n are now in state 1 and we can forget v,

n is in state 3: v is still in state 0 and we can't forget it.

v is in state 1:

n is in state 0: v is now in state 2 and we can't forget it,

n is in state 3: v stays in state 1 and we can forget it, and n stays in
state 3.

v is in state 2: v stays in state 2 so we can't forget it.

v is in state 3: v stays in state 3 and n can take state 0 or 3.

It gives the following matrix:

M3 =


0 0 0 1
1 0 0 0
0 0 0 0
0 1 0 1

 .

Finally, if there no edge between n and v and we forget n, then v can be
forgotten i� it is already in state 1 or 3 and n can take state 0 or 3. It give the
following matrix:

M4 =


0 1 0 1
0 0 0 0
0 0 0 0
0 1 0 1

 .

Let e2 = (0, 0, 1, 0)T . For any Mi, Mie2 ∈ {0, e2, 2e2} and moreover for all
p ∈ P , p · e2 = 0. It implies that the third coordinate is not co-accessible. We
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could have noticed earlier that if a vertex is in state 2, it has too many neigh-
bors in the (σ, ρ)-dominating set and so the corresponding (σ, ρ)-dominating set
cannot be extended.

It is easy to check that all the other coordinates are accessible and co-
accessible, and we get:

Ã =


1 0 0

1 1 0
0 0 1

 ,

1 0 0
0 1 0
0 0 1

 ,

0 0 1
1 0 0
0 1 1

 ,

0 1 1
0 0 0
0 1 1

 and ṽσ,ρ =

1
0
1

 .

Now, let α be the root of x3 − x2 − 1 = 0 between 1 and 2. If we apply the
algorithm from the previous section to this set of matrices with this α we get:

X =


 1 + α− α2

3 + 3α− 3α2

1 + α− α2

 ,

 −1 + α
−1 + α
−2 + 2α

 ,

 −1 + α
−2 + 2α
−1 + α

 ,

−α+ α2

−α+ α2

−α+ α2

 ,

1
0
1


It is easy to check that for any x ∈ X and M ∈ Ã, 1

αMx ∈ conv≤(X). Using
Corollary 24, we deduce that the number of induced matchings in a graph of
pathwidth 1 and of order n is less than αn.

Moreover, α is the Perron Frobenius eigenvalue of

0 0 1
1 0 0
0 1 1

 which implies

that for any

0
1
1

 ·
0 0 1

1 0 0
0 1 1

n1
0
1

 = Θ(αn). Thus the number of induced

matchings of the path of length n is a Θ(αn). In fact, is is easy to deduce from
the diagonalization of the matrix that there is a constant C = 1.31342...

α (the
numerator being the a root of 31x3 − 31x2 − 12x− 1) such that this number is
Cαn + o(1) We can conclude with the result:

Proposition 26. Let α be the root of x3−x2−1 between 1 and 2, α ≈ 1.465571.
Any graph of pathwidth 1 and of order n admits at most αn induced matching.
Moreover, this bound is sharp in the sense that the number of induced matchings
of the path of order n is greater than 0.89αn + o(1).

Finally remark, that there is no graph that reach the bound, otherwise λ
would be of the form a

1
b with a and b integers. That is no possible since the

minimal polynomial of α is x3−x2−1. Thus there is no �nite graph that reaches
the bound. However, one could ask whether there is sequence of increasing
graphs such that the number of induced matchings is αn + o(1).

Perfect total dominating sets: σ = {1}, ρ = {1}
We have pσ = 2, qσ = 1, pρ = 2 and qρ = 1. Thus there should be 6 states,

however as in the previous example it is clear that two of the states are useless
and thus there should be at most 4 states at the end. Running our program
give us the following:
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Ã =




1 0 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 ,


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 ,


0 1 0 1
0 0 0 0
0 1 0 1
0 0 0 0


 and ṽσ,ρ =


1
0
1
0

 .

Remark that there are 3 matrices instead of 4, because one of them was
coordinate-wise smaller than another one and was removed from the set. Let α
be the real root of x5 − 4 and

X =




0
1
4
0
1

 ,


0
α
4
0
3
4α

 ,


α
4
α
0
0

 ,


α2

4
3
4α

2

0
0

 ,


α3

4
α3

2
0
0

 ,


α4

4
α4

4
0
0

 ,


1
0
1
0




It is easy to check that for any x ∈ X andM ∈ Ã, 1
αMx ∈ conv≤(X). Using

Corollary 24, we deduce that the number of perfect total dominating sets in a
graph of pathwidth 1 and of order n is less than αn. We can give the following
result:

Proposition 27. Let α be the real root of x5 − 4, α = 4
1
5 ≈ 1.319508. Any

graph of pathwidth 1 and of order n admits at most αn perfect total dominating
sets. Moreover, this bound is reached by the star on 5 vertices.

Other results:
We follow with a list of other results that can easily be showed just by

running our C++ code. It is far from being an exhaustive list of what can be
done and is mostly an arbitrary choice of parameters to study (the two main
criterions were: it is interesting enough for someone to name it and the result
is not completely obvious).

