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Abstract

We give new bounds on the star arboricity and the caterpillar arboricity of planar graphs with given girth. One of them answers
an open problem of Gyárfás and West: there exist planar graphs with track number 4. We also provide new NP-complete problems.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Many graph parameters in the literature are defined as the minimum size of a partition of the edges of the graph
such that each part induces a graph of a given class C . The most common is the chromatic index χ ′(G), in this case
C is the class of graphs with maximum degree one. Vizing [18] proved that χ ′(G) either equals ∆(G) or ∆(G) + 1,
where ∆(G) denotes the maximum degree of G. Deciding whether χ ′(G) = 3 is shown to be NP-complete for
general graphs in [13]. The arboricity a(G) is another well studied parameter, for which C is the class of forests.
In [15], Nash-Williams proved that:

a(G) = max
H⊆G

⌈
|E(H)|

|V (H)| − 1

⌉
(1)

with the maximum being over all the subgraphs H = (E(H), V (H)) of G. Even with this nice formula, the
polynomial algorithm computing the arboricity of a graph is not trivial [12]. Other similar parameters have been
studied. A star is a tree of diameter at most two. A caterpillar is a tree whose non-leaf vertices form a path. For
the star arboricity sa(G) and the caterpillar arboricity ca(G), the corresponding class C is respectively the class of
star forests and the class of caterpillar forests. Since stars are caterpillars which are trees, and since trees are easily
partitionable into two star forests, we have the following two inequalities for any graph G.

sa(G) ≥ ca(G) ≥ a(G) (2)

2a(G) ≥ sa(G). (3)
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A proper vertex coloring of a graph is acyclic if there is no bicolored cycle. Let χa(G) denote the acyclic chromatic
number of a graph G. Hakimi et al. [11] showed the following relation between χa(G) and sa(G).

Theorem 1 (Hakimi et al.). For any graph G, we have χa(G) ≥ sa(G).

Other interesting graph parameters include the track number t (G) [10,14] and the subchromatic index χ ′sub(G) [6].
For the track number, C is the class of interval graphs. For the subchromatic index, C is the class of graphs whose
connected components are stars or triangles. Notice that the class of triangle-free interval graphs is equivalent to the
class of caterpillar forests. Thus, if G is triangle-free, then t (G) = ca(G) and χ ′sub(G) = sa(G).

Given a tree T , a T -free forest is a forest without subgraphs isomorphic to T . For example, the Pn-free forests and
the K1,n-free forests correspond to, respectively, the forests with diameter at most n− 2 and to the forests with degree
at most n − 1. Given a tree T , the T -free arboricity T - f a(G) of a graph G is the minimum number of T -free forests
needed to cover the edges of G. In this case C is the class of T -free forests. Using this terminology, we can redefine
some of the parameters we introduced. For n ≥ 2, let Sn be the tree arised from K1,n by subdividing each edge
once. The chromatic index, the star arboricity, and the caterpillar arboricity correspond to, respectively, the P3-free
arboricity, the P4-free arboricity, and the S3-free arboricity.

If a tree T1 is a subtree of a tree T2, then T1- f a(G) ≥ T2- f a(G). So, the poset of trees produces a poset
of arboricities. For example, since P4 ⊂ S2 ⊂ S3 ⊂ · · · ⊂ Sn , we have P4- f a(G) ≥ S2- f a(G) ≥ S3-
f a(G) ≥ · · · ≥ Sn- f a(G), for any graph G.

In [11], it is proved that deciding whether a graph G satisfies sa(G) ≤ 2 is NP-complete. We obtain the same result
for a very restricted graph class.

Theorem 2. For any g ≥ 3, deciding whether a bipartite planar graph G with girth at least g and maximum degree
3 satisfies sa(G) ≤ 2 is NP-complete.

This implies that there exist planar graphs of arbitrarily large girth with star arboricity at least 3. This lower bound is
tight for g ≥ 7. Since planar graphs of girth g ≥ 7 are acyclically 3-colorable [1], their star arboricity is at most 3 by
Theorem 1.

As we already mentioned, if G is triangle-free, then sa(G) = χ ′sub(G). So, this theorem answers a question of
Fiala and Le [6].

Corollary 3. Deciding whether a planar graph G satisfies χ ′sub(G) ≤ 2 is NP-complete.

