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Abstract We prove that every planar graph is an intersection graph of strings in the
plane such that any two strings intersect at most once.
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1 Introduction

A string s is a curve of the plane homeomorphic to a segment. A string s has two ends,
the points of s that are not ends of s are internal points of s. Two strings s1 and s2
cross if they have a common point p ∈ s1 ∩ s2 and if going around p, we successively
meet s1, s2, s1, and s2. This means that a tangent point is not a “crossing.” In the
following we consider string sets without tangent points.

In this paper, we consider intersection models for simple planar graphs (i.e., planar
graphs without loops or multiple edges). A string representation of a graph G =
(V ,E) is a set Σ of strings in the plane such that every vertex v ∈ V maps to a string
v ∈ Σ and such that uv ∈ E if and only if the strings u and v cross (at least once).
Similarly, a segment representation of a graph G is a string representation of G in
which the strings are segments.

An abstract of this paper appeared in the Proceedings of the eighteenth annual ACM–SIAM
Symposium on Discrete algorithms (SODA 2007).
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These notions were introduced by Ehrlich et al. [3], who proved the following:

Theorem 1 [3] Planar graphs have a string representation.

In [9], Koebe proved that planar graphs are the contact graphs of disks in the plane.
Note that in this model the curves bounding two adjacent disks are tangent. However
by inflating these circles we obtain string representations for planar graphs. In his
PhD thesis, Scheinerman [10] conjectures a stronger result:

Conjecture 1 [10] Planar graphs have a segment representation.

Hartman et al. [8] and de Fraysseix et al. [4] proved Conjecture 1 for bipartite
planar graphs. Castro et al. [1] proved Conjecture 1 for triangle-free planar graphs.
Recently de Fraysseix and Ossona de Mendez [6] extended this to planar graphs that
have a 4-coloring in which every induced cycle of length 4 uses at most three colors.
Observe that, since parallel segments never cross, a set of parallel segments in a seg-
ment representation of a graph induces a stable set of vertices. The construction in
[4, 8] (resp. [1]) has the nice property that there are only two (resp. three) possible
slopes for the segments. So the construction induces a 2-coloring (resp. 3-coloring)
of G. Note that Castro et al. do not prove the 3-colorability of triangle-free planar
graphs, they use such coloring of the graphs (by Grötzsch’s Theorem) in their con-
struction. West [11] proposed a stronger version of Conjecture 1 in which only four
slopes are allowed, thus using the fact that these graphs are 4-colorable.

Notice that two segments cross at most one point, whereas in the construction
of Theorem 1, strings may cross twice. Let us define a 1-string representation as a
string representation in which any two strings cross at most once. Thus the following
theorem is a step towards Conjecture 1.

Theorem 2 Planar graphs have a 1-string representation.

Note that if we would allow and consider tangent points, this theorem would
directly follow from Koebe’s theorem. Theorem 2 answers an open problem of
de Fraysseix and Ossona de Mendez [5]. In the same article they noticed that The-
orem 2 implies that any planar multigraph has a string representation such that the
number of crossings between two strings equals the number of edges between the
two corresponding vertices.

In the next section we provide some definitions and prove that it is sufficient to
prove this theorem for triangulations. Section 3 is devoted to the study of string rep-
resentations of 4-connected triangulations. In this section we use a decomposition
technique of 4-connected triangulations that is inspired on Whitney’s work [12] and
that was recently used by the second author [7]. Then in Sect. 4 we finally prove
Theorem 2 for all triangulations.
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2 Preliminaries

2.1 Restriction to Triangulations

Lemma 1 Every planar graph is an induced subgraph of some planar triangulation.

Proof Let G be a planar graph embedded in the plane (i.e., a plane graph). The graph
h(G) is obtained from G by adding in every face f of G a new vertex vf adjacent to
every vertex incident to f in G. Notice that h(G) is also a plane graph and that G is
an induced subgraph of h(G). Moreover, h(G) is connected, h(h(G)) is 2-connected,
and h(h(h(G))) is a triangulation.

Note that we have to apply the h operator several times: if a facial walk goes
through the same vertex several times, since multiples edges are not allowed, we
obtain a nontriangular face. !

It is clear that a 1-string representation of a triangulation T induces a 1-string rep-
resentation for any of its induced subgraphs. It is thus sufficient to prove Theorem 2
for triangulations.

2.2 String Representations

In a plane graph G, the unbounded face of G is called the outer-face and every other
face of G is an inner-face of G. An outer-vertex (resp. outer-edge) of G is a ver-
tex (resp. edge) of G incident to the outer-face. The other vertices (resp. edges) of
G are inner-vertices (resp. inner-edges). The set of outer-vertices (resp. outer-edges,
inner-vertices, and inner-edges) of G is denoted by Vo(G) (resp. Eo(G), Vi(G), and
Ei(G)). A near-triangulation is a plane graph in which all the inner-faces are trian-
gles. An edge uv is a chord of some near-triangulation T if uv is an inner-edge linking
two outer-vertices. From now on, we use the following notation: the strings corre-
sponding to vertices of a graph G are denoted by bold letters, i.e., for any v ∈ V (G),
we denote its corresponding string by v. We need that in a 1-string representation of
a plane graph G, each face of G corresponds to some topological region of the string
representation.

Definition 1 Let G = (V ,E) be a plane graph with a 1-string representation Σ .
Given a face abc of G, consider a triplet (a, b, c) of its incident vertices. An (a, b, c)-
region abc is a region of the plane homeomorphic to a disk such that (see Fig. 1):

• For any vertex v #= a, b, and c, we have abc ∩ v = ∅ (i.e., abc intersects only with
a,b, c).

• abc ∩ a ∩ b = ∅, abc ∩ b ∩ c = ∅, and abc ∩ c ∩ a = ∅ (i.e., a,b, c intersect outside
abc).