Using that the independent dominating sets are the ({0},N+)-dominating
sets we get:

Proposition 28. Any graph of pathwidth 1 and of order n admits at most 2
n
2

independent dominating sets. Moreover, this bound is reached by the path on 2
vertices.

Remark that the independent dominating sets are exactly the maximal in-
dependent sets (1-maximal ({0},N)-dominating sets).

Using that the perfect codes in graphs are the ({0}, {1})-dominating sets,
we deduce the following:

Proposition 29. Any graph of pathwidth 1 and of order n admits at most 2
n
2

perfect codes. Moreover, this bound is reached by the path on 2 vertices.

Using that minimal dominating sets in graphs are exactly 1-minimal (N,N+)-
dominating sets, we deduce the following:
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Proposition 30. Any graph of pathwidth 1 and of order n admits at most 2
n
2

minimal dominating sets. Moreover, this bound is reached by the path on 2
vertices.

Using that the minimal perfect dominating sets are the 1-minimal (N, {1})-
dominating sets we get:

Proposition 31. Let α be the real root of x3 − x2 − 1 between 1 and 2, α ≈
1.46557. Any graph of pathwidth 1 and of order n admits at most αn minimal
perfect dominating sets.

Moreover, this bound is thigh, since the number of minimal perfect dominat-
ing sets of the path of order n is a Θ(αn).

Remark that the second part of this statement comes from the fact that
α is the eigenvalue of the matrix that one iterates to build the in�nite path.
Also remark that counting all perfect dominating sets is not interesting since
it is Θ(2n) on the star of order n (it is also the case for dominating, or total
dominating set).

Using that minimal total dominating sets are 1-minimal (N+,N+)-dominating
set we get:

Proposition 32. Let α be the real root of x3 − x − 1 between 1 and 2, α ≈
1.324718. Any graph of pathwidth 1 and of order n admits at most αn minimal
total dominating sets.

Moreover, this bound is thigh, since the number of minimal perfect dominat-
ing sets of the path of order n is a Θ(αn).

Our simple algorithm cannot directly �nd a convex polytope that respects
the conditions of Corollary 24 with α, but if we add (2, 0, 0, 0, 0, 0, 2, 0, 0)T to
the set X at the beginning of Algorithm 1 then we �nd such a set of size 23
(this vector was found by trial and error helped with some intuition and 2 can
be replaced by any greater real number).

Using that maximal strong stable sets are 1-minimal ({0}, {0, 1})-dominating
set we get:

Proposition 33. Any graph of pathwidth 1 and of order n admits at most
3

n
3 ≈ 1.44225n maximal strong stable sets.
Moreover, this bound is reached by the path of order 3.

Maximal induced matching Maximal induced matchings correspond to 2-
maximal ({1},N)-dominating sets, but it does not seem easy to count them using
1-maximal (σ, ρ)-dominating sets. Unfortunately, we did not describe any way
to �nd a set of matrices corresponding to 2-maximal (σ, ρ)-dominating sets (but
it is not so hard to generalize to k-maximal (σ, ρ)-dominating sets). However,
we can do it by hand for this particular case.

First we need the following trivial Lemma:
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Lemma 34. Let G(V,E) be a graph and D be an induced matching of G.
Then D is a maximal induced matching if and only if for all u, v ∈ V \D and
(u, v) ∈ E, (N(v) ∪N(u)) ∩D 6= ∅.

Then, we say that, for any k-distinguished graph g = (G(V,E), S), D is a
maximal induced matching of g if:

• for all v ∈ D \ S, |N(v) ∩D| = 1,

• for all u, v ∈ V \ (D ∪ S) with (u, v) ∈ E, (N(v) ∪N(u)) ∩D 6= ∅.

Then we will have 5 states for the distinguished vertex of the distinguished
graphs:

0. the vertex is in D and has no neighbor in D,

1. the vertex is in D and has exactly one neighbor in D,

2. the vertex is not in D, has no neighbor in D and has no neighbor in V \S
that has no neighbor in D,

3. the vertex is not in D, has no neighbor in D and has at least one neighbor
in V \ S that has no neighbor in D,

4. the vertex is not in D and has at least one neighbor in D.

For any 1-distinguished graph g = (G(V,E), {s}) let Ψ(g) be the vector whose
i-th coordinate gives the number of maximal induced matchings of g where s is
in the ith state.

Lemma 35. Let g = (G(V,E), {o}) and g′ = (G′(V ′, E′), {n}) be two distin-
guished graphs, where g′ is the graph obtained by extending g and adding n and
an edge between o and n. Then:

Ψ(g′) =


0 0 1 1 1
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 1 0 0 0

Ψ(g)

Proof. For any maximal induced matching D of g where o is in state 2, 3 or 4,
then D′ = D ∪ n is a maximal induced matching of g′ where n is in state 0,
since then s has a neighbor in D′ and n has no neighbor in D′.

For any maximal induced matching D of g where o is in state 3, D is not a
maximal induced matching of g′ since o has no neighbor in D and has a neighbor
that has no neighbor in D.

