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Abstract

Raspaud and Sopena showed that the oriented chromatic number of a graph with
acyclic chromatic number k is at most k2k−1. We prove that this bound is tight for
k ≥ 3. We also consider acyclic improper colorings on planar graphs and partial k-
trees. Finally, we show that some improper and/or acyclic colorings are NP-complete on
restricted subclasses of planar graphs, in particular acyclic 3-colorability on bipartite
planar graphs with maximum degree 4, and acyclic 4-colorability on bipartite planar
graphs with maximum degree 8.

1 Introduction

Oriented graphs are directed graphs without opposite arcs. In other words an oriented graph
is an orientation of an undirected graph, obtained by assigning to every edge one of the two
possible orientations. If G is a graph, V (G) denotes its vertex set, E(G) denotes its set of
edges (or arcs if G is an oriented graph). A homomorphism from an oriented graph G to
an oriented graph H is a mapping ϕ from V (G) to V (H) which preserves the arcs, that is
(x, y) ∈ E(G) =⇒ (ϕ(x), ϕ(y)) ∈ E(H). We say that H is a target graph of G if there exists a
homomorphism from G to H. The oriented chromatic number χo(G) of an oriented graph G is
defined as the minimum order of a target graph of G. The oriented chromatic number χo(G)
of an undirected graph G is then defined as the maximum oriented chromatic number of its
orientations. Finally, the oriented chromatic number χo(C) of a graph class C is the maximum
of χo(G) taken over every graph G ∈ C. We use in this paper the following notations:

Pk denotes the class of planar graphs with girth at least k.

out(k) denotes the class of graphs k-outerplanar graphs.

Tk denotes the class of partial k-trees.

Sk denotes the class of graphs with maximum degree at most k.

∗
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Dk denotes the class of k-degenerate graphs.

bip denotes the class of bipartite graphs.

A vertex coloring c of a graph G is acyclic if for every two distinct colors i and j, the edges
uv such that c(u) = i and c(v) = j induce a forest. A cycle or a path is said to be alternating
if it is properly colored with two colors. Notice that only even cycles can be alternating and
that a coloring is acyclic if and only if there exists no alternating cycle. The acyclic chromatic
number χa(G) is the minimum number of colors needed in an acyclic proper coloring of the
graph G. Similarly, the acyclic chromatic number χa(C) of a graph class C is the maximum
of χa(G) taken over every graph G ∈ C. Raspaud and Sopena [9] proved that:

Proposition 1 [9] For every graph G such that χa(G) = k, χo(G) ≤ k2k−1.

Since Borodin [2] proved that planar graphs are acyclically 5-colorable (i.e., χa(P3) = 5), this
implies that the oriented chromatic number of a planar graph is at most 80 (i.e., χo(P3) ≤ 80),
which is yet the best known upper bound. In order to get a better upper bound on χo(P3),
if possible, it is interesting to study the tightness of Proposition 1, in particular for k = 5.
The previously best known lower bound on the maximum value of χo(G) in terms of χa(G)
was given by Vignal [13] with a family of graphs Gk, k ≥ 1 such that χa(Gk) = k and
χo(Gk) = 2k − 1.

Boiron et al. [1] introduced the notion of acyclic improper coloring. Let C0, . . . , Ck−1 be
graph classes. A graph G belongs to the class C0 ◦ · · · ◦ Ck−1 (resp. C0 ⊙ · · · ⊙ Ck−1) if and
only if G has a k-coloring (resp. an acyclic k-coloring) such that the ith color class induces a
graph in Ci, for 0 ≤ i ≤ k − 1. For brevity, if C0 = · · · = Ck−1 = C we will denote by Ck the
class C0 ◦ · · · ◦ Ck−1 and by C(k) the class C0 ⊙ · · · ⊙ Ck−1. The main motivation in the study
of acyclic improper colorings is the following generalization of Proposition 1.