• Both abc ∩ b and abc ∩ c are connected.
• The boundary of abc successively crosses (clockwise or anticlockwise) a, a, b, b,

c, a, c.
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Fig. 1 An (a, b, c)-region abc

Note that according to this definition, abc ∩ a has two components, and one end
of a is in abc. Note that the order in the triplet (a, b, c) matters: a region τ of the
plane cannot be an (a, b, c)-region and a (c, b, a)-region for example. A region abc
of the plane is an {a, b, c}-region if it is either an (a, b, c)-region, an (a, c, b)-region,
a (b, a, c)-region, a (b, c, a)-region, a (c, a, b)-region, or a (c, b, a)-region. When the
vertices a, b, and c are not mentioned, we call such a region a face-region.

Definition 2 A strong 1-string representation (S-representation, for short) of a near-
triangulation T is a pair (Σ,R) such that:

(1) Σ is a 1-string representation of T .
(2) R is a set of disjoint face-regions such that for every inner-face abc of T , R

contains an {a, b, c}-region.

A partial strong 1-string representation (PS-representation, for short) of a near-
triangulation T is a triplet (Σ,R,F ) in which F ⊆ E(T ) and such that (Σ,R) is a
strong 1-string representation of T without the crossings corresponding to the edges
of F .

In a PS-representation (Σ,R,F ) of T , note that Σ is a 1-string representation of
T \ F and that each inner-face of T has a corresponding face-region in R.

2.3 Special Triangulations

In a near-triangulation T , a separating 3-cycle C is a cycle of length 3 such that some
vertices of T lie inside C, whereas other vertices lie outside. It is well known that a
triangulation is 4-connected if and only if it contains no separating 3-cycle. In [12],
Whitney considered a special family of near-triangulations, it is why we call them
W-triangulations.

Definition 3 A W-triangulation is a 2-connected near-triangulation containing no
separating 3-cycle.

In particular, any 4-connected triangulation is a W-triangulation. Note that since
a W-triangulation has no cut vertex, its outer-edges induce a cycle. The following
lemma gives a sufficient condition for a subgraph of a W-triangulation T to be a
W-triangulation.
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Fig. 2 3-boundary of T

Lemma 2 Let T be a W-triangulation and consider a cycle C of T . The subgraph
induced by the vertices lying on and inside C is a W-triangulation.

Proof Consider the near-triangulation T ′ inside some cycle C of T . By definition,
T has no separating 3-cycle, and consequently T ′ does not have any separating 3-
cycle. Since T ′ is clearly connected and has more than two vertices, we prove that it
is 2-connected by showing that it does not contain any cut vertex.

Since the cycle C delimits the outer-face of T ′, any vertex v ∈ V (T ′) appears
at most once on the outer face. Since the outerface appears at most once around v

and since all its other incident faces are triangles, T ′ contains a path linking all the
neighbors of v. This implies that T ′ \v is connected, and thus T ′ has no cut vertex. !

Definition 4 A W-triangulation T is 3-bounded if the outer-boundary of T is the
union of three paths (a1, . . . , ap), (b1, . . . , bq), and (c1, . . . , cr ) that satisfy the fol-
lowing conditions (see Fig. 2):

• a1 = cr , b1 = ap , and c1 = bq .
• the paths are nontrivial, i.e., p ≥ 2, q ≥ 2, and r ≥ 2.
• there exists no chord aiaj , bibj , or cicj .

Such a 3-boundary of T will be denoted by (a1, . . . , ap)–(b1, . . . , bq)–(c1, . . . , cr ).

In the following, we will use the order on the three paths and their direc-
tions, i.e., (a1, . . . , ap)–(b1, . . . , bq)–(c1, . . . , cr ) will be different from (b1, . . . , bq)–
(c1, . . . , cr )–(a1, . . . , ap) and (ap, . . . , a1)–(cr , . . . , c1)–(bq, . . . , b1).

3 Proof for 4-connected Triangulations

The following property describes the shape of a PS-representation of a 3-bounded
W-triangulation.

Property 1 Consider a 3-bounded W-triangulation T with a 3-boundary (a1, . . . ,

ap)–(b1, . . . , bq)–(c1, . . . , cr ). The W-triangulation T has Property 1 if T has a PS-
representation (Σ,R,F ) contained inside a region τ of the plane homeomorphic to
the disk that satisfies the following properties (see Fig. 3):
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Fig. 3 Property 1

(a) F = Eo(T ) \ {a1a2} (i.e., the missing crossings correspond to the outer edges,
except a1a2).

(b) On the boundary of τ , we successively have the ends of a2,a3, . . . ,ap,b1, . . . ,

bq, c1, . . . , cr.

If going clockwise (resp. anticlockwise) around the boundary of τ , we cross the
strings in the order described in (b), we say that the PS-representation is clockwise
(resp. anticlockwise). Note that by an axial symmetry, one can obtain a clockwise
PS-representation from an anticlockwise PS-representation, and vice versa. Observe
that since ap = b1, bq = c1, and cr = a1, both ends of b1 and c1 lie on the boundary
of τ , but it is not the case for a1 or any other string (i.e., all the strings appearing on
the boundary of τ have an end inside τ except b1 and c1).

Before proving that each 3-bounded W-triangulation has Property 1, we give some
definitions and we present Property 2. Consider a 3-bounded W-triangulation T #= K3
whose boundary is (a1, . . . , ap)–(b1, . . . , bq)–(c1, . . . , cr ) and such that T does not
contain any chord aibj or aicj . Let D ⊆ Vi(T ) be the set of inner-vertices of T that
are adjacent to some vertex ai with i > 1 (the black vertices on the left of Fig. 4).
Since T has at least 4 vertices, no separating 3-cycle, and no chord aiaj , aibj , or
aicj , it follows that a1 and a2 (resp. b1 and b2) have exactly one common neighbor
in Vi(T ) that will be denoted a (resp. d1).

