
Published in Image Processing On Line on 2017–07–18.
Submitted on 2016–10–20, accepted on 2017–03–29.
ISSN 2105–1232 c© 2017 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2017.192

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

Realistic Film Grain Rendering

Alasdair Newson1, Noura Faraj2, Julie Delon3, Bruno Galerne4

1 Télécom ParisTech, France (anewson@telecom-paristech.fr)
2 MAP5, Université Paris Descartes, France (noura.faraj@parisdescartes.fr)
3 MAP5, Université Paris Descartes, France (julie.delon@parisdescartes.fr)

4 MAP5, Université Paris Descartes, France (bruno.galerne@parisdescartes.fr)

Abstract

Film grain is the unique texture which results from the silver halide based analog photographic
process. Film emulsions are made up of microscopic photo-sensitive silver grains, and the
fluctuating density of these grains leads to what is known as film grain. This texture is valued
by photographers and film directors for its artistic value. We present two implementations of a
film grain rendering algorithm based on a physically realistic film grain model. The rendering
algorithm uses a Monte Carlo simulation to determine the value of each output rendered pixel.
A significant advantage of using this model is that the images can be rendered at any resolution,
so that arbitrary zoom factors are possible, even to the point where the individual grains can be
observed. We provide a method to choose the best implementation automatically, with respect
to execution time.

Source Code

The C++ code for this work, as well as an online demo, are available from the web page of the
article1.

Keywords: film grain; texture synthesis; stochastic geometry

1 Introduction

Film grain is an essential phenomenon which contributes to the visual quality of analog images.
Many prominent film directors still shoot their movies in analog film in order to get this unique look,
and amateur photographers often add this film grain to their digital images a posteriori to attenuate
the undesirable “digital” visual aspect. Therefore, a realistic film grain synthesis algorithm is of
clear importance for professionals and amateurs alike. Newson et al. [13] proposed a film grain
model based on the physical photographic process. This model employs a Boolean model from the
stochastic geometry literature to model the film grain. The advantage of the model is that it is defined

1https://doi.org/10.5201/ipol.2017.192

Alasdair Newson, Noura Faraj, Julie Delon, Bruno Galerne, Realistic Film Grain Rendering, Image Processing On Line, 7 (2017),
pp. 165–183. https://doi.org/10.5201/ipol.2017.192

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2017.192
https://doi.org/10.5201/ipol.2017.192
https://doi.org/10.5201/ipol.2017.192
https://doi.org/10.5201/ipol.2017.192

Alasdair Newson, Noura Faraj, Julie Delon, Bruno Galerne

in a continuous domain and the grain can therefore be rendered, via a Monte Carlo simulation, at
any desired resolution.

We describe the implementation of this algorithm, for which we provide precise details. We
describe two distinct implementations of the algorithm which perform differently in terms of execution
time depending upon the input parameters. We perform a theoretical and empirical analysis of the
time complexities of each implementation and propose an empirical solution to choose the fastest
one automatically.

2 The Photographic Process and Previous Work

A photographic film emulsion is made of gelatin in which photosensitive silver halide crystals are
suspended. The photographic process is carried out in two steps: film grain sensitization and devel-
opment. Sensitization refers to exposing the silver halide crystals to incoming photons for a certain
amount of time. When a photon hits a crystal it can, via a reduction reaction, create a tiny amount
of solid silver on the crystal. The crystals which undergo this change are made “developable”, that
is to say they may be turned completely solid, and thus opaque, by a chemical developer. These
two steps produce a negative image. The physical density of the developed grains corresponds to the
gray-level of the final output image. Since the grain blocks light, a photographic image is in fact a
binary function which is equal to 0 in the areas covered by the grains, and equal to 1 otherwise.

The final positive image takes form on photographic (photosensitive) paper. To do this, light is
shone through the negative film onto the photographic paper. During this step, the image is typically
enlarged by a factor of about ten times. After the exposure of the photographic paper, a positive
representation of the original image has been recorded. As a simplification, we shall consider that the
photographic paper is a continuous recording material, even if the photographic paper can contain
its own “grain”. Thus we only consider the grain produced by the original, negative, film.

2.1 Previous Work

The silver-halide photographic process has been extensively studied since the beginning of the twen-
tieth century. Gurney and Mott [7] proposed a comprehensive physical model of the process, which
we have presented above. Nutting [14] was the first to study the statistical properties of the “random
dot model” for film grain, which is strongly linked to the model proposed in [13]. Initially, most of
the work in this area was dedicated to understanding the statistical properties of the grain, such as
the standard deviation of the optical density of the emulsion, which was named the “granularity”
of an emulsion. Another similar quantity is that of Selwyn granularity [20], which is basically the
granularity defined in such a fashion that it is independent of the size of the aperture in which the
granularity is measured. A good summary of these common notions may be found in the paper
of Bayer [2] in the context of the random dot model. Much of the subsequent analog literature is
concerned with proposing mathematical models [3, 10, 19] which imitate the perceived effect of grain
“clumping”. This clumping, or agglomeration, of grains is an essential visual feature of graininess.