Let us denote by L(G) the line graph of G and by L the class of line graphs of “planar bipartite graphs with
maximum degree three and girth at least six”. Notice that graphs in L are planar with maximum degree four and
line graphs of bipartite graphs, thus perfect [3]. This class of graph is very restricted, it corresponds to planar
(K1,3, K4, K−4 ,C4, odd-hole)-free graphs. The complexity of determining the subchromatic number of a graph is
an interesting question. Deciding whether a graph G satisfies χsub(G) ≤ 2 is NP-complete if G is planar [8] or if G is
perfect [4]. Theorem 2 shows that it is also the case for perfect planar graphs since χ ′sub(G) = χsub(L(G)).

Corollary 4. Deciding whether a graph G ∈ L satisfies χsub(G) ≤ 2 is NP-complete.

A graph is 2-degenerate if all of its subgraphs contain a vertex of degree at most 2.

Theorem 5. Deciding whether a 2-degenerate bipartite planar graph G satisfies sa(G) ≤ 3 is NP-complete.

Shermer [17] proved that it is NP-complete to decide whether a graph G has caterpillar arboricity 2. We generalize
here his result to Sn-free arboricity and consider more restricted graph classes.

Theorem 6. The following problems are NP-complete:

(1) For every n ≥ 2, deciding whether a 2-degenerate bipartite planar graph G satisfies Sn- f a(G) ≤ 3.
(2) For every n ≥ 3, deciding whether a 2-degenerate bipartite planar graph G of girth g ≥ 6 satisfies Sn- f a(G) ≤ 2.

Theorem 6(1) implies the existence of bipartite planar graphs with caterpillar arboricity four and, as we already
mentioned, the track number of a triangle-free graph equals its caterpillar arboricity. It is proved in [10] that deciding
whether a graph G has track number t (G) ≤ k is NP-complete for k = 2 and conjectured that it is also the case for
higher k. Here we proved that it is the case for a restricted family of graphs and for k = 2 or 3.
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Corollary 7. It is NP-complete to decide whether a 2-degenerate bipartite planar graph G satisfy t (G) ≤ 2 (resp.
t (G) ≤ 3).

The interval number i(G) is the smallest k such that every vertex of the graph G can be represented as a set of at
most k intervals of a line and there is an edge uv iff the segments of u and v intersect. Scheinerman and West [16]
proved that the interval number of planar graphs is at most 3 and the first author [9] proved that the caterpillar
arboricity of planar graphs is at most 4. This implies that the maximum track number of planar graphs is either 3 or
4. In [14], Kostochka and West proved that the maximum track number of outerplanar graphs equals their maximum
interval number, 2. We can deduce from Theorem 6(1) that this is not the case for planar graphs, which answers an
open question of Gyárfás and West [10].

Corollary 8. There exist bipartite planar graphs with track number four.

Theorem 6(2) implies that there exist planar graphs of girth g ≥ 6 with caterpillar arboricity at least three. The
next theorem shows that this lower bound is tight.

Theorem 9. For any planar graph G with girth g ≥ 6, ca(G) ≤ 3.

Contrarily to the star arboricity, the caterpillar arboricity of planar graphs with sufficiently large girth is two.

Theorem 10. For any planar graph G with girth g ≥ 10, ca(G) ≤ 2.

In the next section, we define the notion of T - f a coloring, which is needed in the proofs. Sections 3 and 4 are
devoted to the proofs of the upper bounds and of the NP-completeness results, respectively.

2. T -free arboricity and T - f a coloring

We define the T - f a colorings for T = P4 and T = Sn with n ≥ 2.

Definition 11. For T = P4 (resp. T = Sn with n ≥ 2), a k-T - f a coloring of a graph G is a k-edge-coloring of G and
a partial orientation of its edges such that:

- The graph induced by a color class is a T -free forest.
- If the edge uv is colored i and is oriented toward v, then v is a leaf in the i th forest Fi (the T -free forest induced

by the edges colored i).
- The graph induced by the unoriented edges has maximum degree 0 (resp. n − 1).

It is clear that if a graph G has a k-T - f a coloring, then T - f a(G) ≤ k (by the first point of the definition). The
reverse also holds. Indeed, given an edge partition of G into k T -free forests we can construct a k-T - f a coloring of
G. For this, color each edge set with a given color and then orient to a leaf of Fi each edge of Fi incident to leaf. With
this construction, any vertex v incident to an unoriented edge colored i is incident to another edge colored i . So, if
there was a vertex incident to an (resp. to n − 1) unoriented edge(s) colored i , this would contradict the “T -freeness”
of the partition.