For any maximal induced matching D of g where o is in state 2, D is a
maximal induced matching of g′ where n is in state 3 since, v is the only neighbor
of o.
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For any maximal induced matching D of g where o is in state 4, D is a
maximal induced matching of g′ where n is in state 2 since, v is the only neighbor
of o.

For any maximal induced matching D of g where o is in state 1 D ∪ {n} is
not an induced matching of g′ since o has 2 neighbors in D ∪ {n}.

For any maximal induced matching D of g where o is in state 1 D is a
maximal induced matching of g′ where n is in state 4 since it shares an edge
with v.

For any maximal induced matching D of g where o is in state 0 D is not a
maximal induced matching of g′ since o has 0 neighbors in D.

For any maximal induced matching D of g where o is in state 0 D ∪ {n} is
a maximal induced matching of g′ where n is in state 1 since it shares an edge
with v.

It covers all the possible cases, and it gives the matrix from the Theorem.

A similar case analysis give the matrices of the other possible extensions and
we get the following set of matrices:

A =




0 0 1 1 1
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 1 0 0 0

 ,


1 0 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 0 0 1

 ,


0 1 1 0 1
0 0 0 0 0
0 1 1 0 1
0 0 0 0 0
0 0 0 0 0

 ,


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




We can also show the following Lemma:

Lemma 36. Let g = (G(V,E), {s}) be a 1-distinguished graph and G′ be the
only graph that can be obtained by completing g. Then the number of maximal
induced matchings of G′ is given by (0, 1, 1, 0, 1)T ·Ψ(g).

Thus the maximal number of maximal induced matchings of a graph of
pathwidth at most 1 is given by:

#maximal induced matching(n) = max




0
1
1
0
1

 ·
(
n−1∏
i=1

Mi

)
1
0
1
0
0

 : (Mi)1≤i≤n−1 ∈ An−1

 .

Running the algorithm previously described with this set of matrices and
α = 13

1
9 gives a set X of 25 vectors that respects the conditions of Corollary

24. Thus we deduce the following result:

Proposition 37. Any graph of pathwidth 1 and of order n admits at most
13

n
9 ≈ 1.32975n maximal induced matching. Moreover the bound is reached by

the following graph:
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3.1.2 Results and examples in pathwidth 2

For graphs of pathwidth 2, we need to use 2-distinguished graphs so there are 12
matrices. Moreover, the dimensions of these matrices is at least 9 for non-trivial
σ and ρ. So we really need the computer and there is no simple example to do
by hand.

Using that dominating stable sets are ({0},N+)-dominating sets we get:

Proposition 38. Any graph of pathwidth 2 and of order n contains at most
3

n
3 ≈ 1.44225n dominating stable sets. The bound is reached by the triangle.

Remark that this result is a trivial case of the famous result of Moon and
Moser stating that there are at most 3

n
3 ≈ 1.44225n dominating stable sets in

any graph of order n. The two next Lemmas might also be simple corollaries of
this result, but if it is the case it is less obvious.

Using that perfect total dominating sets are ({1}, {1})-dominating set, we
get:

Proposition 39. Any graph of pathwidth 2 and order n contains at most 3
n
3 ≈

1.44225n perfect total dominating sets. The bound is reached by the triangle.

Using that perfect codes are ({0}, {1})-dominating sets we get:

Proposition 40. Any graph of pathwidth 2 and order n contains at most 3
n
3 ≈

1.44225n perfect codes. The bound is reached by the triangle.

Using that induced matchings are ({1},N)-dominating sets, we get:

Proposition 41. Any graph of pathwidth 2 and order n contains at most 4
n
3 ≈

1.58740n induced matchings. The bound is reached by the triangle.

Maximal induced matching As already mentionned, maximal induced match-
ings correspond to 2-maximal ({1},N)-dominating sets, and we did not explain
how to count them. However, we can use exactly the same set of states than for
the graphs of pathwidth 1 (see paragraph of the same name in Section 3.1.1).
We do not describe the details but they are implemented in C++. We can
deduce the following Theorem:

Lemma 42. Any graph of pathwidth 2 and order n contains at most 5
n
4 ≈

1.49535n maximal induced matchings. Moreover the bound is reached by the
following graph:

The set X that our program returns contains 386 vectors and it takes more
than 5 hours to �nd it on a small laptop.
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Minimal dominating set Minimal dominating sets are probably among the
most interesting minimal (Σ, ρ)-dominating sets to study. Unfortunately, Algo-
rithm 1 does not seem to �nd the set X needed for Corollary 24 and we were not
able to show a sharp bound on the groth rate by directly applying our method
We explain in Section 3.1.3 that we could get good approximation of the up-
per bound anyway. However, with some extra work we can still obtain a sharp
bound.