Proposition 2 [1] Let C0, . . . , Ck−1 be graph classes such that χo(Ci) = ni, for 0 ≤ i < k.
Every graph G ∈ C0 ⊙ · · · ⊙ Ck−1 satisfies χo(G) ≤ 2k−1

∑i<k
i=0 ni.

The bound of Proposition 2 is shown to be tight for k ≥ 3 under mild assumptions in Section 2.
Sections 3, 4, and 5 provide results about acyclic improper colorings on, respectively, the
classes of planar graphs, k-outerplanar graphs, and partial k-trees. In Section 6, we prove the
NP-completeness of some coloring problems where the input graph is planar with some large
girth and low maximum degree.

2 Acyclic improper coloring versus oriented coloring

Theorem 1 Let k ≥ 3. Let C0, . . . , Ck−1 be hereditary graph classes closed under disjoint
union, and such that χo(Ci) = ni. Then χo(C0 ⊙ · · · ⊙ Ck−1) = 2k−1

∑i<k
i=0 ni.

Proof. We construct an oriented graph G ∈ C0 ⊙ · · ·⊙ Ck−1 such that χo(G) = 2k−1
∑i<k

i=0 ni.
Let u1, u2, u3 be a directed 2-path with arcs u1u2 and u2u3, or u3u2 and u2u1. We say that u1

and u3 are the endpoints of the directed 2-path. By definition, the endpoints of the directed
2-path get distinct colors in any oriented coloring. Since χo(Ci) = ni, there exists a witness
oriented graph W i such that χo(W

i) = ni. The graph Gi contains k− 1 independent vertices
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vi
j , 0 ≤ j < k − 1 and 2k−1 disjoint copies W i

l , 0 ≤ l < 2k−1 of W i. We consider the binary

representation l =
∑n<k−1

n=0 2nxn(l) of l. For every two vertices vi
j and ui

l ∈ W i
l , we put the arc

vi
ju

i
l (resp. ui

lv
i
j) if xj(l) = 1 (resp. xj(l) = 0). If l 6= l′, their binary representations differ at

the nth digit, thus ui
l ∈ W i

l ui
l′ ∈ W i

l′ are the endpoints of a directed 2-path ui
l, v

i
n, ui

l′ . So the
same color cannot be used in distinct copies of W i, which means that at least 2k−1ni colors
are needed to color the copies of W i in any oriented coloring of Gi. We acyclically color Gi

as follows. The k − 1 vertices vi
j get pairwise distinct colors in {0, . . . , k − 1} \ {i} and every

vertex ui
l get color i (that is why we need the ”closed under disjoint union” assumption).

Let Si denote the set of colors in some oriented coloring of the vertices ui
l of Gi. Now we

take one copy of each graph Gi and finish the construction of G. For every two vertices
ui

l ∈ W i
l and ui′

l′ ∈ W i′

l′ , such that i 6= i′, we add a new vertex l and create a directed 2-path

ui
l, l, u

i′

l′ . So, for i 6= i′, we have Si ∩ Si′ = ∅, which means that at least 2k−1
∑i<k

i=0 ni colors
are needed in any oriented coloring of G. To obtain an acyclic coloring of G, the new ver-
tex l adjacent to ui

l and ui′

l′ gets a color in {0, . . . , k−1}\{i, i′}, which is non-empty if k ≥ 3. �

Notice that Theorem 1 cannot be extended to the case k = 2 in general. By setting k = 2

and C0 = C1 = S0, we obtain the class of forests S
(2)
0 = D1. Proposition 2 provides the bound

χo(S
(2)
0 ) ≤ 4. This is not a tight bound, since oriented forests have a homomorphism to the

oriented triangle, and thus χo(S
(2)
0 ) = 3.

3 Acyclic improper colorings of planar graphs

The proof of Theorem 1 is constructive, but it does not help for the problem of determining
χo(P3). Indeed, the graph corresponding to the proper acyclic 5-coloring (i.e., k = 5 and
C0 = · · · = C4 = S0) is highly non-planar (it contains, e.g., K32,48 as a minor). We now
consider acyclic improper colorings of planar graphs using at most four colors.