Since there is no chord aiaj , aibj , or aicj , for each vertex ai with i ∈ [2,p − 1],
all the neighbors of ai (resp. ap) except ai−1 and ai+1 (resp. ap−1 and b2) are in D.
Since for each i ∈ [2,p], there is a path linking the neighbors of ai in D and since the
vertices ai and ai+1 have a common neighbor in D, the set D induces a connected
graph. Since a is in D, the set D ∪ {a1} also induces a connected graph.

Definition 5 The adjacent path of T with respect to the 3-boundary (a1, . . . , ap)–
(b1, . . . , bq)–(c1, . . . , cr ) is the shortest path linking d1 and a1 in T [D ∪ {a1}] (the
graph induced by D ∪ {a1}). This path will be denoted (d1, d2, . . . , ds, a1).

Observation 1 There exists neither an edge didj with 2 ≤ i + 1 < j ≤ s nor an edge
a1di with 1 ≤ i < s. Otherwise, (d1, d2, . . . ds, a1) would not be the shortest path
between d1 and a1.
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Fig. 4 The adjacent path of T and the graph Td2a5

Definition 6 For each edge dxay ∈ E(T ) with x ∈ [1, s] and y ∈ [2,p], the graph
Tdxay is the graph lying inside the cycle C = (a1, ds, . . . , dx, ay, . . . , ap, b2, . . . ,
bq, c2, . . . , cr ) (see Fig. 4).

Note that since D ⊆ Vi(T ), C is a cycle, and by Lemma 2, Tdxay is a W-
triangulation. The following property describes the shape of a PS-representation
of Tdxay .

Property 2 Consider a 3-bounded W-triangulation T with a 3-boundary (a1, . . . ,
ap)–(b1, . . . , bq)–(c1, . . . , cr ) that does not have any chord aibj or aicj , and let
(d1, d2, . . . , ds, a1) be its adjacent path. Consider an edge dxay ∈ E(T ) with y > 1.

The W-triangulation Tdxay has Property 2 if Tdxay has a PS-representation
(Σ,R,F ) satisfying the following properties (see Fig. 5):

(a) F = Eo(G) \ {dxay}.
(b) Every string v ∈ Σ \ {dx,ay} is contained in a region τ of the plane homeomor-

phic to the disk. Furthermore, dx and ay have their ends in τ (or on the boundary
of τ ), but they cross each other outside τ .

(c) Each face-region of R is contained inside τ .
(d) On the boundary of τ , we successively have the ends of ay, . . . ,ap,b1, . . . ,bq,

c1, . . . , cr,
a1,ds, . . . ,dx+1, and then we successively have internal points of dx,ay,dx,
and ay.

Here again, if going clockwise (resp. anticlockwise) around the boundary of τ , we
cross the strings in the order described in (d), we say that the PS-representation is
clockwise (resp. anticlockwise). In the proof of Theorem 2, we only use Property 1.
However, in order to prove Property 1, we use Property 2. We prove these two prop-
erties by doing a “crossed” induction.

Proof of Properties 1 and 2

We prove, by induction on m ≥ 3, that the following two statements hold:
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Fig. 5 Property 2

Fig. 6 Initial case for
Property 1

– Property 1 holds if T has at most m edges.
– Property 2 holds if Tdxay has at most m edges.

The initial case, m = 3, is easy to prove since there is only one W-triangulation
having at most 3 edges, K3. For Property 1, we have to consider all the possible
3-boundaries of K3. All these 3-boundaries are equivalent, so let V (K3) = {a, b, c}
and consider the 3-boundary (a, b)–(b, c)–(c, a). In Fig. 6 there is a PS-representation
(Σ,R,F ) of K3 with F = {bc, ac} that fulfills Property 1. For Property 2, since a
W-triangulation Tdxay has at least 4 vertices, a1, b1, c1, and d1, we have Tdxay #= K3,
and there is no W-triangulation Tdxay with at most 3 edges. So by vacuity, Property 2
holds for Tdxay with at most 3 edges.

The induction step applies to both Property 1 and Property 2. This means that we
prove Property 1 (resp. Property 2) for the W-triangulations T (resp. Tdxay ) with m
edges using both Property 1 and Property 2 on W-triangulations with less than m
edges. We first prove the induction for Property 1.

Case 1: Proof of Property 1 for a W-triangulation T with m edges Let (a1, . . . ,
ap)–(b1, . . . , bq)–(c1, . . . , cr ) be the 3-boundary of T considered. We distinguish dif-
ferent cases according to the existence of a chord aibj or aicj in T . We successively
consider the case where there is a chord a1bi with 1 < i < q , the case where there
is a chord aibj with 1 < i < p and 1 < j ≤ q , and the case where there is a chord
aicj with 1 < i ≤ p and 1 < j < r . We then finish with the case where there is no
chord aibj with 1 ≤ i ≤ p and 1 ≤ j ≤ q (by the definition of 3-boundary, T has no
chord a1bq , aib1, or apbj ) and no chord aicj with 1 ≤ i ≤ p and 1 ≤ j ≤ r (by the
definition of 3-boundary, T has no chord apc1, aicr , or a1cj ).
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Fig. 7 Case 1.1: Chord a1bi

Fig. 8 Case 1.1: (Σ,R,F )

Case 1.1: There is a chord a1bi with 1 < i < q (see Fig. 7) Let T1 (resp.
T2) be the subgraph of T that lies inside the cycle (a1, bi, . . . , bq, c2, . . . , cr )