We can de�ne states that are speci�c to this problem (we have 37 states
instead of 165) and we are able to �nd a set X that respects the conditions of
Corollary 24 if we initialize Algorithm 1 with a larger set of vectors. One of the
main improvement is that instead of choosing the certi�cates from the start and
checking that they are indeed certi�cates, we choose them only when we need
to. Something similar could be done in general, but we need to introduce new
states for S where we do not know exactly the states of the vertices (something
similar to the 37th state: �the two nodes are dominated and at least one of
them is a certi�cate�). In general, it might not be helpfull to introduce these
new states, but it de�nitely makes things easier in this particular case.

We get the following result:

Proposition 43. The number of minimal dominating sets of a graph of path-
width 2 of order n is at most 6

n
4 ≈ 1.56508n. This bounds is sharp and is

reached by any collection of cycles of order 4.

Proof. Given a 2-distinguished graph g = (G(V,E), S,<S) and a minimal-
dominating set D of g for v ∈ S the state of v can be:

D if v ∈ D and has a neighbor that is a certi�cate,

S if v ∈ D and has no neighbor in D,

L if v ∈ D and has a neighbor in D,

P if v 6∈ D and is the certi�cate of an element of D ∩ S,

d if v 6∈ D and has a neighbor in D,

F if v 6∈ D has no neighbor in D.

The state of S is either the product of the states of the two elements of S (that
is S = {u, v} with u < v is in state 6i + j i� u is in state i and v is in state j)
or the special state π. If S is in state π then at least one element of S is the
certi�cate of an element of D ∩ S.

This states are such that given for any state of S the number of minimal
dominating sets of a 2-distinguished graph g = (G(V,E), S,<S), one can eas-
ily compute for any state of S′ the number of minimal dominating sets of a
2-distinguished graph g′ = (G′(V ′, E′), S′, <S′) obtained by extending g. More-
over, one can once again compute a set of matrices that correspond to the
di�erent possible ways to extend a 2-distinguished graph. The details are left
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to the interested reader (however the matrices can be obtained from the C++
code).

Now that we have our set of matrices we only need a set X that respects the
conditions of Corollary 24 with α = 6

1
4 . However, once again Algorithm 1 does

not seem to terminate in this case. The solution is to apply Alorithm 1 starting
with some other vertices. Let

X0 ={e1, e4, e5, e10, e15, e16, e17, e18, e19, e20, e22, e23, e24,
e25, e26, e27, e28, e29, e30, e33, e34, e35, e36},

where ei is the vector from R37 whose ith coordinate is 4 and the others are 0 and
let v0 be the vector corresponding to g0 = (G(S, ∅), S). Then running Algorithm
1 with X initilizalied at X0 ∪ {v0} gives a set X of size 131 that respects the

conditions of Corollary 24 with α = 6
1
4 . This concludes the proof.

We provide with our C++ implementation a �le 1 that contains the set X0,
to avoid the tedious task of typing 23 vectors in a terminal. Remark, that it
also works with X ′0 = {ei|i ∈ {1, . . . , 37}}, but the X0 from the proof gives a
smaller �nal set X. The set X0 was constructed by removing vertices from X ′0
by trial and error (and it is probably not even the �best� subset of X ′0).

3.1.3 Joint spectral radius

As already mentioned the algorithm that computes the set X does not neces-
sarily terminates. However, using the notion of joint spectral radius we can still
computes bounds in this case.

For any given set of matrices A and any sub-multiplicative matrix norm
||.||, the quantity p(A) = limn→∞max{||M1 . . .Mn||

1
k : Mi ∈ A} is the joint

spectral radius of the set A [1]. Remark that p(A) does not depend on the
chosen sub-multiplicative matrix norm.

In fact, given a set of matrices A ∈ R+n×n, a vector vσ,ρ ∈ R+n and a set of
vectors P ∈ R+n such that all the coordinates are accessible and co-accessible
then p(A) is the smallest real such that:

lim
m→∞

(
max

{
p ·

(
m−k∏
i=1

Mi

)
vσ,ρ : p ∈ P, (Mi)1≤i≤m−k ∈ Am−k

})1/m

= p(A)

The joint spectral radius generalizes the notion of spectral radius to set of
matrices, but we lose a lot of nice properties of the spectral radius. In particular,
the spectral radius is easy to express as a root of a polynomial, but the joint
spectral radius is much harder to compute. However, there are approximation
algorithms for the joint spectral radius that run in exponential time [1]. Thus we
can always obtain arbitrarily good bounds for the number of (σ, ρ)-dominating
sets in bounded pathwidth.

1dom_pw2_in
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3.2 Forests and trees

Let σ and ρ be two recognizable sets of positive integers and #(σ,ρ)(n) be the
maximal number of (all, 1-minimal, 1-maximal) (σ, ρ)-dominating sets in forests
(or trees) of order n. Then we can use Lemma 9(or Lemmas 18, 21, 11, 19,
22) to �nd an integer m, two vectors v,p ∈ Nm and a set of bilinear maps
A ⊆ (Nm)N

m×Nm

(a singleton for trees and a pair for forests) such that:
If F ⊆ (Nn × N) is the smallest set such that

• (v, 1) ∈ F ,

• for any (w, i), (u, j) ∈ F and Φ ∈ A, (Φ(w,u), i+ j) ∈ F .

then there is a tree (or a forest) of order n that admitsN (1-minimal, 1-maximal)
(σ, ρ)-dominating sets if and only if there exists u such that (u, n) ∈ F and
N = p · u. Thus in particular #σ,ρ(n) = max{p · u : (u, n) ∈ F}. In this
subsection we explain how we compute this quantity.

