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Abstract

A proper vertex coloring of a graphG = (V, E) is acyclic if G contains no bicolored cycle.
A graphG is L-list colorable if for a given list assignmentL = {L(v) : v ∈ V }, there exists
a proper coloringc of G such thatc(v) ∈ L(v) for all v ∈ V . If G is L-list colorable for every
list assignment with|L(v)| ≥ k for all v ∈ V , thenG is saidk-choosable. A graph is said to
be acyclicallyk-choosable if the obtained coloring is acyclic. In this paper, we study the links
between acyclick-choosability ofG andMad(G) defined as the maximum average degree of
the subgraphs ofG and give some observations about the relationship between acyclic coloring,
choosability and acyclic choosability.

1 Introduction

Let G be a graph. LetV (G) be its set of vertices andE(G) be its set of edges. A proper vertex
coloring ofG is an assignmentf of integers (or labels) to the vertices ofG such thatf(u) 6= f(v) if
the verticesu andv are adjacent inG. A k-coloring is a proper vertex coloring usingk colors. A pro-
per vertex coloring of a graph isacyclicif there is no bicolored cycle. Theacyclic chromatic number
of G, χa(G), is the smallest integerk such thatG is acyclicallyk-colorable. Acyclic colorings were
introduced by Grünbaum in [Grü73] and studied by Mitchem [Mit74], Albertson, Berman [AB77],
and Kostochka [Kos76]. In 1979, Borodin proved Grünbaum’s conjecture :

Theorem 1 [Bor79] Every planar graph is acyclically 5-colorable.

This bound is best possible : In 1973, Grünbaum gave an example of a 4-regular planar graph
[Grü73] which is not acyclically colorable with four colors. Moreover, there exist bipartite 2-degenerate
planar graphs which are not acyclically 4-colorable [KM76](see Figure 1).

FIG. 1 – Grünbaum’s example and Kostochka-Mel’nikov’s example.
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Borodin, Kostochka and Woodall improved this bound for planar graphs with a given girth. We
recall that the girth of a graph is the length of its shortest cycle.

Theorem 2 [BKW99]

1. Every planar graph with girth at least 7 is acyclically 3-colorable.

2. Every planar graph with girth at least 5 is acyclically 4-colorable.

A graphG is L-list colorable if for a given list assignmentL = {L(v) : v ∈ V (G)} there exists
a coloringc of the vertices such thatc(v) ∈ L(v) andc(v) 6= c(u) if u andv are adjacent inG.
If G is L-list colorable for every list assignment with|L(v)| ≥ k for all v ∈ V (G), thenG is said
k-choosable. In [Tho94], Thomassen proved that every planargraph is 5-choosable and Voigt proved
that there are planar graphs which are not 4-choosable [Voi93]. In the following, we are interested
in the acyclic choosability of graphs. In [BFDFK+02], the following theorem is proved and the next
conjecture is given :

Theorem 3 [BFDFK+02] Every planar graph is acyclically 7-choosable.

This means that for any given list assignmentL such that∀v ∈ V, |L(v)| ≥ 7, we can choose
for each vertexv a color inL(v) such that the obtained coloring ofG is acyclic. Theacyclic list
chromatic numberof G, χl

a(G), is the smallest integerk such thatG is acyclicallyk-choosable.

Conjecture 1 [BFDFK+02] Every planar graph is acyclically 5-choosable.

Conjecture 1 is very strong, since it implies the celebratedresult of Borodin (Theorem 1), and we
know that its proof is tough.

A first observation can be made concerning outerplanar graphs :

Proposition 1 Every outerplanar graph is acyclically 3-choosable.

Since outerplanar graphs are partial 2-trees, Proposition1 follows from the following easy result :

Proposition 2 Everyk-tree is acyclically(k + 1)-choosable.

We can consider Proposition 2 as a counterpart for acyclic choosability of the following well-
known fact :

Proposition 3 Everyk-degenerate graph is(k + 1)-choosable.

Now, we will prove that some sparse graphs verify the property of Conjecture 1. For this, we recall
a graph invariant : the maximum average degree.

Definition 1 LetG be a graph, the maximum average degree ofG, denoted byMad(G) is :

Mad(G) = max{2|E(H)|/|V (H)|, H j G}

Notice that the maximum average degree of a graph can be computed in polynomial time by using
the Matroid Partitioning Algorithm due to Edmonds [Edm65, SU97].

Our main result is the following :

Theorem 4

1. Every graphG with Mad(G) < 8
3 is acyclically 3-choosable.

2. Every graphG with Mad(G) < 19
6 is acyclically 4-choosable.

3. Every graphG with Mad(G) < 24
7 is acyclically 5-choosable.
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We can apply these results to planar graphs by using the following well known observation based
on the Euler’s formula :

Observation 1 If G is a planar graph with girthg, thenMad(G) < 2g

g−2 .

Corollary 1

1. Every planar graph with girth at least 8 is acyclically 3-choosable.

2. Every planar graph with girth at least 6 is acyclically 4-choosable.

3. Every planar graph with girth at least 5 is acyclically 5-choosable.

In the following, we prove Theorem 4.1 in section 3, Theorem 4.2 in section 4 and Theorem 4.3
in section 5. In section 6, we give some hints for new directions of research and section 7 provides
some observations about the relationship betweenχa, χl andχl

a.

