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Abstract. As is well-known, Axel Thue constructed an infinite word
over a 3-letter alphabet that contains no squares, that is, no nonempty
subwords of the form xx. In this paper we consider a variation on this
problem, where we try to avoid approximate squares, that is, subwords
of the form xx′ where |x| = |x′| and x and x′ are “nearly” identical.

1 Introduction

A hundred years ago, Norwegian mathematician Axel Thue initiated the study of
combinatorics on words [13, 14, 2]. One of his achievements was the construction
of an infinite word over a three-letter alphabet that contains no squares, that is,
no nonempty subwords of the form xx.

Many variations on this problem have been considered. For example, Bran-
denburg [3] and Dejean [5] considered the problem of avoiding fractional powers.
A word w is a α-power if it can be written in the form w = xny, where y is a
prefix of x and α = |w|/|x|. A word z contains an α-power if some subword is a
β-power, for β ≥ α; otherwise it avoids α-powers. Similarly, a word z contains an
α+-power if some subword is a β-power for β > α; otherwise it avoids α+-powers.
We say α-powers (resp. α+-powers) are avoidable over a k-letter alphabet if there
exists an infinite word over that alphabet avoiding α-powers (resp., α+-powers).

Dejean [5] improved Thue’s result by showing how to avoid (7/4)+-powers
over a 3-letter alphabet; this result is optimal, as every ternary word of length
≥ 39 contains a 7/4-power. Pansiot [12] showed how to avoid (7/5)+-powers over
a 4-letter alphabet. Again, this is optimal, as every quaternary word of length
≥ 122 contains a 7/5-power.

Dejean also proved that for k ≥ 5, one cannot avoid k/(k − 1)-powers over
a k-letter alphabet. She conjectured that it was possible to avoid (k/(k − 1))+-
powers over a k-letter alphabet. This conjecture was proved for 5 ≤ k ≤ 11 by
Moulin-Ollagnier, for 7 ≤ k ≤ 14 by Mohammad-Noori and Currie [9], and for
k ≥ 38 by Carpi [4]. The cases 15 ≤ k ≤ 37 remain open.
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Another variation is to avoid not all α-powers, but only sufficiently long
ones. Entringer, Jackson, and Schatz [6] showed how to construct a word over a
2-letter alphabet that avoids squares xx with |x| ≥ 3; here the number 3 is best
possible.

In this paper we consider yet another variation, but one that seems natural:
we consider avoiding approximate squares, that is, subwords of the form xx′

where x′ is “almost the same” as x. The precise definitions are given below. One
of our main results is a further strengthening of Dejean’s improvement on Thue
for 3 letters.

Approximate squares (also known as approximate tandem repeats in the bi-
ological literature) have been studied before, but from the algorithmic point of
view. Landau and Schmidt [7] and Kolpakov and Kucherov [8] both gave efficient
algorithms for finding approximate squares in a string.

Notation: we use Σk to denote the alphabet of k letters {0, 1, 2, . . . , k − 1}.

2 Approximate squares

There are at least two natural notions of approximate square. We define them
below.

For words x, x′ of the same length, define the Hamming distance d(x, x′) as
the number of positions in which x and x′ differ. For example, d(01203, 11002) =
2. We say that a word xx′ with |x| = |x′| is a c-approximate square if d(x, x′) ≤ c.
Using this terminology, for example, a 0-approximate square is a square, and a
1-approximate square is either a square or differs from a square in exactly one
position.

To avoid c-approximate squares, we would like to enforce the condition
d(x, x′) > c for all x, x′ of the same length, but clearly this is impossible if
|x| ≤ c. To avoid this technicality, we say a word z avoids c-approximate squares
if for all its subwords xx′ where |x| = |x′| we have d(x, x′) ≥ min(c+ 1, |x|).