Theorem 2 Let 2 ≤ k ≤ 4. If χo(Ck−1) ≤ 15, then
P3 ⊂ C0 ⊙ · · · ⊙ Ck−2 ⊙ Ck−1 ⇐⇒ P3 ⊂ C0 ⊙ · · · ⊙ Ck−2 ⊙ S0.

=⇒

Figure 1: The graph we add to an arc.

Proof. Let G be an oriented graph. The oriented graph f(G) is obtained from G by adding
to every arc 16 vertices as described in Figure 1. We also define fn(G) such that f0(G) = G

and fn+1(G) = f(fn(G)). Notice that if G is planar, then f(G) is planar too. We can check
that the oriented planar graph with oriented chromatic number 16 described in [12] is a sub-
graph of f5(K2). Let us now consider any acyclic improper k-coloring c of fn(K2) such that
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c(v) = c(w) = 0. To avoid an alternating cycle vxwy for some vertices x and y, fk(K2) must
contain a monochromatic copy of f1(K2). By induction, fi×k(K2) must contain a monochro-
matic copy of fi(K2) for i ≥ 1. The “⇐=” implication of Theorem 2 holds by definition.
We now prove the “=⇒” implication by contradiction. Suppose that there exists an oriented
planar witness graph W such that W ∈ C0 ⊙ · · · ⊙ Ck−2 ⊙Ck−1 and W 6∈ C0 ⊙ · · · ⊙ Ck−2 ⊙S0.
This means that any C0 ⊙ · · ·⊙Ck−2 ⊙Ck−1 coloring of W contains a monochromatic edge vw

colored k − 1. So, by previous discussions, the graph f20(W ) contains a monochromatic copy
of G4 colored k − 1, which contradicts the requirement χo(Ck−1) ≤ 15. �

Theorem 2 allows us to study which statement of the form “every planar graph belongs
to C0 ⊙ · · · ⊙ Ck−1” may improve the upper bound χo(P3) ≤ 80. If k = 4, a “least” candidate
class would be C0 ⊙S0 ⊙S0 ⊙S0 with χo(C0) = 16, but the corresponding bound is too large:
24−1(16+1+1+1) = 152 > 80. If k = 3, there must be exactly one improper color, otherwise
a least candidate, C0 ⊙ C1 ⊙ S0 with χo(C0) = χo(C1) = 16, would yield a too large bound:
23−1(16 + 16 + 1) = 132 > 80. Sopena [11, 12] proved that χo(T3) = χo(T3 ∩P3) = 16. Thus,
Boiron et al. [1] pointed out that:

1. P3 ⊂ T3 ⊙ S0 ⊙ S0 would imply that χo(P3) ≤ 72,

2. P3 ⊂ T3 ⊙ S1 ⊙ S0 would imply that χo(P3) ≤ 76.

We now see that the second point is meaningless, since P3 ⊂ T3⊙S1⊙S0 ⇐⇒ P3 ⊂ T3⊙S0⊙S0

by Theorem 2.

A theorem of Boiron et al. [1] states that some planar graphs have no acyclic T
(2)
3 coloring,

actually they even showed that out(3) 6⊂ D
(2)
3 . This result on acyclic improper colorings of

planar graphs still holds with larger color classes.

Theorem 3 out(3) 6⊂ F (2), where F = D3 ∪ T4 ∪ out(2).

Figure 2: The graph I (the icosahedron) and the graph I−.

Let I denote the icosahedron graph depicted in Figure 2 (left) and let I− denote the graph
depicted in Figure 2 (right) obtained by deleting one vertex from I. The next lemma considers
improper acyclic 2-colorings of I without restriction on the color classes. Let G denote the
class of all simple graphs.
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Lemma 1 Up to symetries, there are only two types of G(2) coloring of the icosahedron:

(i) At most one vertex is colored 1 and all others are colored 2.