(resp. (a1, a2, . . . , ap, b2, . . . , bi, a1)). By Lemma 2, T1 and T2 are W-triangulations.
Since T has no chord axay , bxby , or cxcy , (bi, a1)–(cr , . . . , c1)–(bq, . . . , bi) (resp.
(a1, . . . , ap)–(b1, . . . , bi)–(bia1)) is a 3-boundary of T1 (resp. T2). Furthermore,
since a1a2 /∈ E(T1) and c1c2 /∈ E(T2), T1 and T2 have less edges than T , and Prop-
erty 1 holds for T1 and T2 with the mentioned 3-boundaries. Let (Σ1,R1,F1) (resp.
(Σ2,R2,F2)) be a clockwise (resp. anticlockwise) PS-representation contained in
the region τ1 (resp. τ2) obtained for T1 (resp. T2) with F1 = Eo(T1) \ {a1bi} (resp.
F2 = Eo(T2) \ {a1a2}). In Fig. 8 we show how to associate these two representations
to obtain (Σ,R,F ), an anticlockwise PS-representation of T contained in τ . Note
that the two strings a1 (resp. bi) from Σ1 and Σ2 have been linked.

We easily verify that (Σ,R,F ) satisfies Property 1:

• Σ is a string representation of T \ F with F = Eo(T ) \ {a1a2}. Indeed, since
V (T1) ∪ V (T2) = V (T ) and V (T1) ∩ V (T2) = {a1, bi}, every vertex v ∈ V (T )

has exactly one string in Σ . Furthermore, since (E(T1) \ F1) ∪ (E(T2) \ F2) =
E(T ) \ F , Σ is a string representation of T \ F .

• Σ is a 1-string representation. The only edge that belongs to both T1 and T2 is
a1bi . Since a1 and bi cross each other in Σ1 (a1bi /∈ F1) but not in Σ2 (a1bi ∈ F2),
a1 and bi cross exactly once in Σ .

• (Σ,R) is “strong”: Each inner-face of T is an inner-face in T1 or T2, and the
regions τ1 and τ2 are disjoint (so the face-regions in τ1 are disjoint from the face-
regions in τ2).

Finally we see in Fig. 8 that point (b) of Property 1 is satisfied.
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Fig. 9 Case 1.2: Chord aibj

Fig. 10 Case 1.2: (Σ,R,F )

Case 1.2: There is a chord aibj with 1 < i < p and 1 < j ≤ q (see Fig. 9) If
there are several chords aibj , we consider one that maximizes j , i.e., there is no
chord aibk with j < k ≤ q . Let T1 (resp. T2) be the subgraph of T that lies inside
the cycle (a1, a2, . . . , ai, bj , . . . , bq, c2, . . . , cr ) (resp. (ai, . . . , ap, b2, . . . , bj , ai)).
By Lemma 2, T1 and T2 are W-triangulations. Since T has no chord axay , bxby ,
cxcy , or aibk with k > j , (a1, . . . , ai)–(ai, bj , . . . , bq)–(c1, . . . , cr ) (resp. (ai, bj )–
(bj , . . . , b1)–(ap, . . . , ai)) is a 3-boundary of T1 (resp. T2). Furthermore, since b1b2 /∈
E(T1) and a1a2 /∈ E(T2), T1 and T2 have less edges than T , and Property 1 holds for
T1 and T2 with the mentioned 3-boundaries. Let (Σ1,R1,F1) (resp. (Σ2,R2,F2)) be
an anticlockwise (resp. clockwise) PS-representation contained in the region τ1 (resp.
τ2) obtained for T1 (resp. T2) with F1 = Eo(T1)\{a1a2} (resp. F2 = Eo(T2)\{aibj }).
In Fig. 10 we show how to associate these two representations to obtain (Σ,R,F ),
an anticlockwise PS-representation of T contained in τ . Note that in this construction
the two strings ai (resp. bj) from Σ1 and Σ2 have been linked.

As in Case 1.1, we easily verify that (Σ,R,F ) satisfies Property 1.

Case 1.3: There is a chord aicj with 1 < i ≤ p and 1 < j < r (see Fig. 11) If
there are several chords aicj , we consider one which maximizes i, i.e., there is no
chord akcj with i < k ≤ p. Let T1 (resp. T2) be the subgraph of T that lies inside
the cycle (a1, a2, . . . , ai, cj , . . . , cr ) (resp. (cj , ai, . . . , ap, b2, . . . , bq, c2, . . . , cj )).
By Lemma 2, T1 and T2 are W-triangulations. Since T has no chord axay , bxby ,
cxcy , or akcj with k > i, (a1, . . . , ai)–(ai, cj )–(cj , . . . , cr ) (resp. (cj , ai, . . . , ap)–
(b1, . . . , bq)–(c1, . . . , cj )) is a 3-boundary of T1 (resp. T2). Furthermore, since b1b2 /∈
E(T1) and a1a2 /∈ E(T2), T1 and T2 have less edges than T , and Property 1 holds for
T1 and T2 with the mentioned 3-boundaries. Let (Σ1,R1,F1) (resp. (Σ2,R2,F2)) be
an anticlockwise PS-representation contained in the region τ1 (resp. τ2) obtained for
T1 (resp. T2) with F1 = Eo(T1) \ {a1a2} (resp. F2 = Eo(T2) \ {cjai}). In Fig. 12 we
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Fig. 11 Case 1.3: Chord aicj

Fig. 12 Case 1.3: (Σ,R,F )

show how to associate these two representations to obtain (Σ,R,F ), an anticlock-
wise PS-representation of T contained in τ . Note that in this construction the two
strings ai (resp. cj) from Σ1 and Σ2 have been linked.

As in Case 1.1, we easily verify that (Σ,R,F ) satisfies Property 1.