This definition is an “additive” version; there is also a “multiplicative” ver-
sion. Given two words x, x′ of the same length, we define their similarity s(x, x′)
as the fraction of the number of positions in which x and x′ agree. Formally,

s(x, x′) :=
|x| − d(x, x′)

|x|
.

Thus for example, s(123456, 101406) = 1/2. The similarity of a finite word z is
defined to be α = max x,x′subwords of z

|x|=|x′|

s(x, x′); we say such a word is α-similar.

Thus, a 1-similar finite word contains a square.
For infinite words, the situation is slightly more subtle. We say an infi-

nite word z is α-similar if α = sup x,x′subwords of z

|x|=|x′|

s(x, x′) and there exists at

least one subword xx′ with |x| = |x′| and s(x, x′) = α. Otherwise, if α =
sup x,x′subwords of z

|x|=|x′|

s(x, x′), but α is not attained by any subword xx′ of z, then

we say z is α−-similar.
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As an example, consider the infinite word over Σ3,

c = 210201210120210201202 · · ·

defined to be the length of contiguous blocks of 1’s between consecutive 0’s in
the Thue-Morse sequence t. As is well-known, c is square-free, so it cannot be
1-similar. However, since t contains arbitrarily large squares, it follows that c
must contain arbitrarily large 1-approximate squares, and so c is 1−-similar.

3 Words of low similarity

The main problem of interest is,

Given an alphabet Σ of size k, what is the smallest similarity possible over
all infinite words over Σ? We call this the similarity coefficient of k.

Answering this question has two aspects. We can explicitly construct an
infinite word that is α-similar (or α−-similar). To show that α is best possible,
we can construct a tree of all finite words that are β-similar for β < α. The root
of this tree is labeled 0 (which suffices by symmetry), and if a node is labeled
w, its children are labeled wa for all a ∈ Σ. If a node is β-similar for some
β ≥ α, it becomes a leaf and no children are added. We can then use depth-first
or breadth-first search to explore this tree. The number of leaves of this tree
represents the (finite) number of words beginning with 0 that are β-similar for
β < α, and the height h of the tree is the length of the longest words with this
property. The number of leaves at depth h represent the number of maximal
words beginning with 0 that are β similar for some β < α.

We performed this computation for various alphabet sizes k, and the results
are reported below in Table 1. For k = 8, our method took advantage of some
symmetries to speed up the computation, and as a result, we did not compute the
number of leaves or maximal strings. For the reported values, these computations
represent a proof that the similarity coefficient is at least as large as the α
reported.

Similarity Height Number Number of Lexicographically
Alphabet Coefficient of of Maximal
Size k α Tree Leaves Words First Maximal Words

2 1 3 4 1 010

3 3/4 41 2475 36 01020120210120102120121020120210120102101

4 1/2 9 382 6 012310213

5 2/5 75 3902869 48 012304310342041340120314210412342012403410230420312340321024320410342140243

6 1/3 17 342356 480 01234150325143012

7 ? ? ? ? ?
8 1/4 71 — — 01234056731460251647301275634076213574102364075120435674103271564073142

Table 1. Similarity bounds
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For alphabet size k = 2, every infinite word is 1-similar. We now report on
larger alphabet sizes.

Theorem 1. There exists an infinite 3/4-similar word w over {0, 1, 2}.

Proof. Let h be the 24-uniform morphism defined by

0→ 012021201021012102120210

1→ 120102012102120210201021

2→ 201210120210201021012102.

The following lemma may be verified computationally.

Lemma 1. Let a, b, c ∈ {0, 1, 2}, a 6= b. Let w be any subword of length 24 of
h(ab). If w is neither a prefix nor a suffix of h(ab), then h(c) and w mismatch
in at least 9 positions.

Let w = hω(0). We shall show that w has the desired property. We argue by
contradiction. Suppose that w contains a subword yy′ with |y| = |y′| such that
y and y′ match in more than 3/4 · |y| positions. Let us suppose further that |y|
is minimal.