2 Proof technique

In what follows, we call respectivelyk-vertex,≥k-vertex and≤k-vertex a vertex of degreek,
≥ k, ≤ k. We denote byc(x) the color assigned to the vertexx. A d(k)-vertex is ad-vertex adjacent
to at leastk 2-vertices. The proof of Theorem 4 is based on the method ofreducible configurations
and on thedischarging method, as used in [BKN+99]. To obtain a result of the form “every graphG
with Mad(G) < q is acyclicallyn-choosable”, we proceed as follows : We consider a graphH that
is not acyclicallyn-choosable and is minimal for the subgraph partial order. This means that for every
proper subgraphH ′ of H , χl

a(H ′) ≤ n. First, we provide a setS of configurations thatH cannot
contain due to its minimality property. To show that a configurationC ∈ S is forbidden, we suppose
thatH containsC and we considerH together with a list assignmentL witnessing thatχl

a(H) > n.
We then argue that an acyclic coloringc (chosen fromL) of some proper subgraph ofH can be
extended in a acyclic coloring (chosen fromL) of the whole graphH , which is a contradiction. Now,
we have to prove that any graphK avoidingS satisfiesMad(K) ≥ q. We assume that every vertex
v is assigned an initial charge equal to its degreed(v) and define a suitabledischarging procedure
that preserves the total charge. We show that if the discharging procedure is applied to a graphK
avoidingS, then the final charged∗(v) of every vertexv ∈ V (K) satisfiesd∗(v) ≥ q. We thus have

Mad(K) ≥
2|E(K)|

|V (K)|
=

∑
v∈V (K) d(v)

|V (K)|
=

∑
v∈V (K) d∗(v)

|V (K)|
≥

q|V (K)|

|V (K)|
= q.

In all the figures depicting forbidden configurations, all the neighbors of “white” vertices are drawn,
whereas “black” vertices may have other neighbors in the graph. Two or more black vertices may
coincide in a single vertex, provided they do not share a common white neighbor.

3 Proof of Theorem 4.1

We prove now that every graphG with Mad(G) < 8/3 is acyclically 3-choosable.

3.1 Forbidden configurations

Lemma 1 Letn ≥ 3 and letH be a minimal graph such thatχl
a(H) > n. ThenH does not contain

1. ad-vertex adjacent to a clique of sized (0 ≤ d ≤ n − 1),

2. ad(d)-vertex(2 ≤ d ≤ n2 − 1),

3. ad(d − 1)-vertex(2 ≤ d ≤ (n − 1)2),

4. ad(2)-vertex(2 ≤ d ≤ n),

5. ad(1)-vertex(2 ≤ d ≤ n − 1).
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FIG. 2 –(i) : A d(d)-vertex. (ii) : A d(d − 1)-vertex. (iii) : A d(2)-vertex.

Proof

1. Trivial.

2. Suppose thatH contains ad(d)-vertexw adjacent tod 2-verticesv1, . . . , vd. Each vertexvi

is adjacent tow and to another vertexui, 1 ≤ i ≤ d (see Figure 2(i)). The verticesui are
not necessarily distinct. Letc be a coloring ofH \ {w, v1, . . . , vd}. Sinced ≤ n2 − 1 and
|L(w)| = n, the pigeonhole principle ensures that somej ∈ L(w) is used at mostn− 1 times
to color theui. We setc(w) = j. If c(ui) 6= j, we can choosec(vi) in L(vi) \ {c(ui), j} since
|L(vi)| = n ≥ 3. The number ofvi such thatc(ui) = j is at mostn − 1, so we can give these
vi distinct colors different fromj.

3. Suppose thatH contains ad(d−1)-vertexw adjacent to(d−1) 2-verticesv1, . . . , vd−1 and to
another vertexz. Each vertexvi is adjacent tow and to another vertexui, 1 ≤ i ≤ d − 1 (see
Figure 2(ii)). Letc be a coloring ofH\{w, v1, . . . , vd−1}. Note that we have|L(w)\{c(z)}| ≥
n − 1 andd − 1 ≤ (n − 1)2 − 1. We setc(w) = j wherej ∈ L(w) \ {c(z)} is used at most
n − 2 times to color theui. If c(ui) 6= j, we can choosec(vi) in L(vi) \ {c(ui), j} since
L(vi) = n ≥ 3. The number ofvi such thatc(ui) = j is at mostn − 2, so we can give these
vi distinct colors different fromj andc(z).

4. Suppose thatH contains ad(2)-vertexw adjacent toz1, . . . , zd−2, and to two 2-verticesv1, v2

that are adjacent respectively tou1, u2 (see Figure 2(iii)). We assumen ≥ 4 since the case
n = 3 is implied by Lemma 1.3. Letc be a coloring ofH \ {w, v1, v2}.

4.1 If thec(zi) are pairwise distinct, we choosec(w) ∈ L(w) \ {c(z1), . . . , c(zd−2), c(u1)}
and c(v1) ∈ L(v1) \ {c(w), c(u1)}. If c(w) = c(u2), we choosec(v2) ∈ L(v2) \
{c(z1), . . . , c(zd−2), c(w)} ; otherwise we choosec(v2) ∈ L(v2) \ {c(w), c(u2)}.

4.2 If the c(zi) are not pairwise distinct, we consider a coloringc of H \ {v1, v2} and
assume w.l.o.g. thatc(z1) = c(z2). If c(w) = c(u1), we choosec(v1) ∈ L(v1) \
{c(z2), . . . , c(zd−2), c(w)}, otherwise we choosec(v1) ∈ L(v1) \ {c(u1), c(w)}. If
c(w) = c(u2), we choosec(v2) ∈ L(v2) \ {c(z2), . . . , c(zd−2), c(v1), c(w)}, otherwise
we choosec(v2) ∈ L(v2) \ {c(u2), c(w)}.