Case 1.4: There is no chord aibj with 1 ≤ i ≤ p and 1 ≤ j ≤ q , and no chord aicj

with 1 ≤ i ≤ p and 1 ≤ j ≤ r (see Fig. 13) In this case we consider the adjacent
path (d1, . . . , ds, a1) (see Fig. 4) of T with respect to its 3-boundary, (a1, . . . , ap)–
(b1, . . . , bq)–(c1, . . . , cr ). Consider the edge dsay with 1 < y ≤ p and which min-
imizes y. This edge exists since, by the definition of the adjacent path, ds is adja-
cent to some vertex ay with y > 1. The W-triangulation Tdsay having less edges than
T (a1a2 /∈ E(Tdsay )), Property 2 holds for Tdsay . Let (Σ ′,R′,F ′) be an anticlock-
wise PS-representation almost contained in the region τ ′ obtained for Tdsay , with
F ′ = Eo(Tdsay ) \ {dsay}.

Now we distinguish two cases according to the position of ay : either y = 2
(Case 1.4.1), or y > 2 (Case 1.4.2).

Case 1.4.1: y = 2 In Fig. 14, starting from (Σ ′,R′,F ′), we show how to extend the
string a1 ∈ Σ ′ (in order to cross ds and a2) and how to draw the (a1, a2, ds)-region
a1a2ds to obtain (Σ,R,F ), an anticlockwise PS-representation of T contained in a
region τ .

One can verify on Fig. 14 that (Σ,R,F ) satisfies Property 1.

Case 1.4.2: y > 2 Let us denote by e1, e2, . . . , et the neighbors of ds strictly inside
the cycle (ds, a1, a2, . . . , ay, ds), going “from right to left” (see Fig. 13). By mini-
mality of y we have ei #= aj for all 1 ≤ i ≤ t and 1 ≤ j ≤ y.
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Fig. 13 Case 1.4: No chord aibj or aicj

Fig. 14 Case 1.4.1

Let T1 be the subgraph of T that lies inside the cycle (a1, . . . , ay, e1, . . . , et , a1).
By Lemma 2, T1 is a W-triangulation. Since the W-triangulation T has no separating
3-cycle (ds, a1, ei), (ds, ay, ei), or (ds, ei, ej ), there exists no chord a1ei , ayei , or eiej

in T1. So (a2, a1)–(a1, et , . . . , e1, ay)–(ay, . . . , a2) is a 3-boundary of T1. Finally,
since T1 has less edges than T (a1ds /∈ E(T1)), Property 1 holds for T1 with respect
to the mentioned 3-boundary. Let (Σ1,R1,F1) be a clockwise PS-representation con-
tained in the region τ1 obtained for T1 with F1 = E0(T1) \ {a2a1}.

In Fig. 15, starting from (Σ ′,R′,F ′) and (Σ1,R1,F1), we show how to join the
strings a1 (resp. ay) of Σ ′ and Σ1, how to extend the strings ei for 1 ≤ i ≤ t , and how
to draw the face-regions aye1ds, eta1ds, and eiei−1ds for 2 ≤ i ≤ t , in order to obtain
(Σ,R,F ), an anticlockwise PS-representation of T contained in a region τ .

We verify that (Σ,R,F ) satisfies Property 1:

• Σ is a string representation of T \ F with F = Eo(T ) \ {a1a2}. Indeed, since
V (Tdsay ) ∪ V (T1) = V (T ) and V (Tdsay ) ∩ V (T1) = {a1, ay}, every vertex v ∈
V (T ) has exactly one string in Σ . Furthermore, since E(T ) \ F = (E(Tdsay ) \
F ′)∪ (E(T1) \F1)∪ {aye1, eta1, dsa1} ∪{ eiei−1 | i ∈ [2, t]} ∪ {dsei | i ∈ [1, t]}, Σ

is a string representation of T \ F .
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Fig. 15 Case 1.4.2

• Σ is a 1-string representation. Indeed Tdsay and T1 do not have common edges,
and the new crossings added correspond to edges missing in both E(Tdsay ) \ F ′

and E(T1) \ F1.
• (Σ,R) is “strong”: The only inner-faces of T not in Tdsay nor in T1 are the faces

dsaye1, dsa1et , and dseiei+1 with 1 ≤ i < t . These faces correspond to the new
face-regions.

Finally we see in Fig. 15 that point (b) of Property 1 is satisfied.
So Property 1 holds for any W-triangulation T with m edges, and this concludes

the proof of Case 1.

Case 2: Proof of Property 2 for a W-triangulation Tdxay with m edges Recall that
the W-triangulation Tdxay is a subgraph of a W-triangulation T with 3-boundary
(a1, . . . , ap)–(b1, . . . , bq)–(c1, . . . , cr ). Moreover, T has no chord aibj or aicj , and
its adjacent path is (d1, . . . , ds, a1), with s ≥ 1. We distinguish the case where
dxay = d1ap and the case where dxay #= d1ap .

Case 2.1: dxay = d1ap (see Fig. 16) Let T1 be the subgraph of Td1ap that lies
inside the cycle (a1, ds, . . . , d1, b2, . . . , bq, c2, . . . , cr ). By Lemma 2, T1 is a W-
triangulation. This W-triangulation has no chord bibj , cicj , didj , or a1dj . We con-
sider two cases according to the existence of an edge d1bi with 2 < i ≤ q .

• If T1 has no chord d1bi , then (d1, b2, . . . , bq)–(c1, . . . , cr )–(a1, ds, . . . , d1) is a 3-
boundary of T1.

• If T1 has a chord d1bi with 2 < i ≤ q , note that q > 2 and that there cannot be
a chord b2a1 or b2dj with 1 < j ≤ s (this would violate the planarity of Tdxay ,
see Fig. 16). So in this case, (b2, d1, . . . , ds, a1)–(cr , . . . , c1)–(bq, . . . , b2) is a 3-
boundary of T1.