We may verify computationally that w contains no such subword yy′ where
|y| ≤ 72. We therefore assume from now on that |y| > 72.

Let w = a1a2 · · · an be a word of minimal length such that h(w) = xyy′z for
some x, z ∈ {0, 1, 2}∗. By the minimality of w, we have 0 ≤ |x|, |z| < 24.

For i = 1, 2, . . . , n, define Ai = h(ai). Then if h(w) = xyy′z, we can write

h(w) = A1A2 · · ·An = A′
1A

′′
1A2 · · ·Aj−1A

′
jA

′′
jAj+1 · · ·An−1A

′
nA

′′
n

where

A1 = A′
1A

′′
1

Aj = A′
jA

′′
j

An = A′
nA

′′
n

x = A′
1

y = A′′
1A2 · · ·Aj−1A

′
j

y′ = A′′
jAj+1 · · ·An−1A

′
n

z = A′′
n,

and |A′′
1 |, |A

′′
j | > 0. See Figure 1.

If |A′′
1 | > |A′′

j |, then, writing y and y′ atop one another, as illustrated in
Figure 2, one observes that for t = j + 1, j + 2, . . . , n − 1, each At “lines up”
with a subword, say Bt, of At−jAt−j+1. We now apply Lemma 1 to conclude
that each At mismatches with Bt in at least 9 of 24 positions. Consequently, y
and y′ mismatch in at least 9(j−2) positions. Since j ≥ |y|/24+1, we have that
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A1 A2 Aj−1 Aj+1 An−1

A′1 A′′1 A′j A′′j A′n A′′n

· · ·· · ·

y y′
Aj An

zx

Fig. 1. The string xyy′z within h(w)

· · ·

· · · A′n

A′j

An−1A′j+2Aj+1A′′j

A2A′′1

y′ =

y = Aj−1

Fig. 2. The case |A′′1 | > |A′′j |

9(j − 2) ≥ 9(|y|/24 − 1). However, 9(|y|/24 − 1) > |y|/4 for |y| > 72, so that y
and y′ mismatch in more than 1/4 · |y| positions, contrary to our assumption.

If |A′′
1 | < |A

′′
j |, as illustrated in Figure 3, then a similar argument shows that

y and y′ mismatch in more than 1/4 · |y| positions, contrary to our assumption.

· · · An−1Aj+1A′′j

Aj−1A2A′′1

A′n

A′jA′3 · · ·

y′ =

y =

Fig. 3. The case |A′′1 | < |A′′j |

Therefore |A′′
1 | = |A′′

j |. We first observe that any pair of words taken from
{h(0), h(1), h(2)} mismatch at every position. We now consider several cases.

Case 1:A1 = Aj = An. Then letting u = A1A2 · · ·Aj−1 and u′ = AjAj+1 · · ·An−1,
we see that u and u′ match in exactly the same number of positions as y and y′.

Case 2:A1 = Aj 6= An. Then letting u = A1A2 · · ·Aj−1 and u′ = AjAj+1 · · ·An−1,
we see that u and u′ match in at least as many positions as y and y′.

Case 3:A1 6= Aj = An. Then letting u = A2A3 · · ·Aj and u′ = Aj+1Aj+2 · · ·An,
we see that u and u′ match in at least as many positions as y and y′.

Case 4:A1 = An 6= Aj . Then letting u = A1A2 · · ·Aj−1 and u′ = AjAj+1 · · ·An−1,
we see that u and u′ match in exactly the same number of positions as y and y′.

Case 5: A1, Aj , and An are all distinct. Then letting u = A1A2 · · ·Aj−1 and
u′ = AjAj+1 · · ·An−1, we see that u and u′ match in exactly the same number
of positions as y and y′.

We finish the argument by considering the word uu′. First observe that either

uu′ = h(a1a2 · · · aj−1)h(ajaj+1 · · · an−1)
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or
uu′ = h(a2a3 · · · aj)h(aj+1aj+2 · · · an).