We say that i-th coordinate is accessible if there is (u, k) ∈ F such that the
i-th coordinate of u is non zero. Let ei be the vector whose ith coordinate is 1
and the others are 0. We de�ne inductively the set of co-accessible coordinates:

• if the i-th coordinate of p is non zero then i is co-accessible,

• if for some φ ∈ A one of the co-accessible coordinate of Φ(ei, ej) is non
zero and the j-th coordinate is accessible then the i-th coordinate is co-
accessible,

• if for some φ ∈ A one of the co-accessible coordinate of Φ(ei, ej) is non
zero and the i-th coordinate is accessible then the j-th coordinate is co-
accessible.

Note that the sets of accessible and co-accessible coordinates can easily be
computed by a recursive algorithm. The motivation of these de�nitions is that
we can ignore coordinates that are not accessible and co-accessible since they
do not in�uence the result.

Let m̃ be the number of accessible and co-accessible coordinates. Let h be
the endomorphism that maps the i-th coordinate to the i-th accessible and co-
accessible coordinate and hT be the endomorphism that maps the i-th accessible
and co-accessible coordinate to the i-th coordinate. Let Ã = {h◦Φ◦ (hT ×hT ) :

Φ ∈ A}, ṽ = h(v) and p̃ = h(p). Finally let F̃ ⊆ (Nn × N) be the smallest set
such that:

• (v, 1) ∈ F̃ ,

• for any (w, i), (u, j) ∈ F̃ and Φ ∈ Ã, (Φ(w,u), i+ j) ∈ F̃ .

We get:
#σ,ρ(n) = max{p̃.u : (u, n) ∈ F̃} .

We can �nally explain how to compute this quantity. For any set of points
X, we denote by conv(X) the convex hull of X. We can now give the following
Theorem:
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Theorem 44. Let α be a positive real, Ã ⊆ (Nm)N
m×Nm

, ṽ ∈ R+m and F̃ be
the smallest set such that:

• (ṽ, 1) ∈ F̃ ,

• for any (w, i), (u, j) ∈ F̃ and Φ ∈ Ã, (Φ(w,u), i+ j) ∈ F̃ .

If there is a bounded set of vectors X ⊆ Rm such that:

• ṽ
α ∈ conv(X),

• ∀x,x′ ∈ X and for any Φ ∈ Ã, Φ(x,x′) ∈ conv(X).

Then for any p ∈ R+m and for all integers n

max
{
|p · u| : (u, n) ∈ F̃

}
≤ αn max

x∈X
|p · x|

Proof. The proof is mostly trivial manipulations on convex sets. First, note
that for any Φ ∈ A, conv({Φ(x, y) : x, y ∈ X}) ⊆ conv(X).

Let us show by induction on the elements of F that for all (u, n) ∈ F̃ ,
u
αn ∈ conv(X). For any (u, n) ∈ F there are two possibilities:

• (u, n) = (ṽ, 1), then by de�nition of F̃ , ṽ
α ∈ conv(X).

• u = Φ(u1,u2) with (u1, i) ∈ F̃ , (u2, j) ∈ F̃ , i + j = n and Φ ∈ Ã.
By induction hypothesis there are two functions f1, f2 : X 7→ [0, 1] such
that:

∑
x∈X f1(x) =

∑
x∈X f2(x) = 1, u1

αi =
∑
x∈X f1(x)x and u2

αj =∑
x∈X f2(x)x. By bilinearity of Φ we get:

u

αn
=

Φ(u1,u2)

αn
= Φ

(u1

αi
,
u2

αj

)
=
∑
x∈X

∑
y∈X

f1(x)f2(y)Φ(x, y)

Moreover,
∑
x∈X

∑
y∈X f1(x)f2(y) = 1 and it implies that u

αn ∈ conv({Φ(x, y) :
x, y ∈ X}) ⊆ conv(X).

Now we know that for all (u, n) ∈ F̃ , u
αn ∈ conv(X). It implies that there

is a function f : X 7→ [0, 1] such that:
∑
x∈X f(x) = 1 and u

αn =
∑
x∈X f(x)x.

Thus |p · u
αn | = |

∑
x∈X f(x)p · x| ≤ maxx∈X |p · x|. We �nally get

|p · u| ≤ αn max
x∈X
|p · x| .

This concludes the proof.

This Theorem is an analogue to Theorem 23 and we can also obtain the
analogue to Corollary 24:

Corollary 45. Let α be a positive real, Ã ⊆ (Nm)N
m×Nm

, ṽ ∈ R+m and F̃ be
the smallest set such that:
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• (ṽ, 1) ∈ F̃ ,

• for any (w, i), (u, j) ∈ F̃ and Φ ∈ Ã, (Φ(w,u), i+ j) ∈ F̃ .