In more modern work, the main goal is grain synthesis. The most popular method seems to be to
use real scanned examples of film grain. Film grain synthesis products such as DxO’s “FilmPack”2

and Grubba Software’s “TrueGrain”3 tools take this approach. More precisely, a single grain image
is saved for each film type. Similarly, Schallauer and Mörzinger [16] copy grain from scanned analog
images and synthesize a new grain image from these examples, which they then apply to the image
in an additive fashion. A similar approach is used in the Film Emulation feature of the G’MIC free

2DxO Film Pack 5, 2016. http://www.dxo.com/us/photography/photo-software/dxo-filmpack
3Grubbasoftware TrueGrain, 2015. http://grubbasoftware.com/

166

http://www.dxo.com/us/photography/photo-software/dxo-filmpack
http://grubbasoftware.com/

Realistic Film Grain Rendering

Input pixels (close-up) Inhomogeneous Boolean model

Figure 1: Illustration of inhomogeneous Boolean model. The local intensity λ(y) of the inhomogeneous Boolean model
is chosen to respect the input pixel gray-levels.

software4 using the random phase texture algorithm [5] to synthesize large grain textures from small
stored samples. The Heeger-Bergen texture synthesis [8] algorithm is used by Bae et al. [1] on a
constant gray-level area in an example image to produce film grain. Stephenson and Saunders [17]
filter white noise in the Fourier domain. Yan et al. [22] propose an additive film grain model with
signal-dependent noise. A drawback is that their approach supposes that film grain noise is spatially
uncorrelated, which is clearly unrealistic. Oh et al. [15] propose an auto-regressive model for film
grain removal and synthesis. They point out that spatial correlation is crucial for producing realistic
film grain. However, they consider that an input grainy image is available, and that the characteristics
of the grain may be extracted.

The main disadvantage of these approaches is that the models are not linked to the physical
photographic process. There are several advantages of proposing a physically-based model [13].
Firstly, physically meaningful parameters can be tuned to produce different graininess. Secondly,
there is no “blending” process to add the grain; the image itself results from the grain. Finally, it
is possible to render images at any resolution, which is not the case for example-based algorithms
which scan grain examples at a fixed resolution.

3 Stochastic Film Grain Model and Rendering Algorithm

The goal of the film grain rendering is to imitate the analog photographic process as closely as
possible, in order to produce a realistic grainy image. Newson et al. [13] employ an inhomogeneous
Boolean model [4] to achieve this goal. Here, we analyse this algorithm in depth and provide precise
implementation details so that it is easily reproducible. We start by presenting the model used to
represent film grain: the Boolean model.

3.1 The Boolean Film Grain Model

The Boolean model is a random set denoted by Z, which is the union of a sequence of randomly
distributed disks whose centers {xi} are uniformly distributed in the plane with a Poisson process.

4GREYC’s Magic for Image Computing (G’MIC). http://gmic.eu/

167

http://gmic.eu/

Alasdair Newson, Noura Faraj, Julie Delon, Bruno Galerne

Note that the Boolean model is in fact much more general than this, but we present it in the case
of disks as used in [13]. The radii {ri} of the disks are identically and independently distributed
(i.i.d.), with mean and variance which are independent of the positions {xi}. Thus, the model is in
fact a continuous binary representation of the input image: it is equal to 1 at any point covered by a
disk, and 0 otherwise. This Boolean model is employed to recreate the physical reality of film grain.
The density of the disks is chosen to reflect the local gray-level of the image. In other words, if we
view the model from very “far away” it should average out to maintain the gray-level of the input
digital image. The density is governed by the parameter λ of the Poisson process. Let 1Z(y) denote
the indicator function of Z, equal to 1 when y is covered by Z and 0 otherwise. The probability of
a point y being covered by a disk in a model with constant λ is

P(1Z(y) = 1) = 1− exp(−λE
[

πr21
]

), (1)

where E[πr21] is the average area covered by a disk [18]. An illustration of some Boolean models for
different average gray-levels is shown in Figure 1.

As mentioned above, the parameter λ is chosen to respect the local image gray-level. Let u :
{0, . . . ,m− 1} × {0, . . . , n− 1} ⊂ N

2 → [0, umax] be this discrete input image. Firstly, we normalize

the input image u to the interval [0, 1) by defining ũ(y) = u(y)
umax+ε

, where ε represent a small parameter,
and umax is the maximal possible gray-level value for a given image format. We restrict the image to
[0, 1), since the Boolean model with P(1Z(y) = 1) = 1 would lead to an infinite intensity parameter λ.
In order to respect the gray-level for a given pixel, following Equation (1), the parameter λ is set to

λ(y) =
1

E[πr21]
log

(

1

1− ũ(⌊y⌋)

)

. (2)

This defines a piece-wise constant function λ(·) on the continuous image domain [0,m)× [0, n). Note
that we use the convention that a unit square of R2 corresponds to an input pixel. In particular, the
grain radii ri are expressed with respect to this convention.

A Boolean model with a variable λ is called an inhomogeneous Boolean model. In practical
terms, one simulates the inhomogeneous Boolean model by drawing, for each pixel (i, j), the number
of grains Q from a Poisson distribution of parameter λ(i, j) given by Equation (2). Then the Q

centers xi of the grains are drawn from the distribution U ([i, i+ 1)× [j, j + 1)). Finally, a radius
ri is drawn for each center xi. Newson et al [13] propose the choice of either constant radii or radii
following a log-normal distribution [11]. Throughout the rest of this paper, we refer to the mean and
variance of this grain radius distribution with µr and σ2

r .
To sum up, this inhomogeneous Boolean model represents a binary film grain whose density

respects the gray-level intensity of the input digital image. We note that grain shapes other than
disks can easily be included in the Boolean model, such as triangular grains. However, this does not
significantly impact the visual result, so we do not discuss it here.

3.2 The Filtered Boolean Model

The continuous inhomogenous Boolean model is binary, but a filtering step produces the output gray-
levels. This filtering models the processes which an analog image undergoes before being observed by
a human (photo enlargement, human vision). This filtering step is also very important in producing
the “grainy” effect in the output image. In the grain rendering algorithm, Newson et al. [13] model
this step with a single Gaussian kernel φ of variance σ2. For any continuous point p (expressed in
the input coordinate system), the filtered Boolean model evaluated at that point is given by

v(p) = φ ∗ 1Z(p) =

∫

R2

φ(t)1Z(p− t)dt. (3)

168

Realistic Film Grain Rendering

In theory, this allows us to create an output image on any arbitrary discrete grid. However, we
shall consider that the aspect ratio of the input image is maintained, so that there is a zoom factor
s ∈ (0,+∞) such that the output image size is (sm, sn). In practical terms, this means that to
convert from the input to output coordinate systems, we simply multiply the input coordinates by s.