(ii) Two vertices at distance 3 are colored 1 and all others are colored 2.

gem S3 W5 A

Figure 3: Small graphs.

Proof. We assume without loss of generality that at most 6 vertices are colored 1. Suppose
first that two adjacent vertices are colored 1. They have two common neighbors, so at least
one of them must be colored 1 to avoid an alternating C4. Thus we have a 1-monochromatic
K3. Three vertices outside of this K3 are adjacent to two vertices of the K3, so at least one
of them must be colored 1 to avoid an alternating C6. Thus we have a 1-monochromatic K−

4 .
Four vertices outside of this K−

4 are adjacent to two vertices of the K−
4 , and at least one of

them must be colored 1 to avoid an alternating C8. Thus we have a 1-monochromatic gem
(see Figure 3). Four vertices outside of this gem are adjacent to at least two vertices of the
gem, and at least one of them must be colored 1 to avoid an alternating C8. Thus we have
a 1-monochromatic subgraph S, which is either S3, W5, or A (see Figure 3). Since |S| = 6,
I \S must be 2-monochromatic. We easily check that, for each S, there exists an alternating
cycle in I. Suppose now that two vertices at distance two are colored 1. They have two com-
mon neighbors that must be colored 2 by the previous case. This creates an alternating C4. �

Lemma 2 I− is neither 3-degenerate, 2-outerplanar, nor a partial 4-tree.

Proof. Since the minimum degree of I− is four, it is not 3-degenerate. The graph I− is 3-
connected, so it has a unique embedding on the sphere. Notice that I− contains four distinct
non-equivalent types of faces: one of degree five and three types of triangles. For every face
F , the graph obtained by removing the vertices incident to F is not outerplanar, thus I− is
not 2-outerplanar. Finally, to prove that I− is not a partial 4-tree, we show that we cannot
obtain the empty graph from I− by repeatedly deleting a ≤4-vertex and placing a clique on
its neighbors [10]. Any such vertex elimination ordering must start with one of the 4-vertices
of the outerface of I−, which all play the same role. Deleting a 4-vertex of I− and placing
a clique on its neighbors gives a graph J . Now J has two ≤4-vertices playing the same role.
Deleting one of them and placing a clique on its neighbors gives a graph K. Since K has
minimum degree 5, I− has no elimination ordering and thus is not a partial 4-tree. �

Lemmas 1 and 2 prove that the only G(2) colorings of I are of type (ii).

Observation 1 If I has a coloring of type (ii), then for every 2-monochromatic triangle t,
there exists a vertex colored 1 adjacent to two vertices of t.
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Figure 4: The graph G considered in Lemma 3.

Consider now the graph G depicted in Fig 4 (left) obtained from K4 by identifying each
of the 3 marked faces with the outerface of a copy of an icosahedron.

Lemma 3 If G is acyclically 2-colored such that every copy of I has a coloring of type (ii),
then the outer-face is monochromatic and there is an alternating path between a0 and a1.

Proof. Suppose the first part of the statement is false and assume that c(a0) = c(a1) = 2 and
c(a2) = 1 (see Fig 4 (middle)). We have c(m) = 2 to avoid an alternating cycle a2a0ma1. By
Observation 1, one ui must be colored 1, and this creates an alternating C4, a contradiction.
Now we check the last part of statement (see Fig 4 (right)). By the previous discussion, the
ai’s are colored 2, and c(m) = c(u2) = 2 to avoid an alternating path between a0 and a1. By
Observation 1, one of the ui’s must be colored 1 and we suppose without loss of generality
that c(u1) = 1. Now c(w1) = 2 to avoid an alternating cycle mu1a1w1 and c(u0) = c(v0) = 2
to avoid an alternating path between a0 and a1. By Observation 1, either v1 or v2 (resp.
w0 or w2) must be colored 1. In these four cases we have either an alternating cycle or an
alternating path between a0 and a1. �

To finish the proof of Theorem 3, we take two copies G′ and G′′ of G and we identify a′0
and a′′0 (resp. a′1 and a′′1) to obtain the 3-outerplanar graph G∗. By the previous lemmas, if
G′ and G′′ are both colored as in Lemma 3, then there exists an alternating path between a′0
and a′1 in G′ and another one in G′′. This creates an alternating cycle in G∗.