If the graph G is k-T - f a colored, for each of its k forests, we distinguish two types of vertices. The ends, which
have an incident arc in this forest oriented toward them, and the inner vertices. A k-T - f a coloring of G is suitable if
every vertex of G is an end in at most one forest (i.e. is an inner vertex in k − 1 or k forests).

3. Upper bounds on the caterpillar arboricity

The maximum average degree mad(G) of a graph G is defined by mad(G) = max{2|E(H)|/|V (H)|, H ⊆ G}.
Since we consider planar graphs, we will use the following well known observation based on Euler’s formula:

Lemma 12. If G is a planar graph with girth at least g, then mad(G) < 2g
g−2 .



D. Gonçalves, P. Ochem / Discrete Mathematics 309 (2009) 3694–3702 3697

Theorems 9 and 10 will be deduced, using this lemma, from a proposition of the form “every graph G of girth at
least g with mad(G) < q = 2g

g−2 has a suitable k-P- f a coloring”. The proof of these propositions is based on the
discharging method, as used in [2]. We consider a graph H of girth at least g that has no suitable coloring and is
minimal for the subgraph partial order. This means that every proper subgraph H ′ of H has a suitable coloring.

First, we provide a set S of configurations that H cannot contain due to its minimality property. To show that a
configuration C ∈ S is forbidden, we suppose that H contains C and then argue that any suitable coloring of some
proper subgraph of H can be extended in a suitable coloring of the whole graph H , which is a contradiction. Then
we have to prove that any graph K avoiding every configuration in S satisfies mad(K ) ≥ q. To do that, we assume
that every vertex v is assigned an initial charge equal to its degree d(v) and we define a discharging procedure that
preserves the total charge of the graph. We then show that if the discharging procedure is applied to a graph K avoiding
S, then the final charge d∗(v) of every vertex v ∈ V (K ) satisfies d∗(v) ≥ q. We thus have

mad(K ) ≥
2|E(K )|
|V (K )|

=

∑
v∈V (K )

d(v)

|V (K )|
=

∑
v∈V (K )

d∗(v)

|V (K )|
≥

q|V (K )|

|V (K )|
= q.

In every figure depicting forbidden configurations, every neighbor of a “white” vertex is drawn, whereas a “black”
vertex may have other neighbors in the graph. Two or more black vertices may coincide in a single vertex, provided
they do not share a common white neighbor.

A simple example of forbidden configuration we use for Theorem 9 and Theorem 10 is the following. If H is
a minimal graph having no suitable k-S3- f a coloring, then its minimum degree δ(H) ≥ 2. If there was a vertex
v ∈ V (H) of degree 0 or 1 it would be easy to extend any suitable k-S3- f a coloring of H \ {v} to H . Before proving
the theorems let us define the k-vertices (resp. ≤k-vertices and ≥k-vertices) as the vertices of degree d = k (resp.
d ≤ k and d ≥ k). Similarly a k-neighbor of v (resp. a ≤k-neighbor and a ≥k-neighbor) is a neighbor of v that is a
k-vertex (resp. a ≤k-vertex and a ≥k-vertex).

3.1. Proof of Theorem 9

Lemma 13. Let H be a minimal graph of girth at least 6 having no suitable 3-S3- f a coloring. Then δ(H) ≥ 2 and
H does not contain a 2-vertex adjacent to a ≤5-vertex.

Proof. Suppose that H contains a 2-vertex u adjacent to both a ≤5-vertex v and a vertex w. Consider a suitable
coloring of H \ {u} into three forests F1, F2, F3. In this coloring, the vertex v is an inner vertex in at least two forests
and has degree at most 4 in H \ {u}. This implies that there is a forest, say F1, in which v is an inner vertex and such
that v is incident to at most 1 unoriented edges of F1. The vertex w is an inner vertex in at least two forests. Let Fi be
one of these forests with i 6= 1. Now we can extend the coloring to H by coloring the edges uv and uw respectively
1 and i , letting uv unoriented, and orienting uw toward u. This S3- f a coloring is suitable since u is just an end in
Fi . �

We apply the following discharging rule to the graph H considered in Lemma 13: each ≥6-vertex gives 1
2 to each

of its 2-neighbors. Let us check that for every v ∈ V (H), d∗(v) ≥ 3:

- d(v) = 2: v has two ≥6-neighbors by Lemma 13, so d∗(v) = 2+ 2 1
2 = 3.