A final, important, issue in the algorithm is how to evaluate the continuous convolution of the
filter with the random function 1Z , which is not a trivial task. The proposed solution is to use
a Monte Carlo method to approximate the integral needed for this convolution. The Monte Carlo
approach consists in evaluating 1Z for a sequence of N i.i.d. points following a Gaussian distribution
of mean y and of variance σ2. Therefore, the output image at a given point y, expressed in terms of
the output grid (y ∈ {0, . . . ,ms− 1} × {0, . . . , ns− 1}), is defined as

v(y) =
1

N

N
∑

k=1

1Z(
y − ξk

s
), (4)

with ξk ∼ N (0, σ2I2), where I2 represents the identity matrix of size 2 × 2. Note that the filtering
parameter σ2 is expressed in terms of the output pixel size. This is natural, since the filtering is
related to the observed image, and not the underlying model. We divide by s in Equation (4) since
1Z is defined with respect to the input grid. As N increases, according to the law of large numbers
one has

1

N

N
∑

k=1

1Z(
y − ξk

s
) −−−−→

N→+∞
E[1Z(

y − ξ1

s
)] =

∫

R2

1Z(
y − t

s
)φ(

t

s
)dt = v(y), (5)

where φ is the probability density function of the Gaussian distribution N (0, σ2I2). In practice, the
same random offsets ξk are used for each pixel. This avoids drawing random numbers excessively,
which can slow the algorithm down.

4 Algorithmic Details and Implementations

Several important algorithmic choices must be made when implementing the film grain render-
ing approach presented in Section 3. Our algorithm essentially boils down to evaluating v(y) =
1
N

∑N

k=1 1Z(
y−ξk
s

) for each output pixel y. This may also be viewed as averaging a series of binary
images vk which are in turn produced by evaluating the function 1Z over the output grid shifted by
the ξk’s. The exact manner in which this operation is done has considerable practical consequences.

Conceptually, the most straightforward way would certainly be to sample all of the grains, and
then render them on the output image. However, this can require prohibitively large memory storage.
For example, if we suppose a grain radius r = 1

40
, with a high resolution image (2048 × 2048) with

constant gray-level values of 128 everywhere, 35 GB of memory is needed to store the grain positions
and radii with single precision floating point.

Therefore, two different implementations of the rendering algorithm are proposed. Both of these
approaches avoid storing the grain information. The first, which is referred to as the“grain-wise”
algorithm, samples a grain and then determines its effect on each Monte Carlo iteration. For this,
we store N temporary binary images, each of which correspond to one Monte Carlo iteration, and
average them to produce the final output image. The second, which is referred to as the “pixel-
wise” algorithm, renders each output pixel by locally generating the Poisson process {xi, ri} in a
reproducible manner using pseudo-random number generation. We propose two different approaches
since each one has different advantages depending upon the grain parameters used. In what follows,
we explain these algorithms in detail, and we then discuss how to choose the most efficient one
depending on the grain distribution parameters.

169

Alasdair Newson, Noura Faraj, Julie Delon, Bruno Galerne

N translations vector

+

Pixel grain generation

Input image

=((
Image 1

+

Image 1

Image 1 Image

N binary Monte Carlo images

Single grain evaluation on the N images

G
e
n
e
ra

te
d
 g

ra
in

 p
ro

c
e
s
s
in

g

Output image computation

Image

Image Image

Image Image

Continuous

Figure 2: Illustration of the grain-wise algorithm. First, we sample the N Monte Carlo vectors ξk (illustrated with red
dots). We create N binary images (the collection of blue grids in the middle), of the same size as the output image. These
images record the effect of each sampled grain. For each input pixel, we sample the grains of our Boolean model which are
centered inside the considered pixel. The final result is the average of these N binary images.

4.1 Grain-Wise Algorithm

This approach samples each grain sequentially. Once a grain is sampled, its effect on each Monte
Carlo iteration is computed, that is to say whether the grain covers the point y+ξk

s
, for k = 1, . . . , N .

The grain’s information is then discarded. This “influence” is stored in the form of a sequence of
N binary images vk, k ∈ {1 . . . N} (see the blue grids in Figure 2). Each image represents one
Monte Carlo iteration, and a pixel of one of these binary images is set to 1 if at least one grain
covers the center of the pixel. A Monte Carlo iteration consists in evaluating the Boolean model
on the randomly shifted grids (ξk + {0, . . . ,ms − 1} × {0, . . . , ns − 1})1

s
, with ξk ∼ N (0, σ2I2).

Therefore, for each grain drawn, and for each Monte Carlo shift ξk, we determine all the output
pixels y ∈ {0, . . . ,ms − 1} × {0, . . . , ns − 1} in the image vk which verify 1Z(

y−ξk
s

) = 1, in other
words, for the grain q, we evaluate

||
y − ξk

s
− xq|| ≤ rq. (6)

In reality, we only need to check the pixels y ∈ B(xq +
ξk
s
, rq). The output image v is given by the

average of all the images

v(y) =
1

N

N
∑

k=1

vk(y). (7)

This algorithm is fully described in Algorithm 1, and is illustrated in Figure 2.

