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2 LIRMM, CNRS, Université de Montpellier, France
ochem@lirmm.fr

3 Department of Math/Stats, University of Winnipeg, 515 Portage Ave., Winnipeg,
MB R3B 2E9, Canada

narad.rampersad@gmail.com

Abstract. We start by considering binary words containing the mini-
mum possible numbers of squares and antisquares (where an antisquare
is a word of the form xx), and we completely classify which possibili-
ties can occur. We consider avoiding xp(x), where p is any permutation
of the underlying alphabet, and xt(x), where t is any transformation of
the underlying alphabet. Finally, we prove the existence of an infinite
binary word simultaneously avoiding all occurrences of xh(x) for every
nonerasing morphism h and all sufficiently large words x.

1 Introduction

Let x, v be words. We say that v is a factor of x if there exist words u,w such
that x = uvw. For example, or is a factor of word.

By a square we mean a nonempty word of the form xx, like the French word
couscous. The order of a square xx is |x|, the length of x. It is easy to see
that every binary word of length at least 4 contains a square factor. However,
in a classic paper from combinatorics on words, Entringer, Jackson, and Schatz
[7] constructed an infinite binary word containing, as factors, only 5 distinct
squares: 02, 12, (01)2, (10)2, and (11)2. This bound of 5 squares was improved
to 3 by Fraenkel and Simpson [9]; it is optimal. For some other constructions
also achieving the bound 3, see [15,14,10,2].

Instead of considering squares, one could consider antisquares: these are bi-
nary words of the form xx, where x is a coding that maps 0 → 1 and 1 → 0.
For example, 01101001 is an antisquare. (They should not be confused with
the different notion of antipower recently introduced by Fici, Restivo, Silva,
and Zamboni [8].) Clearly it is possible to construct an infinite binary word
that avoids all antisquares, but only in a trivial way: the only such words are
0ω = 000 · · · and 1ω = 111 · · · . Similarly, the only infinite binary words with
exactly one antisquare are 01ω and 10ω. However, it is easy to see that every
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word in {1000, 10000}ω has exactly two antisquares — namely 01 and 10 — and
hence there are infinitely many such words that are aperiodic.

Several writers have considered variations on these results. For example,
Blanchet-Sadri, Choi, and Mercaş [3] considered avoiding large squares in par-
tial words. Chiniforooshan, Kari, and Zhu [4] studied avoiding words of the form
xθ(x), where θ is an antimorphic involution. Their results implicitly suggest the
general problem of simultaneously avoiding what we might call pseudosquares:
patterns of the form xx′, where x′ belongs to some (possibly infinite) class of
modifications of x.

This paper has two goals. First, for all integers a, b ≥ 0 we determine whether
there is an infinite binary word having at most a squares and b antisquares. If
this is not possible, we determine the length of the longest finite binary word
with this property.

Second, we apply our results to discuss the simultaneous avoidance of xx′,
where x′ belongs to some class of modifications of x. We consider three cases:

(a) where x′ = p(x) for a permutation p of the underlying alphabet;
(b) where x′ = t(x) for a transformation t of the underlying alphabet; and
(c) where x′ = h(x) for an arbitrary nonerasing morphism.

In particular, we prove the existence of an infinite binary word that avoids xh(x)
simultaneously for all nonerasing morphisms h and all sufficiently long words x.

2 Simultaneous avoidance of squares and antisquares

We are interested in binary words where the number of distinct factors that are
squares and antisquares is bounded. More specifically, we completely solve this
problem determining in every case the length of the longest word having at most
a distinct squares and at most b distinct antisquares. Our results are summarized
in the following table. If (one-sided) infinite words are possible, this is denoted
by writing ∞ for the length.

The results in the first two columns and first three rows (that is, for a ≤ 2
and b ≤ 1) are very easy. We first explain the first two columns:

Proposition 1.

(a) For a ≥ 0, the longest binary word with a squares and 0 antisquares has
length 2a+ 1.

(b) For a ≥ 0, the longest binary word with a squares and 1 antisquare has length
2a+ 2.

Proof.