5. The proof is similar (and simpler) to that of Lemma 1.4.

✷

It follows that the minimum degree ofH is at least 2 and that no 2-vertex is in a triangle.

3.2 Discharging procedure

We use the following discharging rule : Each vertex gives1
3 to each of its 2-neighbors. Let us

check that for everyv ∈ V (H), d∗(v) ≥ 8
3 :

– If d(v) = 2, thend∗(v) = 2 + 2 1
3 = 8

3 , sincev has no 2-neighbor by Lemma 1.3 andv
receives1

3 from each neighbor.
– If d(v) = 3, thend∗(v) ≥ 3 − 1

3 = 8
3 , sincev has at most one 2-neighbor by Lemma 1.3, so

it gives at most13 .
– If d(v) = k ≥ 4, thend∗(v) ≥ k − k 1

3 = 2k
3 ≥ 8

3 becausev gives at mostk times 1
3 .
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4 Proof of Theorem 4.2

We prove now that every graphG with Mad(G) < 19/6 is acyclically 4-choosable.

4.1 Forbidden configurations

Lemma 2 Letn ≥ 4 and letH be a minimal graph such thatχl
a(H) > n. ThenH does not contain

1. a 5(3)-vertex adjacent to a 3-vertex,

2. a 3-vertex adjacent to two 3-vertices.

Proof

w

z′1

z′′1

z2

u1

u2

u3

v1

v2

v3

z1

FIG. 3 – A 5(3)-vertex adjacent to a 3-vertex.

1. Suppose thatH contains a 5(3)-vertexw adjacent to three 2-verticesv1, v2, v3 (each adjacent
to another vertexui), a 3-vertexz1 (adjacent toz′1 andz′′1 ) and another vertexz2 (see Figure
3). Let c be a coloring ofH \ {v1}. If c(u1) 6= c(w), we give a proper color tov1. Now, we
assume thatc(u1) = c(w) = 1 :
1.1 If c(z1) 6= c(z2), we erase the colors ofv2, v3 and we modify the color ofw : In L(w) \

{c(z1), c(z2)}, there is a color which appears on at most one ofu1, u2, u3 ; we choose
this color forw. Then, we give a color different fromc(z1), c(z2), c(w) to the vertexvj

(if it exists) whose neighbors have the same color (c(w)) and we give a proper color to
the othervi.

1.2 If c(z1) = c(z2) and w.l.o.g.,c(z1) = 2. Observe thatL(v1) contains 1 and 2 ; otherwise,
we can colorv1 with a color different from 1,2 andc(v2), c(v3). We assume w.l.o.g. that
L(v1) = {1, 2, 3, 4}. If we cannot colorv1 this implies thatc(u1) = c(u2) = c(u3) = 1,
c(v2) = 3, c(v3) = 4 andc(z1) = 2.

1.2.1 Ifc(z′1) 6= c(z′′1 ), we modify the colors ofz1, w and give proper colors tov1, v2, v3 :
c(z1) ∈ L(z1) \ {c(z

′
1), c(z

′′
1 ), 2}, c(w) ∈ L(w) \ {c(z1), c(z2), 1}.

1.2.2 If c(z′1) = c(z′′1 ), we modify the color ofw with a color different from 1, 2,c(z′1)
and give proper colors tov1, v2, v3.

w

z

u′
1

u1 u2

u′
2

v2v1

u1 u2

u3

v1 v2

v3

FIG. 4 – A 3-vertex having two 3-neighbors.

2. First suppose thatH contains a 3-vertex adjacent to two adjacent 3-vertices (see Figure 4, left).
Let c be a coloring ofH \ {v1, v2, v3}. We can choosec(v1) in L(v1) \ {c(u1), c(u2), c(u3)},
c(v2) in L(v2) \ {c(v1), c(u2), c(u3)}, and thenc(v3) in L(v3) \ {c(v1), c(v2), c(u3)}. Now
suppose thatH contains a 3-vertexw adjacent to two 3-verticesv1, v2 (each adjacent tou1, u

′
1

andu2, u
′
2) and to another vertexz (see Figure 4, right). Letc be a coloring ofH \ {w}. We

have to consider the following cases :
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2.1 c(v1), c(v2) andc(z) are pairwise distinct. We colorw with a proper color.

2.2 c(v1) = c(v2) 6= c(z). W.l.o.g., suppose thatc(v1) = c(v2) = 2 andc(z) = 1. Observe
that L(w) contains 1 and 2 ; otherwise, we colorw with a color different from 1 or 2
and different fromc(u1), c(u

′
1). Assume thatL(w) = {1, 2, 3, 4}. If we cannot color

w, this implies that{c(u1), c(u
′
1)} = {c(u2), c(u

′
2)} = {3, 4}. As well, observe that

L(v1) = L(v2) = {1, 2, 3, 4} ; otherwise, we modify the color ofv1 (or v2) with a color
different from 1,2,3,4 to get case 2.1. Hence, we recolorv1 andv2 with 1 and colorw
with 2.

2.3 c(v1) = c(z) 6= c(v2). W.l.o.g., suppose thatc(v1) = c(z) = 1 andc(v2) = 2. With
the same argument as above, we can assume thatL(w) = {1, 2, 3, 4} andL(v1) =
{1, 2, 3, 4}. We recolorv1 with 2 to get case 2.2.