If there is a bounded set of vectors X ⊆ Rm such that:

• ṽ
α ∈ conv≤(X),

• ∀x,x′ ∈ X and for any Φ ∈ Ã, Φ(x,x′) ∈ conv≤(X).

Then for any p ∈ R+m and for all integers n

max
{
|p · u| : (u, n) ∈ F̃

}
≤ αn max

x∈X
|p · x|

Moreover, in the case of forest, we can once again use Lemma 25 to replace
the constant by 1. However, in the case of trees this lemma cannot be applied
since #σ,ρ(n) is not necessarily super-multiplicative (take σ = ρ = {0} then
#σ,ρ(1) = 2, but #σ,ρ(n) = 1 for n > 1).

Once again there is not always such a set X, but in practice we can often
�nd one with the simple following algorithm:

Algorithm 2: Computation of the set X

Data: Ã, ṽ, α
Result: A set X such as in Corollary 24
X := { ṽα};
while {Φ(x,y) : x,y ∈ X,Φ ∈ Ã} 6⊆ conv≤(X) do

X := Hull≤({Φ(x,y) : x,y ∈ X,Φ ∈ Ã} ∪X);

3.2.1 Results and examples

Rote used a similar technique in [5, 6] to count and bound the number of minimal
dominating sets in trees. He showed that the number of minimal dominating
sets of a tree (or a forest) of order n is bounded by 95

n
13 and that it is sharp.

Our technique can be used to reprove this result. We give some examples of
application of the technique:

Independent dominating sets Independent dominating sets are exactly
({0}, {N+})-dominating sets. Applying the method previously described, af-
ter deletion of the useless coordinates we obtain vectors of dimension 3. The 3
states correspond to:

0. v is in D and has no neighbor in D,

1. v is not in D and has no neighbor in D,

2. v is not in D and has at least one neighbor in D.
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The bilinear map Φ̃({0},{N+}) that corresponds to the composition of two
1-distinguished graphs is such that for any u, v ∈ R3:

Φ̃({0},{N+})(u, v) =

 u0(v1 + v2)
u1v2

u1v0 + u2(v0 + v2)


The bilinear map ∆̃({0},{N+}) that corresponds to the union of two 1-distinguished
graphs is such that for any u, v ∈ R3:

∆̃({0},{N+})(u, v) =

u0(v0 + v2)
u1(v0 + v2)
u2(v0 + v2)


The vector v({0},{N+}) = Ψ({0},{N+})(G({x}, ∅), {x}) is: v({0},{N+}) =

1
1
0

 .

Let α =
√

2 and X =


0

0
α
2

 ,

 1
2
0
1
2

 ,

α
2
α
2
0

.

It is clear that
v({0},{N+})

α ∈ conv≤(X) and it is easy to check that for all:

u, v ∈ X, ∆̃({0},{N+})(u, v) ∈ conv≤(X) and Φ̃({0},{N+})(u, v) ∈ conv≤(X). By
Corollary 45, the number of Independent dominating sets in a forest of order n
is at most

√
2
n
. This bound is reached for graphs made of copies of the complete

graph of order 2.
Note that Algorithm 2 does not �nd the set X, but �nd a sequence of set

that converges toward X.
In fact, the bound is also sharp for trees because of the following example

(see �g. 1). For any positive integer n, let Gn({s, s1, . . . , s2n}, {(s, s2i−1) :
i ∈ [1, n]} ∪ {(s2i−1, s2i) : i ∈ [1, n]}). Let D be a set such that for all i,
|S∩{s2i, s2i+1}| = 1 and s ∈ D i� for all i, s2i−1 ∈ S. Then D is an independent
dominating set of Gn. Thus there are at least 2n independent dominating sets
of Gn which is of order 2n+ 1.

s

s1

s2

s3

s4 s2n

s2n−1

Figure 1: Trees with Θ(2
n
2 ) independent dominating sets

Proposition 46. The number of independent dominating sets in forest and
trees is at most 2

n
2 where n is the order of the graph. It is sharp in the sens that

the number of independent dominating sets is at least 2
n
2

2 for in�nitely many
trees.
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Remark, that composition of a 1-distinguished graph g with p2 = (G({1, 2}, {(1, 2)}), 1)
gives:

Φ̃({0},{N+})(Ψ(g),Ψ(p2)) =

1 0 0
0 1 0
0 1 2

Ψ(g).

Composition with p2 correspond to adding 2 vertices and the Perron-Frobenius
eigenvalue of this matrix is 2 while the other two eigenvalues are both 1. It
gives a less combinatorial proof that there are trees with Θ(2

n
2 ) independent

dominating sets. It is not a coincidence since by starting with a single vertex
and composing iteratively with p2 one gets the family of graphs Gn.