Without loss of generality, let us assume that the first case holds.
Recall our previous observation that the words h(0), h(1), and h(2) have

distinct letters at every position. Suppose then that there is a mismatch between
u and u′ occurring within blocks At and At+j for some t, 1 ≤ t ≤ j. Then At

and At+j mismatch at every position. Moreover, we have aj 6= aj+t. Conversely,
if At and At+j match at any single position, then they match at every position,
and we have at = at+j .

Let v = a1a2 · · · aj−1 and v′ = ajaj+1 · · · an−1. Let m be the number of
matches between u and u′. From our previous observations we deduce that the
number of matches m′ between v and v′ is m/24, but since |v| = |u|/24, m′/|v| =
m/|u|. Thus, if m/|u| > 3/4, as we have assumed, then m′/|v| > 3/4. But the
set {h(0), h(1), h(2)} is a code, so that vv′ is the unique pre-image of uu′. The
word vv′ is thus a subword of w, contradicting the assumed minimality of yy′.
We conclude that no such yy′ occurs in w, and this completes the argument that
w is 3/4-similar. ut

Next, we consider the case k = 4.

Theorem 2. There exists an infinite 1/2-similar word x over {0, 1, 2, 3}.

Proof. Let g be the 36-uniform morphism defined by

0→ 012132303202321020123021203020121310

1→ 123203010313032131230132310131232021

2→ 230310121020103202301203021202303132

3→ 301021232131210313012310132313010203.

Then x = gω(0) has the desired property. The proof is entirely analogous to that
of Theorem 1 and is omitted. ut

In our last result of this section, we show that we can obtain infinite words
of arbitrarily low similarity, provided the alphabet size is sufficiently large. The
main tool is the following [1, Lemma 5.1.1]:

Lemma 2 (Lovász Local Lemma; asymmetric version). Let I be a finite
set, and let {Ai}i∈I be events in a probability space. Let E be a set of pairs
(i, j) ∈ I× I such that Ai is mutually independent of all the events {Aj : (i, j) 6∈
E}. Suppose there exist real numbers {xi}i∈I , 0 ≤ xi < 1, such that for all i ∈ I,

Prob(Ai) ≤ xi

∏

(i,j)∈E

(1− xj).

Then

Prob

(

⋂

i∈I

Ai

)

≥
∏

i∈I

(1− xi) > 0.
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We now state our result.

Theorem 3. Let c > 1 be an integer. There exists an infinite 1/c-similar word.

Proof. Let k and N be positive integers, and let w = w1w2 · · ·wN be a random
word of length N over a k-letter alphabet Σ. Here each letter of w is chosen
uniformly and independently at random from Σ.

Let
I = {(t, r) : 0 ≤ t < N, 1 ≤ r ≤ b(N − t)/2c}.

For i = (t, r) ∈ I, write y = wt · · ·wt+r−1 and y′ = wt+r · · ·wt+2r−1. Let Ai

denote the event s(y, y′) > 1/c. A crude overestimate of Prob(Ai) is

Prob(Ai) ≤

(

r
dr/ce+1

)

kdr/ce+1k2r−2(dr/ce+1)

k2r

≤

(

r

dr/2e

)

k−r/c ≤ 2rk−r/c,

where the last inequality comes from Stirling’s approximation.
For all positive integers r, define ξr = 2−2r. For any real number α ≤ 1/2, we

have (1− α) ≥ e−2α. Hence, (1− ξr) ≥ e−2ξr . For i = (t, r) ∈ I, define xi = ξr.
Let E be as in the local lemma. Note that a subword of length 2r of w overlaps
with at most 2r + 2s − 1 subwords of length 2s. Thus, for all i = (t, r) ∈ I, we
have

xi

∏

(i,j)∈E

(1− xj) ≥ ξr

bN/2c
∏

s=1

(1− ξs)
2r+2s−1 ≥ ξr

∞
∏

s=1

(1− ξs)
2r+2s−1

≥ ξr

∞
∏

s=1

e−2ξs(2r+2s−1) ≥ 2−2r
∞
∏

s=1

e−2(2−2s)(2r+2s−1)

≥ 2−2r exp

[

−2

(

2r

∞
∑

s=1

1

22s
+

∞
∑

s=1

2s− 1

22s

)]

≥ 2−2r exp

[

−2

(

2r

(

1

3

)

+
5

9

)]

≥ 2−2r exp

(

−
4

3
r −

10

9

)

.