4.2 Pixel-Wise Algorithm

The second algorithm proposed in [13] is referred to as the “pixel-wise” approach. This method
processes the output pixels independently, and relies on repeatable pseudo-random number (PRN)
generation to access any grain’s information at will. Using a partition of R

2 into disjoint cells,
it is possible to generate the grain information in any cell in a repeatable fashion, meaning that
their information does not have to be stored in memory. By using the coordinates of the cell and
a local PRN generator [21, 9] the number of grains whose centers belong to this cell (and those
grains’ information) can be generated. Our implementation uses the PRN generation employed for
procedural texture generation by Galerne et al. [6].

The pixel-wise algorithm basically asks the following question: for each y ∈ {0, . . . ,ms − 1} ×
{0, . . . , ns− 1}, what is the value of v(y)? For each y, we must average the value of 1Z(

y−ξk
s

) over all

170

Realistic Film Grain Rendering

Algorithm 1 The proposed “grain-wise” film grain rendering algorithm. The loop colored in blue
is parallelized.

Data: u : {0, 1, . . .m− 1} × {0, 1, . . . , n− 1} → [0, umax]: input image
Parameters:
D(µr, σ

2
r): distribution of grain radii

s: output zoom
σ: standard deviation of the Gaussian low-pass filter
N : number of iterations in the Monte Carlo method
Result: v: Synthesized, film grain image

Set up N binary images of size ms× ns and draw N random offsets :
for k = 1 to N do

vk = 0
ξk ← N (0, σ2I2)

foreach (i, j) ∈ {0, . . . ,m− 1} × {0, . . . , n− 1} do

ũ(i, j) = u(i,j)
umax+ε

λ = 1
π(µ2

r+σ2
r)
log 1

(1−ũ(i,j))

Q← Poisson(λ)
Sample xq=1...Q from U ([i, i+ 1)× [j, j + 1))
Sample grain radii rq=1...Q ∼ D(µr, σ

2
r)

for k = 1 to N do

for ℓ = 1 to Q do

t = xℓ +
1
s
ξk

foreach y ∈ {0, . . . , sm− 1} × {0, . . . , sn− 1} s. t. ‖t− y

s
‖2 ≤ rℓ do

vk(y) = 1

foreach y ∈ {0, . . . , sm− 1} × {0, . . . , sn− 1} do
v(y) = 0
for k = 1 to N do

v(y) = v(y) + vk(y)

v(y) = 1
N

v(y)

return(v)

171

Alasdair Newson, Noura Faraj, Julie Delon, Bruno Galerne

N Monte carlo sample evaluation

N translations vector

Output image

Pixel to evaluate

=((+

Output pixel value computation

G
ra

in
 g

e
n
e
ra

tio
n

Pixel 1 Pixel k Pixel N

Input image

Same grain

Overlapping

cells
Cell grid Output pixel

Figure 3: Illustration of the pixel-wise algorithm. At the beginning of the algorithm, we draw the N Monte Carlo offset
vectors {ξk} (red points on the left). The algorithm then evaluates the gray-level for each output pixel (in blue). This is
done by averaging the evaluations of 1Z(y − ξk) for k = 1 . . . N .

the ξk’s (see Equation (4)). This boils down to determining whether each shifted output pixel y− ξk
is covered by at least one grain of the model Z. Crucially, using the cell partition introduced above,
we can access the grains in any given cell. For a constant grain radius, we only need to inspect those
cells which intersect the ball of radius r centered on the point y − ξk. Therefore, we generate the

grains in the cells

{ ⌊

y−ξk
s

−rm

δ

⌋

, . . . ,

⌊

y−ξk
s

+rm

δ

⌋ }

. If we find a grain which covers the position y−ξi
s

,

we increment the output pixel v(y) by one. The final output pixel is therefore given by 1
N
v(y). This

is repeated for each pixel y, however this can be done completely in parallel.

From a practical point of view, we now have three grids: the initial input grid {0, . . . ,m− 1} ×
{0, . . . , n− 1} (the red grid in Figure 3), the cell grid {0, δ, . . . ,m− 1} × {0, δ, . . . n− 1} (in gray as
a subdivision of the input grid) and the output grid {0, 1

s
, . . . ,m− 1} × {0, 1

s
, . . . n− 1} (illustrated

with the blue pixel on the left). The first one defines the Boolean model, the second one defines the
output pixels and the last one is used for the pseudo-random number generation. The cell size δ

is defined such that the cell grid is a subdivision of the input grid, in other words δ = 1
n
for some

integer n. For variable radii, which can take theoretically unbounded values, a maximum possible
radius rm is specified, so that ri ≤ rm, ∀i ∈ N.

The pixel-wise approach is described in detail in the pseudo-code of Algorithm 2 and Algorithm 3,
and is illustrated in Figure 3.

4.3 Comparison and Choice of Algorithm

We have presented two different algorithmic approaches for evaluating the same stochastic model
used in the film grain rendering of [13]. These two approaches have very different advantages and
disadvantages, meaning that they behave very differently in terms of execution when different param-
eters are used (µr, σr, etc.). We now look at the time complexities of the two algorithms. Consider
an output zoom factor of s = 1 and an image ũ = 1

2
everywhere. In the case of the grain-wise

algorithm, for each input pixel, on average λ = log(2)
π(µ2

r+σ2
r)

grains are processed. For each grain, we
must evaluate its effect on N intermediate images, with each evaluation requiring four Euclidean

172

Realistic Film Grain Rendering

Algorithm 2 The proposed “pixel-wise” film grain rendering algorithm. The loop colored in blue
is parallelized.