Induced matching We know from Proposition 26 that the number of induced
matchings of the path of length n is a θ(αn) where α is the real root of x3−x2−1
between 1 and 2. Using the fact that induced matchings are ({1},N) dominating
sets we can apply our technique and obtain:

Proposition 47. Let α be the real root of x3 − x2 − 1 between 1 and 2, α ≈
1.46557. Then the number of induced matchings in a forest of order n is bounded
by αn. Moreover, this value of α is sharp even for paths.

Total perfect dominating set Total perfect dominating sets are exactly
({1}, {1})-dominating sets. We can compute the two bilinear maps correspond-
ing to union and composition of 1-distinguished graph and they are given by:

Φ̃({1},{1})(u, v) =


u0v2

u0v0 + u1v2
u2(v3)

u2v1 + u3v3

 , ∆̃({1},{1})(u, v) =


u0(v1 + v3)
u1(v1 + v3)
u2(v1 + v3)
u3(v1 + v3)


Using Algorithm 2 with α = 4

1
5 , we can compute a set X of points that

respects the conditions of Corollary 45. It gives the following result:

Proposition 48. The number of total perfect dominating sets of a forest of
order n is upper-bounded by 4

n
5 . This number is reached by disjoint union of

stars on 5 vertices.

This bound is also true, but not sharp for trees:

Proposition 49. Let α = (227 × 7)
1
85 ≈ 1.275157. There exists a positive

constant C such that the number of total perfect dominating sets of a tree of
order n is upper-bounded by Cαn. This value of α is sharp.

Proof. The proof that this bound is correct can be done by �nding a set X
that respects the conditions of Corollary 45. it can be done using Algorithm
2. However, since the computations are terribly long (because of the algebraic
number of high degree) we give the set X in Annex B.

Let G be the graph depicted in �gure 2.
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s1 sls2

s

k1 k2 kl

Figure 2: The graph G used in the construction of trees with αn total perfect
dominating sets

Let D be a perfect total dominating set of this graph. Each leaf of the tree
needs a neighbor in D, so all the ki are in D. This implies that s is not in D,
otherwise the si would have two neighbors in D. Moreover exactly one of the
si must be in D, and then ki is the only other vertex in D in the subtree rooted
in ki. For the other subtrees, exactly one of the leaf of each of them is in D.
Thus there are (4l−1l) perfect total dominating sets.

Now let G′ be a chain of k copies of G where two consecutive copies share
an edge between their roots. Then since the roots cannot be in the perfect total
dominating sets the number of perfect total dominating sets is exactly (4l−1l)k.
For l = 14 it gives (227 × 7)k perfect total dominating sets. In this case the
graph G′ has n = k(6× 14 + 1) = 85k vertices, and αn total perfect dominating
sets.

Perfect code Using that the perfect codes in graphs are the ({0}, {1})-dominating
sets, we deduce the following:

Proposition 50. Any forest of order n admits at most 2
n
2 perfect codes. More-

over, this bound is sharp for unions of paths of order 2.

Once again, we can get a smaller bound for trees.

Proposition 51. Let α = 3
1
7 ≈ 1.16993. There exists a positive constant C

such that the number of perfect codes of a tree of order n is upper-bounded by
Cαn. This value of α is tight.

Proof. The proof that this bound is correct can be done by �nding a set X that
respects the conditions of Corollary 45. it can be done using Algorithm 2.

Let G be the graph depicted in �gure 3.
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Figure 3: The graph G used in the construction of trees with 7
n
3 perfect codes

The number of perfect codes of G is 3 and none of the perfect codes contain
s. The tree obtained by connecting multiple copies of G with a path going
through the copies of s has at least (and in fact exactly) 7

n
3 perfect codes.

4 Conclusion

We explained here a technique to bound the number of (1-minimal, 1-maximal)
(σ, ρ)-dominating sets of graphs of bounded pathwidth, trees or forests when σ
and ρ are recognizable. The technique could be adapted to �nd lower-bounds
(in the case of pathwidth, one can compute the joint spectral subradius of the
same set of matrices), but it doesn't seem to be interesting in general. The main
technique presented here probably cannot work all the time to �nd the minimal
upper-bound.

However, in the case of bounded pathwidth, the computation of these bounds
is equivalent to the computation of the joint spectral radius of some particular
�nite set of computable matrices. It is known that the joint spectral radius can
be approximated, which implies that we can approximate the optimal bound.
We do not have any similar result for trees and forests (and as far as the author
knows there is no notion that �generalizes� the joint spectral radius to bilinear
maps). Thus the �rst question to solve would be:

Problem 1. Given a set of bilinear maps A ⊆ (Nn)N
n×n

, a vector v, a vector
norm ||.|| and F such that:

• (v, 1) ∈ F ,

• for all (u, i), (w, j) ∈ F and Φ ∈ A, (Φ(u,w), i+ j) ∈ F .

Is this possible to approximate limm→∞ (max {||u|| : (u,m) ∈ F})1/m ?

Then there are two directions to try to generalize the technique. Intuitively,
we only need a dynamic programming algorithm that can be described with
�nitely many states and �nitely many (multi)linear maps. We can ask what are
other families of graphs where we can apply a similar technique. For instance,
it is clear that everything works well for bounded tree-width and it seems that
it should work for bounded clique-width. In fact, for clique-width we would
also compute a joint spectral radius. However the dimension of the vectors and
matrices might be to big to be able to do anything.