- d(v) = k, 3 ≤ k ≤ 5: the charge of v is unchanged, so d(v) = d∗(v) = k ≥ 3.
- d(v) = k ≥ 6: d∗(v) ≥ k − k 1

2 =
k
2 ≥ 3.

This shows that the maximum average degree of a minimal graph of girth at least 6 having no suitable 3-S3- f a
coloring is at least 3. By Lemma 12, we thus have that every planar with girth at least 6 has a suitable 3-S3- f a
coloring, which proves Theorem 9.

3.2. Proof of Theorem 10

Lemma 14. Let H be a minimal graph of girth at least 10 having no suitable 2-S3- f a coloring. Then δ(H) ≥ 2 and
H does not contain any of the configurations depicted in Fig. 1.
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Fig. 1. Forbidden configurations for Lemma 14.

Proof. We consider each of the configurations:

(i) Suppose H contains the configuration (i) depicted in Fig. 1. Consider a suitable 2-S3- f a coloring of H \ {y}. In
every case, z is an inner vertex in some forest Fi such that z is incident to at most one non-oriented edge colored
i . We can extend this coloring to H such that xy and yz are non-oriented, vx and xy get different colors, and yz
gets color i .

(ii) Suppose H contains the configuration (ii) depicted in Fig. 1. Consider a suitable 2-S3- f a coloring of the graph
H ′ obtained from H by deleting the edge yz. We can always modify this coloring into a suitable 2-S3- f a coloring
of H ′ such that xy is non-oriented and there exists no monochromatic path connecting y to any ui . In every case,
z is an inner vertex in some forest Fi such that z is incident to at most one non-oriented edge colored i . We can
extend this coloring to H such that yz is non-oriented and gets color i . �

A 3-vertex is weak if it has three 2-neighbors. A 2-vertex is weak if is adjacent to a 2-vertex or a weak 3-vertex.
We apply the following discharging rules to the graph H considered in Lemma 14: each ≥4-vertex gives 1

2 to its weak
2-neighbors and 1

4 to its non-weak 2-neighbors, each non-weak 3-vertex gives 1
4 to its 2-neighbors. Let us check that

for every v ∈ V (H), d∗(v) ≥ 5
2 :

- d(v) = 2: if v is weak, then v has a ≥4-neighbor (see Fig. 1(i) and (ii) with m = 2), so d∗(v) = 2 + 1
2 =

5
2 .

Otherwise v receives 1
4 from each neighbor, so d∗(v) ≥ 2+ 2 1

4 =
5
2 .

- d(v) = 3: if v is weak, then d∗(v) = d(v) = 3 > 5
2 . Otherwise v has at most two 2-neighbors, so

d∗(v) ≥ 3− 2 1
4 =

5
2 .

- d(v) = 4: if v has four 2-neighbors, then its 2-neighbors are not weak (see Fig. 1(ii) with m = 3), so
d∗(v) ≥ 4− 4 1

4 = 3 > 5
2 . Otherwise v has at most three 2-neighbors, so d∗(v) ≥ 4− 3 1

2 =
5
2 .

- d(v) = k ≥ 5: d∗(v) ≥ k − k 1
2 =

k
2 ≥

5
2 .

This shows that the maximum average degree of a minimal graph of girth at least 10 having no suitable 2-S3- f a
coloring is at least 5

2 . By Lemma 12, we thus have that every planar with girth at least 10 has a suitable 2-S3- f a
coloring, which proves Theorem 10.