Data: u : {0, 1, . . .m− 1} × {0, 1, . . . , n− 1} → [0, umax]: input image
Parameters:
D(µr, σ

2
r): distribution of grain radii

rm: maximum radius allowed
s: output zoom
σ: standard deviation of the Gaussian low-pass filter
N : number of iterations in the Monte Carlo method
Result: v: Image rendered with film grain

δ = 1
⌈ 1
µr

⌉

for k = 1 to N do

ξk ← N (0, σ2I2)

foreach y ∈ {0, . . . , sm− 1} × {0, . . . , sn− 1} do

v(y) = 0
for k = 1 to N do

(xg, yg) =
1
s
(y + ξk)

Evaluate 1Z(
1
s
(y + ξk)) :

v(y) = v(y) + EvaluateLocalBooleanIndicator(xg, yg) (see Algorithm 3)

v(y) = 1
N
v(y)

return(v)

Algorithm 3 EvaluateLocalBooleanIndicator: Evaluation of the Boolean model at a point (x, y)

Data: u: input image
(x, y): point to evaluate
Parameters:
D(µr, σ

2
r): distribution of grain radii

δ: cell size
Result: Binary result, whether (x, y) is covered by a ball
foreach (iδ , jδ) ∈ {⌊x−rm

δ
⌋, . . . , ⌊x+rm

δ
⌋} × {⌊ y−rm

δ
⌋, . . . , ⌊ y+rm

δ
⌋} do

ũ = u(δ.iδ ,δ.jδ)
umax+ε

λ = 1
π(µ2

r+σ2
r)
log 1

(1−ũ)

Q← Poisson(λ)

for ℓ = 1 to Q do
Draw the centre of the grain using the cell coordinate (iδ, jδ)
x← δ(iδ, jδ) + U ([0, δ)× [0, δ))
Draw the grain radius using the cell coordinate (iδ, jδ)
r = min(D(µr, σ

2
r), rm)

if ||(x, y)− x||2 < r then
return(1)

return(0)

173

Alasdair Newson, Noura Faraj, Julie Delon, Bruno Galerne

distance calculations. Therefore, the complexity of the grain-wise algorithm is

C0 = mnN
4 log(2)

π(µ2
r + σ2

r)
. (8)

In the case of the pixel-wise algorithm, for each output pixel we evaluate N points y − ξi for the
Monte Carlo simulation. For each y− ξi, we must visit (2⌊p1−α

µr
⌋+1)2 cells which may contain grains

overlapping the point, where p1−α is the (1 − α)th quantile of the grain radius distribution. If we

suppose that δ = µr (which is very often the case), then, on average there are µ2
r log 2

π(µ2
r+σ2

r)
grains in each

cell, and we carry out a Euclidean distance calculation for each grain. Therefore, the complexity of
the pixel-wise algorithm is

C1 = mnN(2⌊
p1−α

µr

⌋+ 1)2
µ2
r log(2)

π(µ2
r + σ2

r)
. (9)

According to this analysis, we have C0 < C1 (the grain-wise algorithm is faster) when

2

µr

< 2⌊
p1−α

µr

⌋+ 1. (10)

This is true when the ratio p1−α

µr
is relatively large. In the degenerate case when σr = 0, we have

p1−α = µr, so that the pixel-wise algorithm clearly has a lower time complexity. However, when µr

is large, the grain-wise algorithm quickly becomes faster. This is intuitively correct, since the larger
the grains are, the less grains the grain-wise algorithm has to process, whereas the computational
load of the pixel-wise algorithm stays the same. To summarize, the complexity comparison depends
on the ratio p1−α

µr
. Let us analyze this ratio

1− α = P (ri ≤ p1−α) = P
(

r2i ≤ p21−α

)

= 1− P
(

r2i ≥ p21−α

)

. (11)

Using Markov’s inequality we have

P
(

r2i ≥ p21−α

)

≤
E[r2i]

p21−α

(12)

≤
σ2
r + µ2

r

p21−α

.

Finally, we have

1− α ≥ 1−
σ2
r + µ2

r

p21−α

(13)

p1−α

µr

≤

√

σ2
r

µ2
r
+ 1

α
.

We observe that, for a fixed α, the ratio p1−α

µr
depends on the ratio σ2

r

µ2
r
. Thus, the complexity of the

pixel-wise algorithm increases with a larger ratio σr

µr
.

Numerical simulations indicate that the pixel-wise algorithm has a lower complexity in the cases
where σr < µr. However, the timings for the actual algorithms show that the grain-wise algorithm
becomes faster at a significantly lower value of σr than theoretically predicted. This is due to several

174

Realistic Film Grain Rendering

0 0.1 0.2 0.3

0.2

0.4

0.6

0.8

Grain-wise

Pixel-wise

Empirical algorithm choice

Figure 4: Illustration of the automatic choice between the grain-wise and pixel-wise algorithms. The two parameter
domains in which each algorithm is applied are shown by two different colors. Generally speaking, the lower the value of
σr, the faster the pixel-wise approach is.

subtleties which are not easy to take into account. The first point concerns grain generation. In
the grain-wise algorithm, all grains are necessarily generated. In the pixel-wise approach, once a
point y − ξk is covered by at least one grain, then the algorithm continues on to the next Monte
Carlo iteration. Thus, in very light areas of an image, where there are many grains, the grain-
wise algorithm will be much slower than the pixel-wise approach. Conversely, if the average µr

and standard deviation σr of the grains are very large, then the grain-wise algorithm will be faster
than the pixel-wise approach. Indeed, there are less grains to generate, which favors the grain-wise
approach, but the pixel-wise approach needs to scan more pixels due to an increased value of rm.
Another factor influencing the time complexities is the amount of random number generation work
required. Indeed, in the grain-wise approach, the quantity Q (the number of grains) is generated
once for each input pixel. In the pixel-wise approach, a Q is generated for each cell of size δ. This
significantly changes the work required by either approach.