Finally, since T1 is a W-triangulation with less edges than Td1ap (b1b2 /∈ E(T1)),
Property 1 holds for T1 with respect to at least one of the two mentioned 3-boundaries.
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Fig. 16 Case 2.1:
Tdxay = Td1ap

Fig. 17 Case 2.1: (Σ,R,F )

Whichever 3-boundary we consider, we obtain a PS-representation (Σ1,R1,F1) of
T1 contained in a region τ1, with the same following characteristics:

• F1 = Eo(T ) \ {d1b2},
• in the boundary of τ1, we successively meet the ends of d1, . . . ,ds,a1, cr, . . . , c1,

bq, . . . , b2 (clockwise or anticlockwise).

In Fig. 17 we modify (Σ1,R1,F1), by extending the strings d1 and b2 and by
adding a new string ap and a new face-region d1b2ap. This leads to (Σ,R,F ), a
PS-representation of Td1ap contained in a region τ .

We verify that (Σ,R,F ) satisfies Property 2:

• Σ is a 1-string representation of Td1ap \ F : Indeed, E(Td1ap ) \ F is the disjoint
union of E(T1) \ F1 and {apd1}.

• (Σ,R) is “strong”: The only inner-face of Td1ap that is not an inner-face of T1 is
d1apb2, which corresponds to the new face-region d1apb2.

Finally we see in Fig. 17 that the other points of Property 2 are satisfied.

Case 2.2: Tdxay #= Td1ap In this case we consider an edge dzaw ∈ E(Tdxay ) such
that dzaw #= dxay . Among all the possible edges dzaw , we choose the one that first
maximizes z and then minimizes w. Such an edge necessarily exists, and actually one
can see that dz = dx or dz = dx−1. Indeed, if dx = d1, there is at least one edge d1aw

with w > y, the edge d1ap . If x > 1, it is clear by the definition of the adjacent path
that the vertex dx−1 is adjacent to at least one vertex aw with w ≥ y.
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Fig. 18 Case 2.2.1: z = x and w = y + 1

Fig. 19 Case 2.2.1: (Σ,R,F )

By Lemma 2, Tdzaw is a W-triangulation. Since dxay /∈ E(Tdzaw ), the W-
triangulation Tdzaw has less edges than Tdxay , and so Property 2 holds for Tdzaw . Let
(Σ ′,R′,F ′) be an anticlockwise PS-representation almost contained in the region τ ′

obtained for Tdzaw with F ′ = Eo(Tdzaw ) \ {dzaw}.
We distinguish four cases according to the edge dzaw . When z = x, we consider

the case where w = y+1 and the case where w > y+1. When z = x−1, we consider
the case where w = y and the case where w > y.

Case 2.2.1: Tdxay #= Td1ap , z = x, and w = y + 1 (see Fig. 18) In Fig. 19 we mod-
ify (Σ ′,R′,F ′) by adding a new string ay and a new face-region ayawdx. This leads
to (Σ,R,F ), an anticlockwise PS-representation of Tdxay almost contained in a re-
gion τ .

We verify that (Σ,R,F ) satisfies Property 2:

• Σ is a 1-string representation of Tdxay \ F : Indeed, E(Tdxay ) \ F is the disjoint
union of E(Tdzaw ) \ F ′ and {dxay}.

• (Σ,R) is “strong”: The only inner-face of Tdxay that is not an inner-face of Tdzaw

is dxayaw , which corresponds to the new face-region dxayaw.

Finally we see in Fig. 19 that the other points of Property 2 are satisfied.
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Fig. 20 Case 2.2.2:
Tdxay #= Td1ap , z = x − 1, and
w = y

Fig. 21 Case 2.2.2: (Σ,R,F )

Case 2.2.2: z = x − 1 and w = y (see Fig. 20) In Fig. 21, we modify (Σ ′,R′,F ′)
by extending the string dx and by adding a new face-region dxdzay. This leads to
(Σ,R,F ), an anticlockwise PS-representation of Tdxay almost contained in a re-
gion τ .

We verify that (Σ,R,F ) satisfies Property 2:

• Σ is a 1-string representation of Tdxay \ F : Indeed, E(Tdxay ) \ F is the disjoint
union of E(Tdzaw ) \ F ′ and {dxdz, dxay}.

• (Σ,R) is “strong”: The only inner-face of Tdxay that is not an inner-face of Tdzaw

is dxdzay , which corresponds to the new face-region dxdzay.

Finally we see in Fig. 21 that the other points of Property 2 are satisfied.

Case 2.2.3: z = x and w > y + 1 (see Fig. 22) Let us denote by e1, e2, . . . , et the
neighbors of dx strictly inside the cycle (dx, ay, . . . , aw, dx), going “from right to
left” (see Fig. 22). Since there is no chord aiaj , we have t ≥ 1. Furthermore by
minimality of w we have ei #= aj for all 1 ≤ i ≤ t and y ≤ j ≤ w. Let T1 be the
subgraph of Tdxay that lies inside the cycle (ay, . . . , aw, e1, . . . , et , ay). By Lemma 2,
T1 is a W-triangulation. Since the W-triangulation Tdxay has no separating 3-cycle
(dx, aw, ei) or (dx, ei, ej ), there exists no chord awei or eiej in T1. With the fact that
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Fig. 22 Case 2.2.3:
Tdxay #= Td1ap , z = x, and
w > y + 1

Fig. 23 Case 2.2.3: (Σ,R,F )

t ≥ 1, we know that (et , ay)–(ay, . . . , aw)–(aw, e1, . . . , et ) is a 3-boundary of T1.
Finally, since T1 has less edges than Tdxay (dxay /∈ E(T1)), Property 1 holds for T1
with respect to the mentioned 3-boundary. Let (Σ1,R1,F1) be an anticlockwise PS-
representation contained in the region τ1 obtained for T1 with F1 = E0(T1) \ {etay}.