(a) If a binary word has no antisquares, then in particular it has no occurrences
of either 01 or 10. Thus it must contain only one type of letter. If it has
length 2a + 2, then it has a + 1 squares, of order 1, 2, . . . , a + 1. If it has
length 2a+ 1, it has a squares. So 2a+ 1 is optimal.
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a
b

0 1 2 3 4 5 6 7 8 9 10 11 12 13 · · ·

0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 · · ·
1 3 4 7 7 7 7 7 7 7 7 7 7 7 7 · · ·
2 5 6 11 11 11 11 12 12 12 13 15 18 18 18 · · ·
3 7 8 15 15 15 20 20 20 24 29 34 53 98 ∞ · · ·
4 9 10 19 19 27 31 45 56 233 ∞ ∞ ∞ ∞ · · ·
5 11 12 27 27 40 ∞ ∞ ∞ ∞ · · ·
6 13 14 35 38 313 ∞ · · ·
7 15 16 45 ∞ ∞ · · ·
8 17 18 147 ∞ · · ·
9 19 20 ∞ · · ·
10 21 22 ∞ · · ·
...

Fig. 1. Length of longest binary word having at most a squares and b antisquares

(b) If a length-n binary word w has only one antisquare, this antisquare must be
either 01 or 10; without loss of generality, assume it is 01. Then w is either
of the form 0n−11 or 01n−1. Such a word clearly has b(n− 1)/2c squares.

We next explain the first three rows: if a binary word has no squares, its
length is clearly bounded by 3, as we remarked earlier. If it has one square, a
simple argument shows it has length at most 7. Finally, if it has two squares,
already Entringer, Jackson, and Schatz [7, Thm. 2] observed that it has length
at most 18.

For all the remaining finite entries, we obtained the result through the usual
backtrack search method, and we omit the details.

In what follows, we provide the lexicographically least binary words achieving
the “important” bounds in Figure 1.

(3, 12) :
0010001100101110001011001110001100101110001011000

1110010111000101100111000110010111000101100111011

(4, 8) :
00001000001100001011000001100010110000010111000101100001011

10000010110000011000101100000101110001011000001100010110000

10111000001011000001100010110000010111000101100001011100000

10110000011000101100001011100010110000011000101100001000

(5, 4): 0001000001010000000101010000001010000100
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(6, 4) : 000010000001010000000110100000010100001101000000010100000011010

000010100001101000000010100000110100000010100001101000000010100

000011010000010100001101000000101000001101000000010100000011010

000010100001101000000010100000110100000010100001101000000010100

0000110100000101000011010000000101000001101000000011010111010

(7, 2): 000001000000010100000010000101000000010000101

(8, 2) : 0010000101000100010001010000010001000100000101000

1000100010100000100010000010100010001010000010001

0001000001010001000100010100000100010001000001010

It now remains to prove the results labeled ∞. First, we introduce some
morphisms. Let the morphisms h3,13, h4,9, h5,5, h7,3, h9,2 be defined as follows:

(a) h3,13 : 0→ 0010110011100011

1→ 001011000111

2→ 00101110

(b) h4,9 : 0→ 0000101110000011000010110000011000101100001011100010110

1→ 0000101110000011000010110000011000101100000101110001011

2→ 0000101110000011000010110000010111000101100000110001011

This is a 55-uniform morphism.

(c) h5,5 : 0→ 101000001011000010100001101011000001

1→ 101000001011000001101011000010100001

2→ 101000001010000110000010100000110000

This is a 36-uniform morphism.

(d) h7,3 : 0→ 0100100100001010000

1→ 01001001000001

2→ 0100100101000

(e) h9,2 : 0→ 0001000100000001000101

1→ 0000010001000100000101

2→ 0000001000100000010100

This is a 22-uniform morphism.

Theorem 1. Let w be an infinite squarefree sequence over the alphabet {0, 1, 2}.
Then ha,b(w) contains exactly a squares and b antisquares. More precisely
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(a) h3,13(w) contains the squares 02, 12, and (01)2 and the antisquares 01, 10,
0011, 0110, 1001, 1100, 000111, 001110, 011100, 100011, 110001, 111000,
and 10010110.

(b) h4,9(w) contains the squares 02, 12, (00)2, and (01)2 and the antisquares 01,
10, 0011, 0110, 1100, 011100, 110001, 111000, and 1110000011.

(c) h5,5(w) contains the squares 02, 12, (00)2, (01)2, and (10)2 and the anti-
squares 01, 10, 0011, 0110, and 1100.

(d) h7,3(w) contains the squares 02, (00)2, (01)2, (10)2, (001)2, (010)2, and
(100)2 and the antisquares 01, 10, and 1001.

(e) h9,2(w) contains the squares 02, (00)2, (01)2, (10)2, (000)2, (0001)2, (0010)2,
(0100)2, and (1000)2 and the antisquares 01 and 10.

