

 V_{dd}

Session 3: Biasing of MOS Transistors - advanced

Les caractéristiques suivantes seront utilisées sauf en cas d'indication contraire :

$$\mu_{\text{n}}.C_{\text{ox}} = 140 \ \mu\text{A/V}^2$$
; $\mu_{\text{p}}.C_{\text{ox}} = 50 \ \mu\text{A/V}^2$; $V_{\text{tn}} = 0.5 \ \text{V}$; $V_{\text{tp}} = -0.7 \ \text{V}$; $V_{\text{dd}} = 3.3 \ \text{V}$

1. Etude théorique, Polarisation et Dimensionnement

Partie 1: soit le schéma ci-dessous destiné à fournir une tension V_A indépendante de V_{dd} . On considère λ =0, T_1 , T_2 forme un miroir de courant qui impose I_{ds1} = I_{ds2} . Sachant que l'on souhaite utiliser un courant de polarisation de 5 μ A par branche,

- Calculez le rapport de dimensions de T_4 de façon à avoir $V_B=0.7V$.
- Etablir la relation entre V_{gs4}, V_{gs3} et la chute de tension aux bornes de R. Dans le cas où T₃ a un rapport de dimensions 4 fois plus élevé que T₄, calculez R.
- Calculez les dimensions de T_1 et T_2 pour que V_A =0,7V.
- Que se passe-t-il lorsque la tension d'alimentation diminue ? Quelle est la plus petite valeur de V_{dd} pour laquelle le montage fonctionne encore ? Que valent alors les courants $I_{ds}(T_1)$ et $I_{ds}(T_2)$?
- Calculer la transconductance de chacun des transistors (pour V_{dd}=3,3V)

Partie 2: pour la suite du problème, on posera $\left(\frac{W}{L}\right)_3 = k\left(\frac{W}{L}\right)_4$

- Exprimez V_{eff3} en fonction de I_{ds} et $\beta_3 = \frac{\mu_p C_{ox}}{2} \frac{W}{L}\Big|_{T_3}$
- Faites de même pour V_{eff4} puis démontrez que I_{ds} ne dépend que de β_3 , R et k en utilisant la relation entre V_{gs3} , V_{gs4} et RI_{ds} établie dans la première partie.
- \bullet Montrez alors que les transconductances des transistors ne dépendent pas de V_{dd} .
- On considère maintenant $\lambda \neq 0$. En supposant $r_{ds} >> \frac{1}{2} f_{g_m}$, faites un schéma petit-signal du montage pour étudier la sensibilité de I_{ds} et de V_A à V_{dd} . Calculez les sensibilités de $I_{ds}(T_1)$, $I_{ds}(T_2)$ et V_A relatives à une petite variation de V_{dd} en prenant $\lambda_n = 4^{e-3}$ et $\lambda_p = 2^{e-3}$.

2. Travaux Pratiques

Il est nécessaire d'avoir fait la partie 1 ci-dessus avant de commencer les manipulations.

- 1°) Réalisez le montage ci-dessus et vérifiez le point de fonctionnement : I_{ds}(T₁), I_{ds}(T₂), V_A, V_B.
- 2°) Si nécessaire, ajustez les dimensions des transistors :
 - Imposez le V_{gs} du transistor monté en diode à l'aide d'un générateur de tension puis ajustez ses dimensions de façon à avoir le courant I_{ds} souhaité, renouvelez l'opération pour tous les transistors montés en diode.
 - Dimensionnez T₂ à l'identique de T₁ et T₃ avec le rapport de dimensions choisi par rapport à T₄.
 - Effectuez un balayage de valeurs de R de façon à obtenir le point de fonctionnement recherché.
- 3°) Etudiez par la simulation les sensibilités de $I_{ds}(T_1)$, $I_{ds}(T_2)$ et V_A à une petite variation de V_{dd} . Vérifiez qu'il y a une zone stable puis une valeur minimale de V_{dd} pour laquelle le montage n'est plus stabilisé.
- 4°) Etudiez par la simulation la sensibilité de ce montage à la température.
- 5°) Renouveler cette étude pour le montage dual et une tension de sortie de 2,4V.

3. Conclusion

Comparez l'ensemble des résultats obtenus avec les différentes références de tension en faisant le lien entre études théoriques et résultats expérimentaux.