2.4 c(v1) = c(v2) = c(z). Observe thatc(u1) = c(u′
1) ; otherwise, we modify the color of

v1 to get a previous case. We havec(u2) = c(u′
2) for the same reason and we can choose

c(w) ∈ L(w) \ {c(u1), c(u2), c(z)}.

✷

4.2 Discharging procedure

We use the following discharging rule : Each≥4-vertex gives7
12 to each of its 2-neighbors and112

to each of its 3-neighbors. Let us check that for everyv ∈ V (H), d∗(v) ≥ 19
6 :

– If d(v) = 2, thenv has two≥4-neighbors by Lemma 1.5, sod∗(v) = 2 + 2 7
12 = 19

6 .
– If d(v) = 3, thenv has at least two≥4-neighbors by Lemma 1.5 and Lemma 2.2, sod∗(v) ≥

3 + 2 1
12 = 19

6 .
– If d(v) = 4, thenv has at most one 2-neighbor by Lemma 1.4, sod∗(v) ≥ 4− 7

12 −3 1
12 = 19

6 .
– If d(v) = 5, thenv has at most three 2-neighbors by Lemma 1.3. Ifv is a5(3)-vertex, then

it has no 3-neighbor by Lemma 2.1, sod∗(v) = 5 − 3 7
12 = 13

4 > 19
6 . Otherwise,d∗(v) ≥

5 − 2 7
12 − 3 1

12 = 43
12 > 19

6 .
– If d(v) = k, 6 ≤ k ≤ 7, thenv has at most(k − 2) 2-neighbors by Lemma 1.3, sod∗(v) ≥

k − (k − 2) 7
12 − 2 1

12 = 5k
12 + 1 ≥ 7

2 > 19
6 .

– If d(v) = k ≥ 8, thend∗(v) ≥ k − k 7
12 = 5k

12 ≥ 10
3 > 19

6 .

5 Proof of Theorem 4.3

We prove now that every graphG with Mad(G) < 24/7 is acyclically 5-choosable. A vertex is
saidweakif it is either a 3-vertex or a 6(4)-vertex.

5.1 Forbidden configurations

Lemma 3 Letn ≥ 5 and letH be a minimal graph such thatχl
a(H) > n. ThenH does not contain

1. ad(d − 2)-vertex adjacent to a weak vertex, with3 ≤ d ≤ 10,

2. a 6(3)-vertex adjacent to three weak vertices,

3. a 6(4)-vertex adjacent to a≤4-vertex,

4. a 4-vertex adjacent to three 3-vertices.

Proof

1. Suppose thatH contains ad(d− 2)-vertexw adjacent to(d − 2) 2-verticesvi, 1 ≤ i ≤ d− 2
(each adjacent to another vertexui), a 3-vertexz (adjacent to two other verticesz1, z2) and a
vertexy, with 3 ≤ d ≤ 10 (see Figure 5).
Let c be a coloring ofH \ {vi, 1 ≤ i ≤ d − 2}.
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FIG. 5 – A d(d − 2)-vertex adjacent to a weak vertex.

– c(z) 6= c(y). We recolorw with a color, different fromc(z), c(y), which appears on at most
two of theui, 1 ≤ i ≤ d−2. If c(ui) 6= c(w), we colorvi with a proper color. At most two of
theui (sayu1, u2) satisfyc(ui) = c(w). We can choosec(v1) ∈ L(v1) \ {c(w), c(y), c(z)}
andc(v2) ∈ L(v2) \ {c(w), c(y), c(z), c(v1)}.

– c(z) = c(y). Observe thatc(z1) = c(z2) ; otherwise, we replace the color ofz with a color
different fromc(z1), c(z2), c(y), c(w) and we are in the previous case. Now, we recolorw
with a color, different fromc(z), c(z1), which appears on at most two of theui, 1 ≤ i ≤
d − 2. As above, it is easy then to colorvi, 1 ≤ i ≤ d − 2.

Now, we consider the case where thed(d− 2)-vertexw is adjacent to a 6(4)-vertexz adjacent
to four 2-verticesxj , 1 ≤ j ≤ 4 and another vertexs (see Figure 5). Observe thatxi 6= uj for
all i, j since there is no 2(1)-vertex by Lemma 1.3. Letc be a coloring ofH \ {x1}.
– c(w) 6= c(s). We erase the colors of the verticesz, x2, x3, x4. We recolorz with a color,

different fromc(s), c(w), which appears on at most one ofx′
i, 1 ≤ i ≤ 4. Then, we give a

proper color toxi for each indexi such thatc(x′
i) 6= c(z) and give a color different from

c(z), c(w), c(s) to the vertexxj such thatc(z) = c(x′
j).

– c(w) = c(s). If c(x′
1) 6= c(z), we colorx properly, which suffices. Ifc(z) 6= c(x′

i) for some
i, we colorx1 avoidingc(w), c(z), and allc(xj) for j 6= i, j > 1, which suffices.

Thus we may assume thatc(x′
1) = c(x′

2) = c(x′
3) = c(x′

4) = c(z) = 1 andc(s) = c(w) = 2.
Now, we erase the colors of the verticesxi (1 ≤ i ≤ 4), vj (1 ≤ j ≤ d − 2), w andz. We
recolorw with a color different fromc(y) and 2, which appears on at most two of theuj. So,
c(s) 6= c(w) and we recolorz with a color different from 1,2,c(w), c(y), then we color each
xi with a proper color. Finally, we recolor thevi as in the casec(z) 6= c(y).