Proof. Let h be any of the morphisms above. We first show that large squares
are avoided. The h-images of the letters have been ordered such that |h(0)| ≥
|h(1)| ≥ |h(2)|. A computer check shows that for every letter i and every ternary
word w, the factor h(i) appears in h(w) only as the h-image of i. Another
computer check shows that for every ternary squarefree word w, the only squares
uu with |u| ≤ 2|h(0)| − 2 that appear in h(w) are the ones we claim. If h(w)
contains a square uu with |u| ≥ 2|h(0)| − 1, then u contains the full h-image of
some letter. Thus, uu is a factor of h(avbvc) with a, b, c single letters and v a
nonempty word. Moreover, a 6= b and b 6= c, since otherwise avbvc would contain
a square. It follows that u = ph(v)s, so that p is a suffix of h(a), h(b) = sp,
and s is a prefix of h(c). Thus, h(abc) contains the square psps with period
|ps| = |h(b)|. Since 5 < |h(2)| ≤ |h(b)| ≤ |h(0)| < 2|h(0)| − 2, this contradicts
our computer check, which rules out squares with period at least 5 and at most
2|h(0)| − 2.

To show that large antisquares are avoided, it suffices to exhibit a factor f
such that f is uniformly recurrent in h(w) and f is not a factor of h(w). We use
f = 0101 for h3,13 and f = 04 for the other morphisms.

Remark 1. The uniform morphisms were found as follows: for increasing values
of q, our program looks (by backtracking) for a binary word of length 3q corre-
sponding to the image h(012) of 012 by a suitable q-uniform morphism h. Given
a candidate h, we check that h(w) has at most a squares and b antisquares for
every squarefree word w up to some length. Standard optimizations are applied
to the backtracking. Squares and antisquares are counted naively (recomputed
from scratch at every step), which is sufficient since the morphisms found are
not too large.

Remark 2. The morphisms h3,13 and h7,3 are not uniform. However, we can
construct uniform morphisms with the same properties as follows. Let m be the
18-uniform squarefree morphism given by

0→ 021012102012021201

1→ 021012102120210201

2→ 021012102120102012 .
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Notice that m(0), m(1), and (2) contain 6 occurrences of each letter. So the
216-uniform morphism h′3,13 = h3,13 ◦ m is such that h′3,13(w) and h3,13(w)
contain the same squares and antisquares. Similarly, for binary words with the
same squares and antisquares as h7,3(w), we can use the 276-uniform morphism
h7,3 ◦m. However in this case, we have found the following smaller morphism,
which is 29-uniform.

0→ 00101000010010010100000101001

1→ 00101000010010010000101001000

2→ 00101000010010010000101000001 .

Corollary 1. There exists an infinite binary word having at most ten distinct
squares and antisquares as factors, but the longest binary word having nine or
fewer distinct squares and antisquares is of length 45.

Remark 3. A word of length 45 with a total of nine distinct squares and anti-
squares is

000001000000010100000010000101000000010000101.

Corollary 2. Every infinite word having at most ten distinct squares and anti-
squares has critical exponent at least 5, and there is such a word having 5-powers
but no powers of higher exponent.

Proof. By the usual backtracking approach, we can easily verify that the longest
finite word having at most ten distinct antisquares, and critical exponent < 5 is
of length 57. One such example is

010001010000100100100001010010010100001001001000010100010.

On the other hand, if w is any squarefree ternary infinite word, then from above
we know that the only possible squares that can occur in h5,5(w) are of the form
x2 for x ∈ {0, 1, 00, 01, 10}. It is now easy to verify that the largest power of 0
that occurs in h5,5(w) is 05; the largest power of 1 that occurs is 12; the largest
power of 01 that occurs is (01)5/2; and the largest power of 10 that occurs is
(10)5/2.

Proposition 2. Every infinite cubefree binary word has a total of at least 23
distinct squares and antisquares.

Proof. By the usual backtracking method.

Remark 4. In the final version of this paper, we plan to provide the optimal
bound.
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3 Pseudosquare avoidance

In this section we discuss avoiding xx′ where x′ belongs to some large class of
modifications of x′. This is in the spirit of previous results [16,5,12], where one
is interested in avoiding factors of low Kolmogorov complexity. The problems
we study are not quite so general, but our results are effective, and we obtain
explicit bounds.