The hypotheses of the local lemma are met if 2rk−r/c ≤ 2−2r exp
(

− 4
3r −

10
9

)

.
Taking logarithms, we require r log 2− r

c log k ≤ −2r log 2− 4
3r−

10
9 . Rearranging

terms, we require c
(

3 log 2 + 4
3 + 10

9r

)

≤ log k. The left side of this inequality is
largest when r = 1, so we define d1 = 3 log 2+ 4

3+
10
9 , and insist that c·d1 ≤ log k.

Hence, for k ≥ ec·d1 , we may apply the local lemma to conclude that with positive
probability, w is 1/c-similar. Since N = |w| is arbitrary, we conclude that there
are arbitrarily large such w. By König’s Infinity Lemma, there exists an infinite
1/c-similar word, as required. ut
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4 Words avoiding c-approximate squares

In this section we consider the “additive” version of the problem. Table 2 reflects
our results using a backtracking algorithm: there is no infinite word over a k-
letter alphabet that avoids c-approximate squares, for the k and c given below.

Height Number Number of Lexicographically
Alphabet c of of Maximal
Size k Tree Leaves Words First Maximal Words

2 0 4 3 1 010

3 1 5 23 2 01201

4 2 7 184 6 0123012

5 2 11 3253 24 01234102314

6 3 11 35756 960 01234051230

7 4 13 573019 6480 0123450612340

8 5 15 - - 012345607123450
Table 2. Lower bounds on avoiding c-approximate squares

Theorem 4. There is an infinite word over a 3-letter alphabet that avoids 0-
approximate squares, and the 0 is best possible.

Proof. Any ternary word avoiding squares, such as the fixed point, starting with
2, of 2→ 210, 1→ 20, 0→ 1, satisfies the conditions of the theorem. The result
is best possible, from Table 2. ut

Theorem 5. There is an infinite word over a 4-letter alphabet that avoids 1-
approximate squares, and the 1 is best possible.

Proof. Let c be any squarefree word over {0, 1, 2}, and consider the image under
the 48-uniform morphism γ defined by

0→ 012031023120321031201321032013021320123013203123

1→ 012031023120321023103213021032013210312013203123

2→ 012031023012310213023103210231203210312013203123

The resulting word d = γ(c) avoids 1-approximate squares. The result is best
possible, from Table 2.

The proof is similar to that of Theorem 1. Suppose to the contrary that d
contains a 1-approximate square yy′, |y| = |y′|. We may verify computationally
that d contains no such subword yy′ where |y| ≤ 96. We therefore assume from
now on that |y| > 96.

Let w = a1a2 · · · an be a word of minimal length such that γ(w) = xyy′z for
some x, z ∈ {0, 1, 2, 3}∗. By the minimality of w, we have 0 ≤ |x|, |z| < 48.
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For i = 1, 2, . . . , n, define Ai = γ(ai). Just as in the proof of Theorem 1, we
write

γ(w) = A1A2 · · ·An = A′
1A

′′
1A2 · · ·Aj−1A

′
jA

′′
jAj+1 · · ·An−1A

′
nA

′′
n,

so that the situation illustrated in Figure 1 applies to xyy′z within γ(w). We
now make the following observations regarding the morphism γ:

1. Let a, b, c ∈ {0, 1, 2}, a 6= b. Let u be any subword of length 48 of γ(ab). If u
is neither a prefix nor a suffix of γ(ab), then γ(c) and u mismatch in at least
18 positions.