2. Suppose thatH contains a 6(3)-vertexw adjacent to three 2-verticesv1, v2, v3 (each adjacent
to another vertexui) and three weak verticesz1, z2, z3. Let c be a coloring ofH \ {v1, v2, v3}.

u1

u3

v1

v2

v3

w

z1

z2

z3

z′2

z′′2

z′3

z′′3

z′′1

z′1

u2

FIG. 6 – A 6(3)-vertexw adjacent to three 3-vertices.

First, observe that ifc(z1), c(z2), c(z3) are all different, we can colorv1, v2, v3 : We recolor
w with a color different fromc(z1), c(z2), c(z3), which appears on at most one ofu1, u2, u3.
Then, we give a proper color tovi for each indexi for whichc(ui) 6= c(w) and a color different
from c(w), c(z1), c(z2), c(z3) otherwise.
Second, observe that ifc(z1) = c(z2) = c(z3), we can colorv1, v2, v3 : If c(ui) 6= c(w), we
give a proper color tovi. In the worst case, we havec(u1) = c(u2) = c(u3) = c(w) and we
colorv1 with c(v1) ∈ L(v1)\{c(w), c(z1)}, v2 with c(v2) ∈ L(v2)\{c(w), c(z1), c(v1)} and
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v3 with c(v3) ∈ L(v3) \ {c(w), c(z1), c(v1), c(v2)}.
Consider now the case where two ofz1, z2, z3 have the same color. W.l.o.g., we assume that
c(w) = 1, c(z1) = c(z2) = 2, c(z3) = 3.
Third, observe that ifc(u1) 6= 1, we can colorv1, v2, v3 : We color v1 and v2 such that
c(v1) ∈ L(v1)\{1, c(u1)} andc(v2) ∈ L(v2)\{1, 2, 3, c(u2)}. Then ifc(u3) = 1, we choose
c(v3) in L(v3) \ {1, 2, 3, c(v2)} and otherwise we choosec(v3) in L(v3) \ {1, c(u3)}.
So, suppose now thatc(u1) = c(u2) = c(u3) = c(w) = 1, c(z1) = c(z2) = 2, c(z3) = 3.
The idea is to consider the neighborhood of the two vertices of z1, z2, z3 which have the same
color (z1, z2 in our case) and modify if necessary the color of one of these two vertices to get
a previous case.
By permuting indices, we have only two cases to study :

2.1 z1 is a 6(4)-vertex. The 6(4)-vertexz1 is adjacent tow, to four 2-verticesxi (each adja-
cent to another vertexx′

i) and another vertexs. Observe that since there is no 2(1)-vertex
by Lemma 1.3,xi 6= uj for all i, j. We erase the colors ofw, z1, x1, x2, x3, x4. We
recolorz1 with a color, different from 2, 3,c(s), which appears on at most two ofx′

i,
1 ≤ i ≤ 4. We recolor noww with a color different from 1, 2, 3,c(z1) and give proper
colors tov1, v2, v3. Finally, we color thexi, 1 ≤ i ≤ 4 : For two or fewer vertices whose
neighbors have the same color, we give distinct colors different fromc(s), c(z1) and give
proper colors to the other verticesxi.

2.2 z1 andz2 are 3-vertices. The vertexz1 is adjacent tow and two other verticesz′1, z
′′
1 and

the vertexz2 is adjacent tow and two other verticesz′2, z
′′
2 (see Figure 6). It may be that

zi, z
′
j , z

′′
k are not distinct, but it will not matter. Ifc(z′1) 6= c(z′′1 ) we can recolorz1 and

w such thatc(z1) ∈ L(z1) \ {2, 3, c(z′1), c(z
′′
1 )} andc(w) ∈ L(w) \ {1, 2, 3, c(z1)}, and

then give proper colors to thevi, 1 ≤ i ≤ 3. Thusc(z′1) = c(z′′1 ) and, for the same
reason,c(z′2) = c(z′′2 ). Now we can recolorw with a color different from 1, 2, 3,c(z′1)
and we give proper colors to thevi, 1 ≤ i ≤ 3.

3. Suppose thatH contains a 6-vertexw adjacent to four 2-verticesv1, v2, v3, v4 (each adjacent
to another vertexui), a≤4-vertexz and another vertexy (see Figure 7). Notice that ifd(z) < 4
then the configuration is forbidden by Lemma 2.1 and Lemma 1.3. So supposez is a 4-vertex
adjacent toz1, z2, z3 (see Figure 7).

u2

u3

v1

v2

v3

v4

z2

z1

z3

u1

w

y

z

u4

FIG. 7 – A 6(4)-vertex adjacent to a 4-vertex

Let c be a coloring ofH \ {v1, v2, v3, v4}. If c(y) 6= c(z), we recolorw with a color from
L(w) \ {c(z), c(y)} that appears on at most oneui, then properly color eachvi avoiding
c(ui), c(w), c(z), andc(y). Suppose thatc(y) = c(z). If c(ui) 6= c(w), we properly colorvi

and then may ignore it, so the worst case isc(u1) = c(u2) = c(u3) = c(u4) = c(w). Assume
thatc(u1) = 1 andc(z) = 2. Consider the following three cases :

3.1 If c(z1) 6= c(z2) 6= c(z3) 6= c(z1), we modify the color ofz, then we recolorw with a
color different from 1,c(z), c(y), then we colorvi (i = 1, . . . , 4) with proper colors.