3.1 Avoiding pseudosquares for permutations

Here we are interested in avoiding patterns of the form xp(x), for all codings p
that are permutations of the underlying alphabet. Of course, this is impossible
for words of length ≥ 2 strictly as stated, since every word of length 2 is of the
form ap(a) where p is the permutation sending the letter a to p(a). Thus it is
reasonable to ask about avoiding xp(x) for all words x of length ≥ n. Our first
result shows this is impossible for n = 2.

Theorem 2. For all finite alphabets Σ, and for all words w of length ≥ 10 over
Σ, there exists a permutation p of Σ and a factor of w of the form xx′, where
x′ = p(x), and |x| ≥ 2.

Proof. Using the usual tree-traversal technique, where we extend the alphabet
size at each length extension.

We now turn to the case of larger n. For n ≥ 3, we can avoid all factors of the
form xp(x) over the binary alphabet. Of course, this case is particularly simple,
since there are only two permutations of the alphabet: the identity permutation
that leaves letters invariant, and the map x→ x, which changes 0 to 1 and vice
versa.

Theorem 3. There exists an infinite word w over the binary alphabet Σ2 =
{0, 1} that avoids xx and xx for all x with |x| ≥ 3.

Proof. We can use the morphism h5,5 in Theorem 1 (c). Alternatively, a simpler
proof comes from the fixed point of the morphism

0→ 01 1→ 23

2→ 24 3→ 51

4→ 06 5→ 01

6→ 74 7→ 24

followed by the coding n→ n mod 2. We can now use Walnut [13] to verify that
the resulting 2-automatic word has the desired property. This word has exactly
5 distinct squares:

02, 12, (00)2, (01)2, (10)2,

and exactly 6 distinct antisquares:

01, 10, 0011, 0110, 1001, 1100.
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3.2 Avoiding pseudosquares for transformations

In the previous subsection we considered permutations of the alphabet. We now
generalize this to transformations of the alphabet, or, in other words, to arbitrary
codings (letter-to-letter morphisms).

Theorem 4.

(a) For all finite alphabets Σ, and all words w of length ≥ 31 over Σ, there
exists a transformation t : Σ∗ → Σ∗ such that w contains a factor of the
form xt(x) for |x| ≥ 3.

(b) For all finite alphabets Σ, and all words w of length ≥ 16 over Σ, there exists
a transformation t of Σ such that w contains a factor of the form xx′, where
x′ = t(x) or x = t(x′) and |x| ≥ 3.

Proof. Using the usual tree-traversal technique, where we extend the alphabet
size at each length extension.

We now specialize to the binary alphabet. This case is particularly simple,
since in addition to the two permutations of the alphabet, the only other trans-
formations are the ones sending both 0, 1 to a single letter (either 0 or 1).

Theorem 5. There exists an infinite word w over the binary alphabet Σ2 =
{0, 1} avoiding 04, 14, and xx and xx for every x with |x| ≥ 4. In other words,
w avoids both xt(x) and t(x)x for |x| ≥ 4 and all transformations t.

Proof. Use the fixed point of the morphism

0→ 01 1→ 23

2→ 45 3→ 21

4→ 23 5→ 42

followed by the coding n → bn/3c. The result can now easily be verified with
Walnut.

3.3 Avoiding pseudosquares with morphic images

In this subsection we consider simultaneously avoiding all patterns of the form
xh(x), for all morphisms h defined over Σk = {0, 1, . . . , k − 1}. Clearly this is
impossible if h is allowed to be erasing (that is, some images are allowed to be
empty), or if x consists of a single letter. So once again we consider the question
for sufficiently long x.

For this version of the problem, it is particularly hard to obtain experimental
data, because the problem of determining, given x and y, whether there is a
morphism h such that y = h(x), is NP-complete [1,6].

Theorem 6. No infinite word over a finite alphabet avoids all factors of the
form xh(x), for all nonerasing morphisms h, with |x| = 4.
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Proof. Let w be a potential counter-example to Theorem 6. Without loss of
generality, we can assume that w is uniformly recurrent (see, e.g., [11, Lemma
2.4]). We use a, b, and c to denote distinct letters and u and v to denote non-
empty finite words.

A word is called basic if it is of the form au such that |u| = 3 and u does
not contain the letter a. Suppose, to get a contradiction, that w contains a basic
factor. Since u is recurrent, the factor au extends to auvu, which is a forbidden
occurrence of xh(x). So w avoids basic factors.

Suppose, to get a contradiction, that w contains a 4-power v4. Then w con-
tains a factor uv4 with |u| = 4, which is a forbidden occurrence of xh(x). So w
is 4-power free.