2. Let a, b ∈ {0, 1, 2}, a 6= b. Then γ(a) and γ(b) mismatch in at least 18
positions.

3. Let u, u′, v, v′ be words satisfying the following:
– |u| = |u′|, |v| = |v′|, and |uv| = |u′v′| = 48;
– each of u and u′ is a suffix of a word in {γ(0), γ(1), γ(2)}; and
– each of v and v′ is a prefix of a word in {γ(0), γ(1), γ(2)}.

Then either uv = u′v′ or uv and u′v′ mismatch in at least 18 positions.
4. Let a ∈ {0, 1, 2}. Then γ(a) is uniquely determined by either its prefix of

length 17 or its suffix of length 17.

From the first observation, we deduce, as in the proof of Theorem 1, that the
cases illustrated by Figures 2 and 3 cannot occur. In particular, we have that
|A′′

1 | = |A
′′
j | and |A

′
j | = |A

′
n|.

From the second observation, we deduce that for i = 2, 3, . . . , j − 1, Ai =
Ai+j−1, and consequently, ai = ai+j−1.

From the third observation, we deduce that A′′
1 = A′′

j and A′
j = A′

n.
From the fourth observation, we deduce that either A1 = Aj or Aj = An.

If A1 = Aj , then a1 = aj ; if Aj = An, then aj = an. In the first case,
a1a2 · · · aj−1ajaj+1 · · · an−1 is a square in c, contrary to our assumption. In the
second case, a2a3 · · · ajaj+1aj+2 · · · an is a square in c, contrary to our assump-
tion.

We conclude that d contains no 1-approximate square yy′, as required. ut

Theorem 6. There is an infinite word over a 6-letter alphabet that avoids 2-
approximate squares, and the 2 is best possible.

Proof. Let c be any squarefree word over {0, 1, 2}, and consider the image under
the 6-uniform morphism β defined by

0→ 012345; 1→ 012453; 2→ 012534.

The resulting word avoids 2-approximate squares. The result is best possible,
from Table 2.

The proof is similar to that of Theorem 5, so we only note the properties of
the morphism β needed to derive the result:

1. Let a, b, c ∈ {0, 1, 2}, a 6= b. Let u be any subword of length 6 of β(ab). If u
is neither a prefix nor a suffix of β(ab), then β(c) and u mismatch in at least
3 positions.
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2. Let a, b ∈ {0, 1, 2}, a 6= b. Then β(a) and β(b) mismatch in at least 3
positions.

3. Let u, u′, v, v′ be words satisfying the following:

– |u| = |u′|, |v| = |v′|, and |uv| = |u′v′| = 6;
– each of u and u′ is a suffix of a word in {β(0), β(1), β(2)}; and
– each of v and v′ is a prefix of a word in {β(0), β(1), β(2)}.

Then either uv = u′v′ or uv and u′v′ mismatch in at least 3 positions.
4. Let a ∈ {0, 1, 2}. Then β(a) is uniquely determined by either its prefix of

length 4 or its suffix of length 1.
ut

Further results on additive similarity are summarized in the next theorem.

Theorem 7. For each k, n, d given below, there is an infinite word over a k-
letter alphabet that avoids n-approximate squares, and in each case such an in-
finite word can be generated by applying the given d-uniform morphism to any
infinite squarefree word over {0, 1, 2}. (Note that we have used the coding A = 10,
B = 11, etc. )