3.2 If c(z1) = c(z2) 6= c(z3), we recolorw such thatc(w) ∈ L(w) \ {1, 2, c(z1), c(z3)} and
give proper colors tovi.

3.3 If c(z1) = c(z2) = c(z3), we modify the color ofw. We colorw with c(w) ∈ L(w) \
{1, 2, c(z1)} and give proper colors tovi.
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4. Suppose thatH contains a 4-vertexw adjacent to three 3-verticesx1, x2, x3 (each adjacent to
x′

i, x
′′
i ) and to another vertexz (see Figure 8). Althoughxi, x

′
j , x

′′
k may not all be distinct, it

will not matter.

w

x1

x2

x3

x′
1

x′′
1

x′
2

x′′
2

x′
3

x′′
3

z

FIG. 8 – A 4-vertex adjacent to three 3-vertices

Let c be a coloring ofH \ {w}. We consider the following cases :
4.1 If c(x1), c(x2), c(x3), c(z) are all different, then we colorw with a proper color.

4.2 Suppose that two neighbors ofw have the same color, and no color is shared by three
neighbors ofw.

4.2.1 Suppose thatc(x1) = c(x2) 6= c(x3). W.l.o.g. we assume thatc(x1) = 1.
4.2.1.1 If c(x3) 6= c(z) and c(x3) 6= 1, c(z) 6= 1, we assume thatc(x3) = 2 and

c(z) = 3. Necessarily,L(w) contains1, 2, 3 ; otherwise, we can colorw with
a color different from 1, 2, 3,c(x′

1) andc(x′′
1 ). W.l.o.g., we suppose thatL(w) =

{1, 2, 3, 4, 5}. If we cannot colorw, this implies that{c(x′
1), c(x

′′
1 )} =

{c(x′
2), c(x

′′
2 )} = {4, 5}. Observe now thatL(x1) = L(x2) = {1, 2, 3, 4, 5} ;

otherwise, we can recolorx1 with a color different from 1, 2, 3, 4, 5 to get case
4.1. So, we recolorx1 andx2 with 3 and colorw with 1.

4.2.1.2 If c(x3) = c(z) and c(x3) 6= 1, we assume thatc(x3) = 2. Observe first
that c(x′

3) = c(x′′
3 ) ; otherwise, we can recolorx3 with a color different from

1, 2, c(x′
3), c(x

′′
3 ) to get case 4.2.1.1. So, suppose thatc(x′

3) = c(x′′
3 ) = 3

(c(x′
3) = c(x′′

3 ) = 1 is an easier case). Necessarily,L(w) contains 1, 2, 3 ;
otherwise, we can colorw with a color different from 1, 2, 3,c(x′

1) andc(x′′
1 ).

W.l.o.g.,L(w) = {1, 2, 3, 4, 5}, and{c(x′
1), c(x

′′
1 )} = {c(x′

2), c(x
′′
2 )} = {4, 5}.

So, we recolorx1 andx2 with a color different from 1, 2, 4, 5 and we colorw
with 1.

4.2.2 Suppose thatc(x1) = c(z). W.l.o.g. we assume thatc(x1) = 1. Observe that
c(x2) 6= c(x3) ; otherwise, we get case 4.2.1.2. We assume thatc(x2) = 2 and
c(x3) = 3. Observe thatc(x′

1) = c(x′′
1 ) ; otherwise we can recolorx1 with a color

different from1, c(x′
1), c(x

′′
1 ) to get case 4.1 or 4.2.1.1. Hence, we colorw with a

color different from 1, 2, 3,c(x′
1).

4.3 Suppose that exactly three neighbors ofw have the same color.
4.3.1 We assume thatc(x1) = c(x2) = c(x3) = 1 andc(z) = 2. Observe thatc(x′

1) =
c(x′′

1 ) ; otherwise, we can recolorx1 with a color different from 1, 2,c(x′
1), c(x

′′
1 )

to get case 4.2.1.1. In the same way,c(x′
i) = c(x′′

i ), i = 1, 2, 3. ThenL(w) =
{1, 2, c(x′

1), c(x
′
2), c(x

′
3)} with c(x′

1) 6= c(x′
2) 6= c(x′

3) 6= c(x′
1) ; otherwise, we

color w with a color different from1, 2, c(x′
1), c(x

′
2), c(x

′
3). So, we colorw with

c(x′
1).

4.3.2 We assume thatc(z) = c(x1) = c(x2) = 1 andc(x3) = 2. As above, observe that
c(x′

1) = c(x′′
1 ) andc(x′

2) = c(x′′
2 ) ; otherwise we can recolorx1 or x2 to obtain a

previous case. Hence, we colorw with a color different from 1, 2,c(x′
1), c(x

′
2).

4.4 All the neighbors ofw have the same color. Suppose thatc(x1) = c(x2) = c(x3) =
c(z) = 1. As above, fori = 1, 2, 3, c(x′

i) = c(x′′
i ) (otherwise we can get a previous

case). We colorw with a color different from 1,c(x′
1), c(x

′
2), c(x

′
3).
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✷

5.2 Discharging procedure

We use the following discharging rule : Each≥4-vertex gives5
7 to each of its 2-neighbors,314 to

each of its 3-neighbors and17 to each of its 6(4)-neighbors. Let us check that for everyv ∈ V (H),
d∗(v) ≥ 24

7 :
– If d(v) = 2, thenv has two≥5-neighbors by Lemma 1.5, sod∗(v) = 2 + 2 5

7 = 24
7 .

– If d(v) = 3, thenv has at least two≥4-neighbors by Lemma 1.5 and Lemma 2.2, sod∗(v) ≥
3 + 2 3

14 = 24
7 .