To reflect the intricate nature of these time complexities, we base our choice of algorithm on empir-
ical evidence taken from a series of experiments carried out on various images. In these experiments,
we compared the execution times of the grain-wise and pixel-wise algorithms on a series of twenty im-
ages. For each image, and for both algorithms, we varied the parameters µr and

σr

µr
to study the perfor-

mance of the algorithms. In our experiments, µr varied in the set {0.03, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3},
and σr

µr
varied from 0.1 to 0.9 with steps of 0.1. Figure 4 shows the results of these experiments and

the parameter domains in which one algorithm is faster than the other. In the source code provided,
the algorithm choice is taken automatically according to this empirical study.

4.4 Parallelization of Algorithms and Accelerations

Both the grain-wise and pixel-wise algorithm can be parallelized with great ease. In the case of the
grain-wise algorithm, we parallelize over the input pixels. In the case of the pixel-wise algorithm,
we parallelize over the output pixels. The loops which we parallelize are highlighted in blue in
Algorithms 1 and 2. In our code, publicly available on the IPOL website, we parallelize the algorithm
in the described manner using the OpenMP library, if it is available on the machine which compiles
and executes the code.

We have also carried out a thorough analysis of our code using the valgrind tool in order to

175

Alasdair Newson, Noura Faraj, Julie Delon, Bruno Galerne

further decrease execution times and obtain optimal performance. In particular, in the case of the
pixel-wise algorithm, there are several quantities which may be pre-computed to avoid unnecessary
computations. Since the pixel-wise approach potentially scans many cells, we would like to avoid
recomputing the local values of λ, which requires the computation of a log. Therefore, we determine
λ for each possible gray-level value, of which there are 256 in general. Finally, we avoid re-drawing
the Gaussian offset vectors ξk for each output pixel by calculating them once at the beginning of the
algorithm, and using the same for all the output pixels.

4.5 Algorithm Parameters

The variables and parameters of the grain rendering algorithm are summarized in Table 1. The
algorithm contains three main tunable parameters which may be changed by the user to achieve
grains of different visual aspects. The first two are the average grain radius, µr and the grain standard
deviation σr. Increasing µr and σr increases the graininess of the film grain. These parameters are in
units relative to the input image grid, that is to say we consider the input image grid to define a unit
square. The third is the zoom factor which determines the output image size. This can be increased
(or decreased) in order to render the film grain model at different resolutions. As in the case of
the grain radius parameters, the output resolution is relative to the input image. Additionally, it is
possible to render only a part of the image, which is useful when we wish to test extremely large
zooms. Therefore, in our source code, we also allow the parameters (xA, yA), (xB, yB), mout and nout

to be modified. The first two couples of real numbers specify the top left and bottom right limits of
the input image where we wish to render the film grain, and mout and nout represent the number of
rows and columns in the output image.

The rest of the parameters can be considered to be fixed, or best chosen automatically. The
number of samples N in the Monte Carlo simulation can be reduced to increase speed, however this
is at the cost of accuracy. The choice between the grain-wise and pixel-wise algorithm is automatically
determined by the code, however it can also be fixed by the user. The automatic choice is taken
in order to reduce execution time. We take the decision based on empirical experiments comparing
the execution times of the grain-wise and pixel-wise algorithms. The standard deviation σ of the
Gaussian filter is set by default to 0.8 output pixels. This can be modified to produce a more or less
smoothed image, although there are theoretically sound reasons to leave it at the default value [12].
Finally, when we consider variable radii, we set rm (the maximum radius allowed in the pixel-wise
algorithm) to the (1 − α)th quantile of the radius distribution, with α very small. In practice, we
take 1− α = 0.999.

5 Results

We now show some visual results of our film grain rendering algorithm. We have implemented our
code in the C++ programming language.

Figure 5 shows some grain rendering results on two images. We illustrate the algorithm’s capacity
to provide arbitrary zooming on the image, so that the individual grains may be observed. We used
a constant grain radius of µr = 0.1 pixels in these examples.

5.1 Grain Variability

It is important to demonstrate that the film grain model contains parameters which the user can tune
to vary the visual aspect of the grain, and therefore imitate different types of grain. The two main
parameters which determine this aspect are the average grain radius µr and the standard deviation σr

176

Realistic Film Grain Rendering

Symbol Interpretation

u ∈ Rm,n Input image

v ∈ Rsm,sn Output image

s > 0 Output image zoom

µr > 0 Average grain radius (in input pixels)
σr

µr
∈ [0, 1) Standard deviation of grain radius with respect to average radius (in

input pixels)

σ > 0 Standard deviation of the Gaussian filter (in output pixels)

N ∈ N
∗ Number of iterations in the Monte Carlo simulation

ǫ ∈ R Small parameter, for normalization of image to [0, 1), 0.1 gray-levels

rm = p1−α Maximum radius allowed rm, where p1−α is the (1 − α)th quantile of
the radius distribution. α = 0.001

Table 1: Algorithm execution times. In this Table, we list the different variables and parameters and their meaning and
interpretation.

Full resolution (2048× 1536) Zoom 5× Zoom 30×

Full resolution (604× 453) Zoom 5× Zoom 30×

Figure 5: Illustration of film grain rendering at any resolution. The use of a continuous film grain model means that
we are able to render the image at any desired resolution. We specify the input image size to explain the difference in the
size of the disks in the zoomed images.

177

Alasdair Newson, Noura Faraj, Julie Delon, Bruno Galerne

µr = 0.025, σr = 0 µr = 0.05, σr = 0 µr = 0.075, σr = 0 µr = 0.1, σr = 0

µr = 0.025, σr = 1

4
µr µr = 0.05, σr = 1

4
µr µr = 0.075, σr = 1

4
µr µr = 0.1, σr = 1

4
µr

µr = 0.025, σr = 1

2
µr µr = 0.05, σr = 1

2
µr µr = 0.075, σr = 1

2
µr µr = 0.1, σr = 1

2
µr

Figure 6: Film grain texture with varying parameters. In this Figure, we show the effect of varying grain size on the
results of our grain synthesis. We vary the average size of the grains as well as the standard deviation of a log-normal
grain distribution. It can be seen that using either constant or random grain sizes has a significant impact on the rendering
results.