In Fig. 23, starting from (Σ ′,R′,F ′) and (Σ1,R1,F1), we show how to join the
strings aw of Σ ′ and Σ1, how to extend the string ay and the strings ei for 1 ≤ i ≤ t ,
and how to draw the face-regions ayetdx, e1awdx, and eiei−1dx for 1 < i ≤ t , in
order to obtain (Σ,R,F ), an anticlockwise PS-representation of Tdxay contained in
a region τ .

We verify that (Σ,R,F ) satisfies Property 2:

• Σ is a 1-string representation of Tdxay \ F with F = Eo(Tdxay ) \ {dxay}: Indeed,
E(Tdxay )\F is the disjoint union of E(Tdzaw )\F ′, E(T1)\F1, and {awe1, dxay}∪
{eiei−1 | i ∈ [2, t]} ∪ {dxei | i ∈ [1, t]}.

• (Σ,R) is “strong”: The only inner-faces of Tdxay that are not inner-faces in Tdzaw

or T1 are dxayet , dxawe1, and the faces dxeiei−1 for 2 ≤ i ≤ t , which correspond
to the new face-regions.

Finally we see in Fig. 23 that the other points of Property 2 are satisfied.
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Fig. 24 Case 2.2.4: Tdxay #= Td1ap , z = x − 1, and w > y

Fig. 25 Case 2.2.4: (Σ,R,F )

Case 2.2.4: z = x − 1 and w > y (see Fig. 24) Let us denote by e1, e2, . . . , et the
neighbors of dz strictly inside the cycle (dz, dx, ay, . . . , aw, dz), going “from right to
left” (see Fig. 24). By maximality of z, there is no edge dxaw , so t ≥ 1. Let us denote
by f1, . . . , fu the neighbors of dx strictly inside the cycle (dx, ay, . . . , aw, dz, dx),
going “from right to left” (see Fig. 24). Note that f1 = et and that by minimality
of w, there is no edge dzay , so u ≥ 1.

By minimality of w (resp. maximality of z) we have ei #= aj (resp. fi #= aj ) for
all 1 ≤ i ≤ t (resp. 1 ≤ i ≤ u) and y ≤ j ≤ w. Let T1 be the subgraph of Tdxay that
lies inside the cycle (ay, . . . , aw, e1, . . . , et , f2, . . . , fu, ay). By Lemma 2, T1 is a W-
triangulation. Since the W-triangulation Tdxay has no separating 3-cycle (dz, aw, ei),
(dz, ei, ej ), (dx, fi, fj ), or (dx, fi, ay), there exists no chord awei , eiej , fifj , or
fiay in T1. With the fact that t ≥ 1 and u ≥ 1, we know that (f1, f2, . . . , fu, ay)–
(ay, . . . , aw)–(aw, e1, . . . , et ) is a 3-boundary of T1. Finally, since T1 has less edges
than Tdxay (dxay /∈ E(T1)), Property 1 holds for T1 with respect to the mentioned
3-boundary. Let (Σ1,R1,F1) be an anticlockwise PS-representation contained in the
region τ1 obtained for T1 with F1 = E0(T1) \ {f1f2}.
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Fig. 26 S-representation of T
from (Σ,R,F )

In Fig. 25, starting from (Σ ′,R′,F ′) and (Σ1,R1,F1), we show how to join the
strings aw of Σ ′ and Σ1, how to extend the string dx, ay, the strings ei for 1 ≤ i ≤ t ,
and the strings fi for 2 ≤ i ≤ u, and how to draw the face-regions dzawe1, dzeiei−1
for 2 ≤ i ≤ t , dzdxet, dxfifi−1 for 2 ≤ i ≤ u, and dxayfu in order to obtain (Σ,R,F ),
an anticlockwise PS-representation of Tdxay almost contained in a region τ .

We verify that (Σ,R,F ) satisfies Property 2:

• Σ is a 1-string representation of Tdxay \ F with F = Eo(Tdxay ) \ {dxay}: In-
deed, E(Tdxay ) \ F is the disjoint union of E(Tdzaw ) \ F ′, E(T1) \ F1, and
{dxay, dxdz, awe1, ayfu} ∪{ dzei | i ∈ [1, t]} ∪ {dxfi | i ∈ [1, u]} ∪ {eiei−1 | i ∈
[2, t]} ∪ {fifi−1 | i ∈ [2, u]}.

• (Σ,R) is “strong”: The only inner-faces of Tdxay that are not inner-faces in Tdzaw

or T1 are dzawe1, dzeiei−1 for 2 ≤ i ≤ t , dzdxet , dxfifi−1 for 2 ≤ i ≤ u, and
dxayfu, which correspond to the new face-regions.

Finally we see in Fig. 25 that the other points of Property 2 are satisfied. So, Prop-
erty 2 holds for any W-triangulation Tdxay with m edges, and this completes the proofs
of Properties 1 and 2.

4 Proof in the General Case

Theorem 3 Every triangulation T admits an S-representation (Σ,R).

Proof We prove this result by induction on the number of separating 3-cycles. Note
that any triangulation T is 3-connected and that if T has no separating 3-cycle, then
T is 4-connected and is a W-triangulation. Consequently, if T is a 4-connected trian-
gulation whose outer-vertices are a, b, and c, then T is a W-triangulation 3-bounded
by (a, b)–(b, c)–(c, a). By Property 1, T admits a PS-representation (Σ,R,F ), with
F = {bc, ca}, that is contained in a region τ . Furthermore, in the boundary of τ , we
successively meet the ends of b,b, c, c,a. To obtain an S-representation of T , it is
sufficient to extend a, b, and c outside of τ so that c crosses a and b, as depicted in
Fig. 26.

Suppose now that T is a triangulation that contains at least one separating 3-cycle.
Consider a separating 3-cycle (a, b, c) such that there is no other separating 3-cycle
lying inside. This implies that the triangulation T ′ induced by the vertices on and
inside (a, b, c) is 4-connected.