4 Acyclic improper colorings of k-outerplanar graphs

We obtain the following result on acyclic improper colorings of k-outerplanar graphs.

Theorem 4 out(k + 1) ⊂ S0 ⊙ S0 ⊙ S0 ⊙ out(k)

Proof. We show that there exists a coloring of a (k + 1)-outerplanar graph such that any
vertex of the outerface gets one of the first three colors and all other vertices are colored with
the last color. Let us characterize a counter-example T for the specified coloring with minimal
number of vertices. The special type of coloring considered allows us to assume without loss of
generality that the inner-vertices of T induce an indepedent set, since a potential alternating
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cycle contains no monochromatic edge. We add a maximal number of edges connecting outer-
vertices of T inside the outerface. This way, the neighborhood of any inner-vertex induces a
single vertex, a K2, or a cycle of the outerface. The outerface cannot contain a vertex cut of
size two. These two vertices would be adjacent, therefore they would get different colors in
a valid coloring of “one part” of T . Thus we could extend this coloring to the whole graph,
since a potential minimal alternating cycle cannot lie on both parts. The only remaining
possibility is that T is a wheel, and a wheel has the specified coloring. �

Theorem 4 implies that χo(out(2)) ≤ 24−1(1 + 1 + 1 + 7) = 80. This does not improve
upon the bound of 80 that holds for every planar graph, but it gives another target graph on
80 vertices for the class of 2-outerplanar graphs. However, Esperet and the author [3] recently
showed that χo(out(2)) ≤ 67 via an homomorphism to the Paley tournament QR67.

5 Acyclic improper colorings of partial k-trees

We now consider acyclic improper colorings of partial k-trees and show that the equality
χa(Tk) = k + 1 is best possible in this context.

Theorem 5 For every k ∈ N
∗ and for every G ∈ Tk, Tk 6⊂ (G-free)(k).

Proof. The case k = 1 is obvious, so assume k ≥ 2 is a fixed integer in the following. Let us
call good a clique c such that 2 ≤ |c| ≤ k. Now we define the graphs Uk,n, n ≥ 1, such that:

1. Uk,1 = K2.

2. For each good clique c of Uk,n, we add a new vertex adjacent to every vertex of c to
obtain Uk,n+1.

Clearly, every graph in Tk is a subgraph of Uk,n for some n. To finish the proof, we will show
that in any improper acyclic k-coloring, Uk,n×k contains a monochromatic copy of Uk,n. For
n = 1, we have that Uk,k contains a clique Kk+1, and thus contains a monochromatic K2.
Now assume that Uk,n×k contains a monochromatic copy of Uk,n. For every good clique c of
that copy there are k new vertices adjacent to c in Uk,n×k+k, and one of these k new vertices
must get the same color as c. This implies that Uk,(n+1)×k contains a monochromatic copy of
Uk,n+1. �

6 NP-complete colorings

If C1 and C2 are graph classes, then (C1 : C2) denotes the problem of deciding whether a given
graph G ∈ C1 belongs to C2. If P1 and P2 are decision problems, we note P1 ∝ P2 if there is
a polynomial reduction from P1 to P2.

Kratochv́ıl proved that planar (3,≤4)-sat is NP-complete [7]. In this restricted version
of sat, the graph of incidences variable-clause of the input formula must be planar, every
clause is a disjonction of exactly three literals, and every variable occurs in at most four
clauses. A subcoloring is a partition of the vertex set into disjoint cliques. The problem 2-
subcolorability is NP-complete on triangle-free planar graphs with maximum degree 4 [4,
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6]. Notice that on triangle-free graphs, a 2-subcoloring corresponds to a vertex partition into
two graphs with maximum degree 1, i.e., a S2

1 coloring. Finally, the problem 3-colorability
is NP-complete on planar graphs with maximum degree 4 [5].