– If d(v) = 4, thenv has no 2-neighbor by Lemma 1.5, no 6(4)-neighbor by Lemma 3.3, and at
most two 3-neighbors by Lemma 3.4, sod∗(v) ≥ 4 − 2 3

14 = 25
7 > 24

7 .
– If d(v) = 5, thenv has at most one 2-neighbor by Lemma 1.4, sod∗(v) ≥ 5− 5

7 − 4 3
14 = 24

7 .
– If d(v) = 6, by Lemma 1.3,v has at most four 2-neighbors. Ifv is a 6(4)-vertex, then it has no

weak neighbor by Lemma 3.1, sod∗(v) = 6− 4 5
7 +2 1

7 = 24
7 . If v has three 2-neighbors, then

it has at most two weak neighbors by Lemma 3.2, sod∗(v) ≥ 6− 3 5
7 − 2 3

14 = 24
7 . Otherwise,

v has at most two 2-neighbors, sod∗(v) ≥ 6 − 2 5
7 − 4 3

14 = 26
7 > 24

7 .
– If d(v) = k, 7 ≤ k ≤ 10, thenv has at most(k − 2) 2-neighbors by Lemma 1.3. Ifv is a

k(k − 2)-vertex, then it has no weak neighbor by Lemma 3.1 andd∗(v) = k − (k − 2)5
7 =

2k+10
7 ≥ 24

7 . Otherwise,d∗(v) ≥ k − (k − 3)5
7 − 3 3

14 = 4k+21
14 ≥ 7

2 > 24
7 .

– If d(v) = 11, thenv has at most nine 2-neighbors by Lemma 1.3, sod∗(v) ≥ 11−9 5
7 −2 3

14 =
29
7 > 24

7 .
– If d(v) = k ≥ 12, thend∗(v) ≥ k − k 5

7 = 2k
7 ≥ 24

7 .

6 Optimality of Theorem 4

In order to study the tightness of Theorem 4, we introduce twomeasuring functions.

Definition 2 Letf : N → R be the function defined byf(n) = inf{Mad(H) | χa(H) > n}.

Definition 3 Letfl : N → R be the function defined byfl(n) = inf{Mad(H) | χl
a(H) > n}.

By Theorem 4, we have lower bounds onfl(3), fl(4) andfl(5). We now give graphs that provide
upper bounds on these quantities.

FIG. 9 – A graphG with Mad(G) = 8
3 such thatχa(G) = χl

a(G) = 4.

The graphG with Mad(G) = 8
3 depicted in Figure 9 is acyclically 4-choosable by Theorem

4.2. To see thatG is not acyclically 3-colorable, consider its four 3-vertices : Any two of them are
either adjacent or have three common neighbors. Thus, different colors must be assigned to these
four vertices in any acyclic 3-coloring ofG. This contradiction shows that :

fl(3) = f(3) =
8

3

10



FIG. 10 – A graphG with Mad(G) = 13
4 such thatχa(G) = χl

a(G) = 5.

The graphG with Mad(G) = 13
4 (see Figure 10) is acyclically 5-choosable : First, we assign

five distinct colors to the four 4-vertices and to one of the 3-vertex, then we assign proper colors
to the other vertices. To see thatG is not acyclically 4-colorable, consider its four 4-vertices : Any
two of them are either adjacent or have four common neighbors. Thus, different colors are assigned
to the 4-vertices in any acyclic 4-coloring ofG. Now, observe that properly coloring the 3-vertices
produces a bicoloredC4 in every case. This contradiction shows that :

19

6
≤ fl(4) ≤ f(4) ≤

13

4

FIG. 11 – A graphG with Mad(G) = 11
3 such thatχa(G) = χl

a(G) = 6.

The graphG with Mad(G) = 11
3 depicted by Figure 11 is acyclically 6-choosable : First, we

assign distinct colors to the six 7-vertices, then we assignproper colors to the 2-vertices. To see that
G is not acyclically 5-colorable, consider its six 7-vertices : Any two of them are either adjacent or
have five common neighbors. Thus, different colors must be assigned to six vertices in any acyclic
5-coloring ofG. This contradiction shows that :

24

7
≤ fl(5) ≤ f(5) ≤

11

3

FIG. 12 – The graphGn is such thatMad(Gn) = 4 − 8
2+n2 andχa(Gn) = χl

a(Gn) = n + 1.
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We now use the construction proposed in [KM76] to obtain an asymptotic upper bound onf(n).
Let Gn be the graph defined as follows :Gn is a(n + 1)-clique in which each edge is replaced by
n paths with length 2 (see the graphG3 depicted in Figure 12). It is easy to see thatMad(Gn) =
4− 8

2+n2 . The graphGn is acyclically(n + 1)-choosable : First, we assign distinct colors to the>2-
vertices, then we assign proper colors to the 2-vertices. Tosee thatGn is not acyclicallyn-colorable,
consider its>2-vertices : Any two of them haven common neighbors. Thus, different colors must be
assigned to the(n + 1) >2-vertices in any acyclicn-coloring ofGn. This contradiction shows that :

f(n) ≤ 4 −
8

2 + n2
.

Problem 1
- What are the values offl(n) andf(n) for n > 3 ?
- Does the equalityfl(n) = f(n) hold also for everyn > 3 ?

We remark that we cannot reach the results of [BKW99] appliedto the acyclic choosability without
using some contraints of planarity : Indeed, to imply Theorem 2.2, we should have proven that every
graphG with Mad(G) < 10

3 is acyclically 4-choosable, which is not true, since there exists a graph
G with Mad(G) = 13

4 < 10
3 which is not acyclically 4-colorable (see Figure 10). Similarly, it is

impossible to prove that every graphG with Mad(G) < 14
5 is acyclically 3-choosable to imply

Theorem 2.1, since there exists a graphG with Mad(G) = 8
3 < 14

5 which is not acyclically 3-
colorable (see Figure 9).