4. NP-completeness results

Theorems 5 and 6(1) are each obtained by a polynomial reduction from the problem 3-COLORABILITY which is
NP-complete on planar graphs with maximum degree 4 [7]. A subcoloring of a graph is a partition of its vertex set such
that each part induces a disjoint union of cliques. Theorems 2 and 6(2) are each obtained by a polynomial reduction
from the problem 2-SUBCOLORABILITY which is NP-complete on triangle-free planar graphs with maximum degree
4 [5,8]. Notice that on triangle-free graphs, a 2-subcoloring corresponds to a vertex partition into two graphs with
maximum degree 1. Let us now describe the reductions for Theorems 5 and 6(1) (resp. Theorems 2 and 6(2). Given
a planar graph (resp. a triangle-free planar graph) G, we construct a graph G ′ that belong to the class specified in the
theorem as follows: we add a “vertex gadget” to every vertex v of G and replace every edge uv of G by an “edge
gadget”. The vertex gadget forces the v to be an inner vertex in at most one forest Fi for any k-T - f a coloring (with
k and T as mentioned in the theorem). The edge gadget is such that G ′ is k-T - f a colorable if and only if G is 3-
colorable (resp. 2-subcolorable). More precisely if G has a vertex coloring c, then G ′ has k-T - f a coloring such that
every original vertex v is an inner vertex in Fc(v), and conversely, if G ′ has a k-T - f a coloring such that every original
vertex v is an inner vertex of Fi , then taking c(v) = i gives a vertex coloring of G.
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Fig. 2. The vertex gadget and its 2-P4- f a colorings.

Fig. 3. The connection between two vertex gadgets.

4.1. Proof of Theorem 2

Let C ′n (resp. P ′n) be the graph obtained from the cycle Cn (resp. the path Pn) by adding, for each vertex v ∈ V (Cn)

(resp. v ∈ V (Pn)), a new vertex v′ and an edge vv′. Note that in a 2-P4- f a coloring, if a vertex v of degree at least
three has an incident edge oriented to v and colored 1, then all the remaining edges incident to v are colored 2 and
are oriented from v to the other end. This implies that in any 2-P4- f a coloring of C ′2n each vertex of degree one is
incident to an edge oriented toward it. The vertex gadget is the graph depicted in Fig. 2 obtained from C ′2n and P ′18n−1.
This graph is bipartite and the size of the vertices in the figure indicate in which set of the bipartition they are. In any
2-P4- f a coloring of the vertex gadget, the edge xy is oriented toward y. This imply that in any of these 2-P4- f a
colorings there is a i ∈ {1, 2} such that at most one of the vertices z2n, z4n, z6n, . . . , z16n (z4 in Fig. 2) is not an end
of Fi . Furthermore, for any j with 1 ≤ j ≤ 8, there is a 2-P4- f a coloring in which the vertex z2 jn is an end of F3−i .
There are also 2-P4- f a colorings of the vertex gadget in which all the vertices z2 jn , for 1 ≤ j ≤ 8, are ends of Fi .

Given a triangle-free planar graph G with maximum degree 4, we construct G ′ by replacing every vertex v of G by
a copy of the vertex gadget, denoted Hv . Every vertex v of G numbers its incident edges from 1 to deg(v) ≤ 4 going
around v in the clockwise sense. For every edge uv of G we connect Hu and Hv in the following way. Let iu (resp.
iv) be the number of uv with respect to u (resp. v). Identify the vertices z(2iu−1)2n and z(2iu)2n of Hu respectively with
the vertices z(2iv)2n and z(2iv−1)2n of Hv . In Fig. 3(a) we have iu = 3 and iv = 1 and the connection of Hu and Hv
is depicted in Fig. 3(b) or (c). The graph G ′ is planar, bipartite, with maximum degree three and may have arbitrary
girth (its girth is 2n). We now have to show that χsub(G) ≤ 2 if and only if sa(G ′) ≤ 2.

Given a 2-subcoloring c of G we obtain a 2-P4- f a coloring of G ′ by coloring each vertex gadget Hu in such way
that most of the vertices z2in are ends in Fc(u). If u has no neighbor v such that c(u) = c(v), then all its vertices z2in
are ends in Fc(u). If u has a neighbor v such that c(u) = c(v), let iu be the number of the edge uv with respect to
u. By definition of a 2-subcoloring u has at most one such neighbor. In this case let the vertex z(2iu)2n be an end in
F3−c(u). This coloring of G ′ is a 2-P4- f a coloring. Indeed, if an edge uv of G is such that c(u) 6= c(v), then we see
in Fig. 3(b) that the 2-P4- f a colorings of Hu and Hv fit. If an edge uv of G is such that c(u) = c(v), then we see in
Fig. 3(c) that the 2-P4- f a colorings of Hu and Hv also fit.
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Fig. 4. The vertex gadget and the edge gadget for the reduction of Theorem 5.