6.1 S0 ◦ S1 coloring

Theorem 6 planar (3,≤4)-sat ∝ (P7 ∩ S3 : S0 ◦ S1)

x
x

x x
x1 1

0 0
1 1

0 0

1 1

0 0

1 1

1

0

1 u

u v

?

x

Figure 5: The forcing gadget for the reduction of Theorem 6.

In a S0 ◦ S1 or S0 ⊙ S1 coloring c, a vertex v gets color c(v) = i if v is in the color class
Si, 0 ≤ i ≤ 1. We observe that the graph depicted in Figure 5(i) has no S0 ◦ S1 coloring such
that c(u) = c(v) = 1. This implies that the vertex u in the graph depicted in Figure 5(ii)
must be colored 1.

x [1] xx [1] xx [1] xx

[1]xx [1]xx [1]xx [1]xx

[1] x

Figure 6: The variable gadget for the reduction of Theorems 6 and 7.

v1

[1]

v2 v3

0

1

1

1

1

1

0 0

0

1 [1]

1

?

0 0

1

0 0

1 1

1 1
0

x y

x y 101

1 100 [1]

0 [1]

(i) (ii) (iii)

Figure 7: The clause gadget for the reduction of Theorems 6

Proof. Given an instance I of planar (3,≤4)-sat, we build a graph G as follows. We re-
place every variable of I by a copy the variable gadget depicted in Figure 6. We replace every
clause of I by a copy the clause gadget depicted in Figure 7(i). The way we link variables
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to clauses is best explained with an example: for a clause gadget C = (x, y, z) and variables
gadgets X, Y, Z, we add an edge between a big vertex x of X and the vertex v1 of C, between
a big vertex y of Y and the vertex v2 of C, and between a big vertex z of Z and the vertex
v3 of C. The boolean value true (resp. false) is associated with the color 0 (resp. 1). We see
in figure 7(ii) that an unsatisfied clause is not S0 ◦ S1 colorable, whereas any satisfied clause
(i.e., such that at least one v1, v2, v3 is colored 1) is colorable, see figure 7(ii). This means that
I is satisfiable if and only if G belongs to S0 ◦ S1. We easily check that G is indeed planar,
with girth 6, and maximum degree 3. �

Notice that on triangle-free graphs, the S0◦S1 coloring corresponds to the (1, r)-subcoloring
defined in [8]. Theorem 6 improves a result of Le and Le [8] stating that (P4 ∩ S3 : S0 ◦ S1)
is NP-complete.

6.2 S0 ⊙ S1 coloring

Theorem 7 planar (3,≤4)-sat ∝ (P10 ∩ S3 ∩ bip : S0 ⊙ S1)

0 1

1

1 1

1

1

1

u

Figure 8: The forcing gadget for the reduction of Theorem 7.

Proof. The proof is similar to the previous one, with the following two changes. We use
another forcing gadget depicted in Figure 8. The clause gadget is obtained from the one
in Figure 7(i) by deleting the vertex forced to be colored 1 and its two 2-neighbors. In any
S0⊙S1 coloring of the forcing gadget, the vertex u must be colored 1. If a clause is unsatisfied,
then its clause gadget is not colorable (an alternating cycle C12 is forbidden). If a clause is
unsatisfied, then its clause gadget is colorable (the coloring in Figure 7(iii) is acyclic). �

6.3 S
(2)
1 coloring

Theorem 8 (P4 ∩ S4 : S2
1 ) ∝ (P8 ∩ S4 ∩ bip : S

(2)
1 )

Proof. Consider the graph depicted in Figure 9 (left). Any S2
1 coloring such that the vertex

u is colored 1 and has no neighbor colored 1 contains an alternating cycle C8. So in every