The last direction is to compute bounds for other kinds of sets.
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Problem 2. Can we apply a similar technique to bounds k-minimal (resp. min-
imal, k-maximal, maximal) (σ, ρ)-dominating sets when σ and ρ are recogniz-
able?

What if the conditions on σ and ρ is weaker?

It seems to be doable for k-minimal and k-maximal, but is not obvious for
minimal and maximal in general. However, it might be the case that for any
recognizable sets σ and ρ, there exists a computable k such that k-minimal
(σ, ρ)-dominating sets are exactly minimal (σ, ρ)-dominating sets.

There is no reason to be restricted to (σ, ρ)-dominating sets. It is easy to
generalize our method to more than 2 sets with constraints on the size of the
intersections of neighborhoods with other sets as long as the allowed degrees are
still recognizable sets. For instance, using 5 di�erent classes one could bound
the number of induced collections of C4. However, a better approach would be
to show that this is doable for any property which is expressible in some given
logic.
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A Annex: C++ code

We give a short description of the C++ code used to generate the sets of opera-
tors and �nd the sets X by applying Algorithm 1 or Algorithm 2. First, remark
that this code requires the library gmp (for e�cient computation on rational
numbers). This library is easy to install on any Linux (and is often natively
installed) and there are many easy solutions for windows (Cygwin and MinGW
for instance).

This code is written in di�erent �les. First there is the �le main.cpp, that
reads the options, and calls the di�erent functions with the right values for σ
and ρ and the class of graphs.

Then two �les are dedicated to the computation of the set of operators:

automaton.hpp: This �le contains the description of the automatons for the
state of a vertex (there are 3 di�erent automatons for enumerating all/minimal/maximal
(σ, ρ)-dominating sets). The automaton is an object that depends on σ
and ρ (given on a format that corresponds to the automatons recognizing
these sets). These objects contain the methods that given the state of a
vertex decides the new state depending on how its neighborhood changes.
There are also two special automatons: one for maximal induced match-
ings and the other for minimal dominating sets in pathwidth 2.

get_operators.hpp: This �le describes three classes that use the automatons
from automaton.hpp to compute the operators for trees, forests, pathwidth
1 and pathwidth 2. It also contains the functions that call the uses the
right class and return the operators and the initial vector. There is also a
special class for the computation of minimal dominating sets in pathwidth
2.

Two other �les are dedicated to the computation of the set X:

algebraic.hpp: This �le implements the class Number that allow us to do ex-
act computation on algebraic numbers. This is standard and relies on
the bijection between the smallest sub�eld of R that contains Q and α
and Q[X]/P (X) where α is an algebraic number of minimal polynomial
P (X). Interval of rationals (that can be computed with arbitrary preci-
sion) are used to solve inequalities. The only non-trivial operation is the
division, but this can be done by using the extended Euclidean algorithm
to compute Bézout coe�cients and obtain the inverse of a polynomial in
Q[X]/P (X).

X_from_operators.hpp: This �le implements Algorithm 1 and Algorithm
2. We use a simple implementation of the simplex algorithm to �nd the
set conv<(S).

When using the program one should specify in the arguments which (σ, ρ)-
dominating sets are to be counted in which graph class. Then before doing
anything the program invites the user to give the growth rate to test (an alge-
braic number) and a possibly empty set of vectors to add to the set X.
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For more details on the implementation, one should look at the code. For
more details on how to use it, one should call the program with the argument
-h.

Remark that most of the computation time is spent inside the function that
computes Hull<. A better implementation of the simplex or another algorithm
computing the Hull< could greatly reduce the execution time. However, we
keep the code as simple as possible on this side to improve checkability.

B Annex: X of Proposition 49

We give the set X mentioned in the proof of Proposition 49:

X =




0
0

2/7
1

 ,


0
0

α6/14
13α6/56

 ,


0
0

α12/56
3α12/56

 ,


0
0

α18/224
11α18/896

 ,


0
0

α24/896
5α24/1792

 ,


0
0

α30/3584
9α30/14336

 ,


0
0

α36/14336
α36/7168

 ,


0
0

α42/57344
α42/32768

 ,


0
0

α48/229376
3α48/458752

 ,


0
0

α54/917504
5α54/3670016

 ,


0
0

α60/3670016
α60/3670016

 ,


0
0

α66/14680064
3α66/58720256

 ,


0
0

α72/58720256
α72/117440512

 ,


0
0

α78/234881024
α78/939524096

 ,


0

α79/939524096
0

α79/234881024

 ,


0

α80/939524096
0

3α80/939524096

 ,


α80/939524096
α80/234881024

0
0

 ,


α81/939524096
3α81/939524096

0
0

 ,


α82/939524096
α82/469762048

0
0

 ,


α83/939524096
α83/939524096

0
0

 ,


α84/939524096

0
α84/939524096

0
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