Fig. 5. 3-P4- f a coloring of A with conditions on x1 and x2.

Conversely, given a 2-P4- f a coloring of G ′ we obtain a 2-subcoloring of G by coloring each vertex u of G with
the color i ∈ {1, 2} that verify: most of the vertices z2 jn of Hu are ends of Fi . Since there is at most one vertex z2 jn
that is not an end of Fi , the vertex u has at most one neighbor in G with the same color.

4.2. Proof of Theorem 5

Given a planar graph G, we construct G ′ by adding to every vertex of G the vertex gadget depicted in Fig. 4 and
by subdividing every edge of G. The graph G ′ is clearly planar, bipartite and 2-degenerated.

First, we comment on how to 3-P4- f a color the graph A depicted in Fig. 5. Notice that if a vertex has two incoming
edges colored 1 and 2, all its remaining incident edges have to be colored 3. In the first drawing, we impose that all
the edges xi y j are oriented toward y j . This implies that all the edges yi z j are oriented toward z j , and that we just
used two colors for these edges. This finally implies that all the remaining edges incident to the zi ’s have the same
color, which is not allowed since each color induces a forest. In the second drawing, we impose that just one edge
xi y j is oriented toward x2 and that the edges incident to x1 have the same color, 1. The edges x2 y1 and y2x2 have to
be respectively colored 2 and 3. This implies that the edges y1zi are oriented toward zi and colored 3. This implies
that the edges y2zi are oriented toward zi and colored 2. This finally implies that all the remaining edges incident to
the zi ’s have the same color, which is not allowed. In the third drawing, we impose that just one edge xi y j is oriented
toward x2, that the edges incident to x1 have distinct colors, 1 and 2, and that the edges x1 y2 and x2 y1 have the same
color, 1. This implies that the edges y1zi are oriented toward zi and colored 3. This implies that the edges y2zi are
oriented toward zi and colored 1. This finally implies that all the remaining edges incident to the zi ’s have the same
color, which is not allowed. In the last drawing, we see a 3-P4- f a coloring of A in which only one edge is oriented
toward x2.

This implies that there is not much flexibility for coloring the vertex gadget in Fig. 4. Actually, in any 3-P4- f a
coloring of the vertex gadget, the two edges incident to u have to be oriented toward u and so u is an inner vertex
in exactly one forest. Indeed, if ux1 is oriented toward x1 en colored 3 then one copie of A, say A1, has both edges
x1 y1 and x1 y2 oriented from x1 to the other end. According to the possible 3-P4- f a colorings of A1, this implies that
either x1 is an inner vertex in F1 and F2 and that x2 is an end in F1, either that in A1 both x2 y1 and x2 y2 are oriented
toward x2. In the first case the possible 3-P4- f a colorings of A2 (the second copie of A) are such that x2 is an end in
F2. This implies that ux2 is colored 3 and oriented toward u, which is impossible since ux1 is also colored 3. In the
second case A2 should have only one edge oriented toward x1 and both edges incident to x2 oriented from x2 to the
other end. Such 3-P4- f a coloring of A2 would imply that x2 is an inner vertex in two forests which is impossible.
In any 3-P4- f a coloring of G ′, since any vertex u ∈ V (G) is an inner vertex in exactly one forest, say F1, the edges
incident to u that belong to an edge gadget must be colored 1 and must be oriented toward the subdivision vertex.
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Fig. 6. (a) The graph A, (b) the graph B and (c) the vertex gadget of u.

Thus the edge gadget forces two vertices u and v ∈ V (G) to be inner vertices in distinct forests. Now we show that G
is 3-colorable iff G’ is 3-P4- f a colorable.

Assume that G has a 3-coloring c, then for any vertex u ∈ V (G) we color its vertex gadget in G ′ so that u is an
inner vertex in Fc(u). We then extend this 3-P4- f a coloring to G ′, which is possible since for any uv ∈ E(G) we have
c(u) 6= c(v). Conversely, suppose G ′ has a 3-P4- f a coloring, we color the vertices of G accordingly to the forest for
which they are an inner vertex in the 3-P4- f a coloring of G ′. This produces a 3-coloring of G.