Problem 2 Prove that planar graphs with girth at least 4 are acyclically 6-choosable.

As the graphGn shows, we cannot solve Problem 2 with techniques usingMad(G) only.

7 Relationship betweenχa, χl and χ
l
a

We first consider the relationship betweenχa andχl. The graphGn above satisfiesχa(Gn) =
χl

a(Gn) = n+1 andχl(Gn) = 3, thus we cannot boundχa(G) by a function ofχl(G) for a general
graphG. On the other hand, we can show thatχl(G) ≤ 2χa(G)− 2 by using the following lemma :

Lemma 4 [Xu04] Every maximal acyclicallyk-colorable graph withn vertices has exactly(k −
1)(n − k

2 ) edges.

Supposek ≥ 2 : Lemma 4 implies that if a graphG is acyclicallyk-colorable, thenG has arbo-
ricity k − 1, soG is (2k − 3)-degenerate, and thusG is (2k − 2)-choosable. (For more details on
arboricity, see [NW61])

The previous result is best possible fork = 2 sinceχa(K2) = χl(K2) = 2. The next statement
implies in particular that it is also best possible fork = 3.

Claim 1 There exist acyclically 3-colorable planar graphs withoutcycles of length 4 and 5 which
are not 3-choosable.

Proof
In [Voi03], Voigt gives a planar graph without cycles of length 4 and 5 which is not 3-choosable.
This graph is acyclically 3-colorable. See Figure 13. ✷

Claim 2 There exist acyclically 4-colorable planar graphs which are not 4-choosable.

Proof
Let p1 andp2 be adjacent vertices with listsLp1

= Lp2
= {1, 2, 3, 4}. Then, for each pair(a, b) of

colors of{1, 2, 3, 4}2, a 6= b, take the corresponding copy of the graphFa,b depicted in Figure 14.
We identify all the verticesv1 (resp.v2) to the vertexp1 (resp.p2). It is easy to see that the obtained
graph is acyclically 4-colorable and not 4-choosable. ✷
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1 1
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1

1
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1
1

1

2

2

2

2

2

2

2

2

2
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2

2
2

3

33

3

3
3

3

3
3

3

3

3

3

3

2

FIG. 13 – The graph of Voigt without cycles of length 4 and 5 which is not 3-choosable is constructed
as follows : We take nine copies of the drawn graph and we identify all nine top vertices to a vertexv1

and all nine bottom vertices to a vertexv2. The given acyclic 3-coloring of the drawn graph applied
to each copy gives an acyclic 3-coloring of the whole graph.

4

4

3

3

4

{1, 2, 3, 4}

2

{a, b, 5, 6} {a, b, 5, 6}

v1

{5, 6, 7, 8}

{b, 5, 6, 7}

3

{a, 5, 7, 8}

1 {b, 5, 7, 8} 1{b, 6, 7, 8}

4{a, 6, 7, 8}

3

22
{5, 6, 7, 8}

1

{a, b, 5, 6}

{1, 2, 3, 4}v2

{a, 5, 6, 7}{a, 5, 6, 7}

{b, 5, 6, 7}

3

FIG. 14 – The graphFa,b : 4-list assignment and acyclic 4-coloring.
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We now consider the relationship betweenχa andχl
a.

Lemma 5 Let G be a properlyp-colorable graph which is notl-choosable. LetG′ be the graph
obtained by replacing every edgeuv of G by l 2-vertices, each adjacent tou and v. ThenG′ is
bipartite, 2-degenerate and acyclically(max(3, p))-colorable, but not acyclicallyl-choosable.

Proof
The graphG′ is clearly bipartite and 2-degenerate. A vertex ofG′ that is also inG is calledold,
and for each edgeuv of G, the non old vertices ofG′ adjacent tou andv are called(u, v)-vertices.
We now give an acyclic coloring ofG′ using a setS of max(3, p) colors. Since|S| ≥ p, we can
take a proper coloring ofG usingp colors inS which colors the old vertices ofG′. To color the
(u, v)-vertices, we use a color ofS distinct fromc(u) andc(v) : Such a color exists since|S| ≥ 3.
We check easily that this coloring is acyclic. Finally we have to show thatχl

a(G′) > l. Let L be a
list assignment of the old vertices with lists of sizel. For each edgeuv of G, pick one endpointu,
and assign the listL(u) to every(u, v)-vertex. Supposec(u) = c(v). To avoid a bicoloredC4, no
two (u, v)-vertices can get the same color. There arel such vertices but onlyl − 1 colors in the set
L(u) \ c(u). This contradiction shows thatc(u) 6= c(v). Given a non-colorable list assignment of
V (G) with lists of sizel, we can thus produce a list assignment ofV (G′) with lists of sizel that is
not acyclically colorable. ✷

It is well known that, for any fixedk, there exist bipartite graphs which are notk-choosable. There
also exist 3-colorable non-4-choosable planar graphs, see[VW97, Mir96]. We can use Lemma 5
with these graphs to obtain the following claim.

Claim 3
- For any fixedk, there exist bipartite 2-degenerate graphs which are acyclically 3-colorable

but not acyclicallyk-choosable.
- There exist bipartite 2-degenerate planar graphs which are acyclically 3-colorable but not

acyclically 4-choosable.
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