178

Realistic Film Grain Rendering

µr = 0.1 µr = 0.3

µr = 0.1, close-up µr = 0.3, close-up

Figure 7: Increasing film grain radius. We show the effect of increasing the film grain radius on the rendering result.

179

Alasdair Newson, Noura Faraj, Julie Delon, Bruno Galerne

Figure 8: Colour film grain on a modern image. This example shows that film grain can be used for artistic purposes
to give images a vintage look. On the left part of the image is the digital input, on the right is the image with color grain
rendering.

of this radius. As expected, increasing these parameters accentuates the“graininess” of the rendered
result, however, there is also a significant visual difference between constant grain and variable grain.
A series of experiments illustrating this may be seen in Figure 6. In Figure 7, we show the visual
artistic effect achieved by increasing the (constant) grain radius. The radius parameter can therefore
be tuned in order to create a more or less grainy image, depending on the look required by the user.

5.2 Color Photography

We may also wish to produce images with color film grain. Color film emulsions are made of several
layers of normal silver-halide crystal emulsions which are chemically sensitized to different light
wavelengths. It turns out that these crystals are naturally sensitive to blue light, therefore the color
emulsion consists of a top layer of normal grains, followed by a yellow filter (to block blue light)
and two following layers sensitive to green and red light, respectively. Since the grains only react
to incoming photons of a certain color, it is a good approximation to simulate the film grain in
each color channel independently. In summary, color film grain can be obtained by applying grain
independently in each color channel. In Figure 8, we show a more modern image which has had color
grain added to it. This shows that recent images can be rendered to give them a more vintage feel.

5.3 “Dithering” Effect

An interesting effect of adding film grain to a digital image is that certain compression artefacts
can be attenuated. This is linked to a phenomenon known as dithering, where noise is added to
quantized signals in order to reduce this quantization. Since the model of the image which we create
is of a stochastic nature, this effect is visible on our results. An illustration of this effect is shown in
Figure 9. The blocking artefacts due to the jpg compression are drastically reduced.

5.4 Algorithm Limitations

There are several limitations of the presented film grain rendering approach. The first is linked to
the model used. Indeed, while the parameters µr and σr can be tuned to produce results with more
or less graininess, there are certainly some film emulsion types which are difficult to emulate. An

180

Realistic Film Grain Rendering

Input Film grain rendering

Figure 9: Illustration of the “dithering” effect. On the left, a closeup on an image which has been highly compressed
with jpg compression. On the right, the result of our film grain rendering. The blocking artefacts due to the jpg compression
are clearly visible.

example of this limitation can be seen in Figure 10. Another issue with this model is film grain in
dark areas. Indeed, in such areas, there may be only a few grains, which may result in an unrealistic
visual effect. Finally, the algorithm is far from being real-time, which is necessary for use in image
and film post-production. For example, in the case of a 512 × 512 constant image (equal to 128
everywhere), the parallelized grain-wise and pixel-wise algorithms take, respectively, 40 seconds and
2.4 seconds. It is crucial to address this point if the approach presented in this paper is to be widely
used.

6 Conclusion

We have presented a film grain rendering algorithm based on the discrete evaluation of a filtered
Boolean model using a Monte Carlo simulation. We have shown the film grain rendering results
of the algorithm with black and white or color film grain for any digital image at any desired
resolution. We have presented and analyzed two different implementations of this algorithm, which
present different strengths depending upon the situation. We have provided a method to choose
between the two, based on an analysis of the execution times when varying the grain parameters.
We also demonstrate the visual variability of the grain when the parameters are tuned. The code of
this implementation is publicly available at the IPOL website.

Acknowledgements

This work has been partially funded by the French Research Agency (ANR) under grant no. ANR-
14-CE27-001 (MIRIAM). The authors thank Dick Dickerson and Silvia Zawadzki for their invaluable
expertise and for the fruitful discussions we had about analog film.

181

Alasdair Newson, Noura Faraj, Julie Delon, Bruno Galerne

“FilmPack” tool of DxO Result of the Boolean model

Figure 10: Limitation of the film grain model when imitating certain film emulsion types. We used the “FilmPack”
tool of DxO which uses scanned film grain examples. This example is taken from the “Ilford Delta 3200” emulsion type.
The Boolean model does not provide the possibility to imitate the qualitative tendency of the Ilford emulsion to produce
“white” grains rather than dark ones.

Image Credits

All images by Noura Faraj except:

Creative Commons

References

[1] S. Bae, S. Paris, and F Durand, Two-scale tone management for photographic look, in ACM
Transactions on Graphics, vol. 25, 2006. http://dx.doi.org/10.1145/1179352.1141935.

[2] B. E. Bayer, Relation Between Granularity and Density for a Random-Dot Model, Journal of
the Optical Society of America, 54 (1964), pp. 1485–1490. http://dx.doi.org/10.1364/josa.
54.001485.

[3] P. E. Castro, J. H. B. Kemperman, and E. A. Trabka, Alternating renewal model of
photographic granularity, Journal of the Optical Society of America, 63 (1973), pp. 820–825.
http://dx.doi.org/10.1364/josa.63.000820.

[4] S. N. Chiu, Dietrich Stoyan, W. S. Kendall, and J. Mecke, Stochastic geometry and
its applications, John Wiley & Sons, third ed., 2013.