Let T1 be the triangulation obtained by removing the vertices lying strictly inside
(a, b, c). Let T2 be the subgraph of T induced by the vertices lying strictly inside
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Fig. 27 In the S-representation
(Σ1,R1) of T1, the
(a, b, c)-region abc

Fig. 28 The cases (A) and (B)

(a, b, c) (i.e., T2 = T ′ \ {a, b, c}). In T1, the cycle (a, b, c) is a face of the triangu-
lation and is no more a separating 3-cycle. Thus, T1 has one separating cycle less
than T , and so we have by induction hypothesis that T1 admits an S-representation
(Σ1,R1). This S-representation contains a face-region abc corresponding to the face
abc. Without loss of generality, say that abc is an (a, b, c)-region, as depicted in
Fig. 27.

Since T ′ is a triangulation with at least four vertices, the neighbors of any vertex
v ∈ V (T ′) induce a cycle. Suppose that the vertex a (resp. b and c) has exactly one
neighbor v that lies inside (a, b, c). Then there exists a cycle (b, v, c) (resp. (a, v, c)

and (a, v, b)) in T ′, and consequently v is a neighbor of a, b, and c in T ′. Suppose
that there exists another vertex w in T ′, then w lies either inside the cycle (a, v, b),
inside (a, v, c), or inside (b, v, c), and then one of these cycles is a separating 3-
cycle. This is impossible by definition of (a, b, c). So we can distinguish two cases
(see Fig. 28), (A) the case where T2 is a single vertex, and (B) the case where each of
the vertices a, b, and c has at least two neighbors inside (a, b, c).

Case (A): T2 is a single vertex v To obtain an S-representation (Σ,R) of T (see
Fig. 29), we add a string v in (Σ1,R1). Since E(T )\E(T1) = {va, vb, vc}, this string
v crosses a,b, c. Moreover, we also define three disjoint face-regions acv,vbc,vab
that correspond respectively to the faces acv, vbc, vab.

Since (Σ1,R1) is an S-representation of T1 and since v,acv,vbc,vab are
drawn inside abc, it is clear that (Σ ∪ {v}, (R \ {abc}) ∪ {acv,vbc,vab}) is an S-
representation of T .

Case (B): Each of the vertices a, b, and c has at least two neighbors inside (a, b, c)

There exists a cycle (c, a1, . . . , ap, b) (resp. (a, b1, . . . , bq, c) and (b, c1, . . . , cr , a))
in T ′ whose vertices are exactly the neighbors of a (resp. b and c). We already know
that p > 1, q > 1, and r > 1 and that ap = b1, bq = c1, and cr = a1. Moreover, since
b1 and c (resp. c1 and a, and a1 and b) are the only two common neighbors of a and
b (resp. b and c, and a and c) in T ′ (otherwise there would be a separating 3-cycle),
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Fig. 29 Case (A):
Modifications inside abc

Fig. 30 Case (B):
Modifications inside abc

we have that (a1, . . . , ap = b1, . . . , bq = c1, . . . , cr = a1) is a cycle. This implies by
Lemma 2 that T2 is a W-triangulation.

Suppose that there exists an edge aiaj (resp. bibj , cicj ) with 1 < i + 1 < j ≤
p (resp. 1 < i + 1 < j ≤ q , 1 < i + 1 < j ≤ r). Then, the cycle (a, ai, aj ) (resp.
(b, bi, bj ), (c, ci, cj )) would be a separating 3-cycle of T ′. Consequently, T2 is 3-
bounded by (a1, . . . , ap)–(b1, . . . , bq)–(c1, . . . , cr ). With respect to this 3-boundary,
T2 has an anticlockwise PS-representation (Σ2,R2,F2) with F2 = Eo \ {a1a2} (cf.
Property 1). Let τ2 be a region of abc containing this representation.

Since abc is an (a, b, c)-region, on its boundary we successively cross a,a,b,b, c,
a, and c when going anticlockwise (by doing an axial symmetry if necessary).

In Fig. 30, starting from (Σ1,R1) and (Σ2,R2), we obtain (Σ,R). We extend the
strings a2, . . . ,ap,b1, . . . ,bq, c1, . . . , cr to obtain the crossings that correspond to the
edges in the set E(T )\(E(T1)∪(E(T2)\F2)) = {aai | i ∈ [1,p]}∪{bbi | i ∈ [1, q]}∪
{cci | i ∈ [1, r]} ∪ {aiai+1 | i ∈ [2,p − 1]} ∪ {bibi+1 | i ∈ [1, q − 1]} ∪ {cici+1 | i ∈
[1, r − 1]}. We also define face-regions for the faces in the set {abb1, aca1, bcc1} ∪
{aaiai+1 | i ∈ [1,p − 1]} ∪ {bbibi+1 | i ∈ [1, q − 1]} ∪ {ccici+1 | i ∈ [1, r − 1]}.

Since (Σ1,R1) is an S-representation of T1 and (Σ2,R2,F2) is a PS-representation
of T2, (Σ,R,F ) is an S-representation of T .

• Σ is a 1-string representation of T : Indeed, we added all the crossings correspond-
ing to the edges in E(T ) \ (E(T1) ∪ (E(T2) \ F2)).
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• (Σ,R) is “strong”: Indeed, we added all the face-regions corresponding to the
inner-faces of T that are neither in T1 nor in T2.

Consequently, every triangulation admits an S-representation, which proves The-
orem 3 and then Theorem 2. !

5 Conclusion

The first and the second author recently improved the result presented in this article
by proving Conjecture 1 [2]. For this, they use the same decomposition of triangula-
tion, but their notion of face-region is quite different. One should also mention that
their construction does not correspond to a stretching of the 1-string representation
presented here.

Finally, an interesting question is whether the result presented here holds for other
surfaces. For example, does any graph embedded on a surface S have a 1-string rep-
resentation on S ?
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