S
(2)
1 coloring, both u and one neighbor of u must get the same color. Now we use three copies

of this graph in the forcing gadget depicted in Figure 9 (right). Since the cycle of this forcing
gadget cannot be alternating, the dotted edge has to be monochromatic. Given a planar
graph G, we construct the graph G′ as follows. We replace every vertex v of G by a copy of
the vertex gadget depicted in Figure 10 and for every edge vw we link a big vertex ui in the
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Figure 9: The forcing gadget for the reduction of Theorem 8.
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22

u1

(1)(2)1

Figure 10: The vertex gadget for the reduction of Theorem 8.

gadget of v to a small vertex ui in the gadget of w. In any S
(2)
1 coloring of the vertex gadget,

all ui’s get the same color, say 1, and there exists no alternating path between distinct ui’s.
This common color in the gadget of a vertex v corresponds to the color of v in a S2

1 coloring
of G. Notice that if one of the ui, say u2, has a neighbor colored 1 not in the gadget, then

every other ui has a neighbor colored 1 in the gadget. Thus we can obtain a S
(2)
1 coloring of

G′ from a S2
1 coloring of G and vice-versa. �

6.4 S
(3)
0 coloring

Theorem 9 (P3 ∩ S4 : S3
0 ) ∝ (P4 ∩ S4 ∩ bip ∩ D2 : S

(3)
0 )

2

1

3

32 1

1

23

1

12 3

1

32

3 2

2

1

3

32 1

1

23

1

12 3

1

32

3 2

2

1

3

32 1

1

23

1

12 3

1

32

3 221

u2 u3 u4 u5 u6 u7

u1

etc..

Figure 11: The vertex gadget for the reduction of Theorem 9.

Proof. Given a planar graph G, we construct the graph G′ as follows. We replace every
vertex v of G by a copy of the vertex gadget depicted in Figure 11 and for every edge vw

we link a big vertex ui in the gadget of v to a small vertex ui in the gadget of w. The given
acyclic 3-coloring of the vertex gadget is the unique one up to permutation of colors. Notice
that all ui’s get the same color and there exists no alternating path between distinct ui’s.
This common color in the gadget of a vertex v corresponds to the color of v in a 3-coloring
of G. Thus G′ is acyclically 3-colorable if and only if G is 3-colorable. �
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6.5 S
(4)
0 coloring

Theorem 10 (P3 ∩ S4 : S3
0 ) ∝ (P4 ∩ S8 ∩ bip ∩ D2 : S

(4)
0 )

1

2

1 134 34

2

3 4

11 4

3

3

21

⇓ ⇓

2 11

(i) (ii)

1 2

Figure 12: The forcing gadgets for the reduction of Theorem 10.
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2 24
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2 4 2 4 2
u1 t1 u2 t2 u3

etc..

4 2 4 2 4

Figure 13: The vertex gadget for the reduction of Theorem 10.

Proof. Consider the graph depicted in Figure 12(i). Any S
(4)
0 coloring is such that x and

y get the same color. Moreover, this gadget has a coloring such that there exists only one
alternating path between x and y (the path colored 1 and 2 in Figure 12(i)). In the graph
depicted in Figure 12(ii), the vertices x and y must have distinct colors and there is no al-
ternating path between x and y. Given a planar graph G, we construct the graph G′ as
follows. We replace every vertex v of G by a copy of the vertex gadget depicted in Figure 13
and for every edge vw we connect a vertex ui (resp. ti) in the gadget of v to a vertex ui

(resp. ti) in the gadget of w using the forcing gadget (ii) (resp. (i)). In any S
(4)
0 coloring of

the vertex gadget, all ui’s get the same color and all ti’s get a same color distinct from the
color of the ui’s. The color of the ui’s in the gadget of a vertex v corresponds to the color
of v in a 3-coloring of G. The color of the ti’s is common to every vertex gadget in G′, as-
suming that G is connected. Thus G′ is acyclically 4-colorable if and only if G is 3-colorable. �
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