[5] B. Galerne, Y. Gousseau, and J.-M. Morel, Random phase textures: Theory and syn-
thesis, IEEE Transactions on Image Processing, 20 (2011), pp. 257 – 267. http://dx.doi.org/
10.1109/TIP.2010.2052822.

[6] B. Galerne, A. Leclaire, and L. Moisan, Texton noise, Tech. Report 2016-09, MAP5,
2016. http://www.math-info.univ-paris5.fr/~bgalerne/texton_noise/.

182

http://dx.doi.org/10.1145/1179352.1141935
http://dx.doi.org/10.1364/josa.54.001485
http://dx.doi.org/10.1364/josa.54.001485
http://dx.doi.org/10.1364/josa.63.000820
http://dx.doi.org/10.1109/TIP.2010.2052822
http://dx.doi.org/10.1109/TIP.2010.2052822
http://www.math-info.univ-paris5.fr/~bgalerne/texton_noise/

Realistic Film Grain Rendering

[7] R.W. Gurney, The theory of the photolysis of silver bromide and the photographic latent image,
Proceedings of the Royal Society of London, 164 (1938), pp. 151–167. http://dx.doi.org/10.
1098/rspa.1938.0011.

[8] D. J. Heeger and J. R. Bergen, Pyramid-based texture analysis/synthesis, in Proceedings
of the 22nd annual conference on Computer Graphics and Interactive Techniques, 1995, pp. 229–
238. http://dx.doi.org/10.1145/218380.218446.

[9] A. Lagae, S. Lefebvre, G. Drettakis, and P. Dutré, Procedural noise using sparse
Gabor convolution, SIGGRAPH ’09, 28 (2009). https://doi.org/10.1145/1576246.1531360.

[10] W. H. Lawton, E. A. Trabka, and D. R. Wilder, Crowded Emulsions: Granularity
Theory for Multilayers, Journal of the Optical Society of America, 62 (1972), pp. 659–667.
http://dx.doi.org/10.1364/josa.62.000659.

[11] R. Livingston, The Theory of the Photographic Process. By C. E. Kenneth Mees, Journal of
Physical Chemistry, 49 (1945), p. 509. http://dx.doi.org/10.1021/j150443a017.

[12] J.-M. Morel and G Yu, Is sift scale invariant?, Inverse Problems and Imaging, 5 (2011),
pp. 115–136.

[13] A Newson, B. Galerne, and J. Delon, Stochastic modelling and realistic rendering of film
grain, tech. report, Laboratoire MAP5, Université Paris Descartes, France, 2016.

[14] P. G. Nutting, On the absorption of light in heterogeneous media, Philosophical Magazine,
26 (1913), pp. 423–426. http://dx.doi.org/10.1080/14786441308634988.

[15] B. T. Oh, S.-M. Lei, and C.-C. Kuo, Advanced Film Grain Noise Extraction and Synthe-
sis for High-Definition Video Coding, IEEE Transactions on Circuits and Systems for Video
Technology, 19 (2009), pp. 1717–1729. http://dx.doi.org/10.1109/tcsvt.2009.2026974.

[16] P. Schallauer and R. Mörzinger, Film grain synthesis and its application to re-graining,
in Proceedings of the SPIE, vol. 6059, 2006, pp. 60590Z–60590Z–7. http://dx.doi.org/10.

1117/12.650694.

[17] I. Stephenson and A. Saunders, Simulating film grain using the noise-power spectrum, in
Eurographics UK Theory and Practice of Computer Graphics, 2007. http://dx.doi.org/10.
2312/LocalChapterEvents/TPCG/TPCG07/069-072.

[18] Stoyan, Stochastic geometry and its applications, vol. 2, Wiley New York, 1987.

[19] K. Tanaka and S. Uchida, Extended random-dot model, Journal of the Optical Society of
America, 73 (1983), pp. 1312–1319. http://dx.doi.org/10.1364/josa.73.001312.

[20] G. Wernicke, Silver-Halide Recording Materials for Holography and Their Processing,
Zeitschrift für Physikalische Chemie, 187 (1994), pp. 322–323. http://dx.doi.org/10.1524/

zpch.1994.187.part_2.322.

[21] S. Worley, A cellular texture basis function, in SIGGRAPH ’96, ACM, 1996, pp. 291–294.
https://doi.org/10.1145/237170.237267.

[22] J. C. K. Yan, Statistical methods for film grain noise removal and generation, master’s thesis,
University of Toronto, 1997.

183

http://dx.doi.org/10.1098/rspa.1938.0011
http://dx.doi.org/10.1098/rspa.1938.0011
http://dx.doi.org/10.1145/218380.218446
https://doi.org/10.1145/1576246.1531360
http://dx.doi.org/10.1364/josa.62.000659
http://dx.doi.org/10.1021/j150443a017
http://dx.doi.org/10.1080/14786441308634988
http://dx.doi.org/10.1109/tcsvt.2009.2026974
http://dx.doi.org/10.1117/12.650694
http://dx.doi.org/10.1117/12.650694
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG07/069-072
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG07/069-072
http://dx.doi.org/10.1364/josa.73.001312
http://dx.doi.org/10.1524/zpch.1994.187.part_2.322
http://dx.doi.org/10.1524/zpch.1994.187.part_2.322
https://doi.org/10.1145/237170.237267

	Introduction
	The Photographic Process and Previous Work
	Previous Work

	Stochastic Film Grain Model and Rendering Algorithm
	The Boolean Film Grain Model
	The Filtered Boolean Model

	Algorithmic Details and Implementations
	Grain-Wise Algorithm
	Pixel-Wise Algorithm
	Comparison and Choice of Algorithm
	Parallelization of Algorithms and Accelerations
	Algorithm Parameters

	Results
	Grain Variability
	Color Photography
	``Dithering'' Effect
	Algorithm Limitations

	Conclusion