4.3. Proof of Theorem 6(1)

The graph A depicted in Fig. 6(a) is such that in any of its 3-Sn- f a colorings if none of the edges y1z1, y1z2, y2z1
and y2z2 uses a given color, say 3, then one of these edges is not oriented from yi to z j . Furthermore, there is such
3-Sn- f a coloring of A for which only one of these edges is unoriented.
The graph B depicted in Fig. 6(b) is obtained using 2n − 1 copies of A. The restrictions in the possible 3-Sn- f a
colorings of A imply that in any 3-Sn- f a coloring of B one of the edges x1 y1, x1 y2, x2 y1 and x2 y2 is not oriented
from xi to y j . Furthermore, there is a 3-Sn- f a coloring of B where x1 y1, x1 y2 and x2 y1 are oriented toward y j and
respectively colored 1, 2 and 3; and where the edge x2 y2 is unoriented and colored 1.
The graph vertex gadget depicted in Fig. 6(c) is obtained using 6(n − 1) copies of B. The restrictions in the possible
3-Sn- f a colorings of B imply that in any of its 3-Sn- f a colorings, the vertex u is an inner vertex in exactly one forest
(the edges ux1 and ux2 are both oriented toward u).

Given a planar graph G, we construct G ′ by adding to every vertex u of G the vertex gadget and by replacing every
edge uv of G by a cycle (u, xuv, v, yuv) where xuv and yuv are new vertices. The graph G ′ is clearly 2-degenerated,
bipartite and planar. Now we prove that G is 3-colorable iff G ′ is 3-Sn- f a colorable.

If G has a 3-coloring c, for each vertex u ∈ V (G) we 3-Sn- f a color its gadget so that u is an inner vertex in Fc(v).
Then we orient the remaining edges incident to u from u to the other end and we color them c(u). It is clear that for
any edge uv ∈ E(G), since c(u) 6= c(v) the cycle (u, xuv, v, yuv) of G ′ is properly 3-Sn- f a colored. So the graph G ′

is 3-Sn- f a colorable.
Conversely, the restrictions in the possible 3-Sn- f a colorings of a vertex gadget imply that if G ′ is 3-Sn- f a colored
any vertex u ∈ V (G) is an inner vertex in exactly one forest in G ′. We define a 3-coloring c of G so that in G ′ any
vertex u ∈ V (G) is an inner vertex in Fc(u). Since for any cycle (u, xuv, v, yuv) of G ′ the edges incident to u (resp. v)
are colored c(u) (resp. c(v)) then for any edge uv ∈ E(G) we have c(u) 6= c(v). So c is a 3-coloring of G.

4.4. Proof of Theorem 6(2)

Note that there is no 2-Sn- f a coloring of the path (a, b, c, d) where the edges ab and cd are oriented toward b and
c and have distinct colors. This implies that in A, there is a forest, say F1, such that both vertices ai and b j are inner
vertices in F1. This implies that in B, the vertices ai and a j are respectively inner vertices in F2 and F1. This implies
that in C, one of the ai ’s, say a1 (resp. a2), is an inner vertex in F1 (resp. F2) and that a3 is an inner vertex in both F1
and F2. This implies that at least one of the edges u′ai is unoriented. The possible colorings of B also imply that in
every 2-Sn- f a coloring of D where the edges ua1 and ua2 have the same color, one of these edges is unoriented. All
this implies that in the vertex gadget (depicted in the right of Fig. 7), the edge uu′ is colored x ∈ {1, 2} and oriented
toward u and that u is incident to n − 2 unoriented edges colored 3− x .
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Fig. 7. The vertex gadget.

Given a triangle-free planar graph G, we construct G ′ by adding to every vertex u ∈ V (G) the vertex gadget
depicted in Fig. 7, right, and by subdividing every edge of G. A 2-Sn- f a coloring of the vertex gadget forces an
original vertex of G to be an inner vertex in at most one forest, say F1, and tobe incident to at least n − 2 unoriented
edges of F1. We consider now 2-Sn- f a colorings of the edge gadget of an edge uv of G. If u and v are inner vertices
in distinct forests, then we can 2-Sn- f a color the edges of the edge gadget and orient them toward the subdivision
vertex. If u and v are inner vertices in the forest F1, then both edges of the edge gadget have to be unoriented edges
colored 1. Thus u and v are now incident to n − 1 unoriented edges of F1. This shows that G has a 2-subcoloring if
and only if G ′ has a 2-Sn- f a coloring.
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