Suppose, to get a contradiction, that w contains a factor aaa. Since w does
not contain the 4-power aaaa, then w must contain baaa, which is a basic factor.
So w avoids aaa.

Suppose, to get a contradiction, that w contains three consecutive distinct
letters abc. To avoid a basic factor, abc must extend to abca. Then abca must
extend to abcab, and so on. Thus w must contain the 4-power (abc)4. So w avoids
abc.

Since w avoids aaa, abc, and the basic factor abbc, it must be that w is a
binary word.

Suppose, to get a contradiction, that w contains a factor abaabb. Since bb is
recurrent, the factor abaab extends to abaabubb, which is a forbidden occurrence
of xh(x). So w avoids abaabb,

Finally, w avoids ababbaba and ababaabaab, which are forbidden occurrences
of xh(x). Using the usual tree-traversal technique, we check that no infinite 4-
power free binary word avoids aaa, abaabb, ababbaba, and ababaabaab. Thus, w
does not exist.

Theorem 7. There exists an infinite binary word that avoids all factors of the
form xh(x) and h(x)x, for all nonerasing binary morphisms h, with |x| ≥ 5.

Proof. Let w = m(t), where t is any ternary squarefree word t and m is the
57-uniform morphism given below.

0→ 101000110010100110001011001010110001010100011001011000110

1→ 101000110010100110001010110001101001100010101000110101001

2→ 101000110010100110001010100011010011000101011000110101001

We use u and v to denote non-empty words and a to denote a letter. We will
need the following properties of w.

(a) The only squares occurring in w are 00, 11, 0101, and 1010.
(b) w does not contain any factor uvu with |u| ≥ 15 and |v| ≤ 6.
(c) w does not contain any of the following factors: 111, 110011, 101011001,

100110101, 0100010, 00100.
(d) Every factor of w of length 13 contains 000, 001100, 010100110, or 011001010.
(e) Every factor of w of length 12 contains 0101 or 1010.
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(f) Every factor of w of length at least 5, except 00010 and 01000, contains
0011, 1100, 0101, 1010, 0110, 1001, or 10001.

The proofs of (a) and (b) are similar to the proof of Theorem 1. The other
properties can be checked by inspecting factors of w with bounded length. The
following cases show that w contains no factor of the form xh(x) or h(x)x with
|x| ≥ 5.

– We rule out h(0) = h(1), as h(x) contains h(0)5, which contradicts (a).

– We rule out h(a) = a, as xh(x) = h(x)x = xx is a square with period at
least 5, which contradicts (a).

– We rule out |x| ≥ 13: By (e), x contains 0101 or 1010. By (a), w contains
no square with period at least 3, which forces |h(0)| = |h(1)| = 1. By the
previous cases, the only remaining possibility is h(a) = a. By (d), x contains
a factor v ∈ {000, 001100, 010100110, 011001010}. Thus, h(x) contains the
factor v ∈ {111, 110011, 101011001, 100110101}, which contradicts (c).

– We rule out that x contains aaaa or aaaa: Notice that both letters 0 and
1 are contained in a square. By (a), |h(0)| ≤ 2 and |h(1)| ≤ 2. A computer
check shows that w contains no factor of the form xh(x) or h(x)x such that
5 ≤ |x| ≤ 12, |h(0)| ≤ 2, and |h(1)| ≤ 2.

– We rule out that x contains aaaa or 10001: in every case h(x) contains a
factor uvu such that v is square or a cube. By (a), min{|h(0)|, |h(1)|} ≤ 2
and |v| ≤ 6. By (b), this means that max{|h(0)|, |h(1)|} ≤ 14. Again, we
only have to consider the case 5 ≤ |x| ≤ 12, so that xh(x) and h(x)x have
bounded length and can be ruled out by computer check.

– By (f), the only remaining possibilities are x = 00010 and x = 01000. Notice
that if h(000) is in w, then h(0) ∈ {0, 01, 10}. Suppose that x = 00010. An
occurrence of h(x)x contains 0000 if h(0) ∈ {0, 10} and contains 0100010 if
h(0) = 01. This contradicts (a) and (c), respectively. An occurrence of xh(x)
contains 00100 if h(0) ∈ {0, 01} and contains 10101010 if h(0) = 10. This
contradicts (c) and (a), respectively. The case x = 01000 is symmetrical by
reversal.

4 Future work

In the future we could consider similar questions for abelian avoidability prob-
lems.
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