k n d Morphism

7 3 14 0→ 01234056132465

1→ 01234065214356

2→ 01234510624356

8 4 16 0→ 0123456071326547

1→ 0123456072154367

2→ 0123456710324765

9 5 36 0→ 012345607821345062718345670281346578

1→ 012345607182346750812347685102346578

2→ 012345607182346510872345681702346578

11 6 20 0→ 012345670A812954768A

1→ 0123456709A1843576A9

2→ 01234567089A24365798

12 7 24 0→ 012345678091AB2354687A9B

1→ 012345678091A3B4257689AB

2→ 012345678091A2B3465798AB

13 8 26 0→ 01234567890A1BC24635798BAC

1→ 01234567890A1B3C4257689ABC

2→ 01234567890A1B2C354687A9BC

14 9 28 0→ 0123456789A0B1DC32465798BDAC

1→ 0123456789A0B1DC243576A98DBC

2→ 0123456789A0B1CD325468A79CBD

15 10 30 0→ 0123456789AB0D1CE3246579B8ACDE

1→ 0123456789AB0D1CE2435768A9DCBE

2→ 0123456789AB0CED32154687BA9DEC
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In each case, the proof is similar to the ones given previously, and is omitted.

Theorem 8. For all integers n ≥ 3, there is an infinite word over an alphabet
of 2n letters that avoids (n− 1)-approximate squares.

Proof. Consider the 2n-uniform morphism h : Σ∗
3 → Σ∗

2n defined as follows:

0→ 012 · · · (n− 1)n · · · (2n− 1)

1→ 012 · · · (n− 1)(n+ 1)(n+ 2) · · · (2n− 1)n

2→ 012 · · · (n− 1)(n+ 2)(n+ 3) · · · (2n− 1)n(n+ 1)

We claim that if w is any squarefree word over Σ3, then h(w) has the desired
properties. The proof is a simple generalization of Theorem 6. ut

5 Another variation

Yet another variation we can study is trying to avoid xx′ where x is very similar
to x′, but only for sufficiently large x. Let us say that a finite word is (n, α)-
similar if α = sup x,x′subwords of z

|x|=|x′|≥n

s(x, x′), and analogous definitions for infinite

z.
Exercise 5.8.1 of Alon and Spencer [1] asks the reader to show, using the

Lovász local lemma that, (in our language) for every ε > 0, there exists an
infinite binary word z and an integer c such that z is (c, α)-similar for some
α ≤ 1

2 + ε.

Theorem 9. 1
2 is best possible in the previous result.

Proof. Suppose 1
2 is not best possible. Then there exists an infinite binary word

z and a positive integer c, such that any subword xx′ of z with |x| = |x′| ≥ c
satisfies s(x, x′) < 1

2 . Consider a subword of z of the form xx′yy′, with |x| =
|x′| = |y| = |y′| = c. By our assumption, s(x, x′) < 1

2 and s(x′, y) < 1
2 ; hence,

since z is defined over a binary alphabet, necessarily s(x, y) > 1
2 . Similarly, we

must have s(x′, y′) > 1
2 . But then by definition of s,

2c · s(xx′, yy′) = c · s(x, y) + c · s(x′, y′) >
c

2
+

c

2
= c,

and so s(xx′, yy′) > 1
2 , a contradiction to our assumption. ut

6 Edit distance

There are many definitions of edit distance, but for our purposes, we say the edit
distance e(x, y) = c if x can be transformed into y by a sequence of c insertions,
deletions, or replacements, and no sequence of c − 1 insertions, deletions, or
replacements suffices.

We can expand our notion of approximate square to avoid all words that are
within edit distance c of all squares.
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For example, consider the case c = 1. Then every word of length 1, say a, is
within edit distance 1 of a square, as we can simply insert a to get aa. Similarly,
every word of length 2, say ab, is within edit distance 1 of a square, as we can
simply replace the b by a to get aa. Thus we need to restrict our attention to
avoiding words that are within edit distance c of all sufficiently large squares.

Theorem 10. There is an infinite word over 5 letters such that all subwords x
with |x| ≥ 3 are neither squares, nor within edit distance 1 of any square. There
is no such word over 4 letters.

Proof. The usual tree traversal technique shows there is no such word over 4
letters Over 5 letters we can use the 5-uniform morphism h defined by

0→ 01234; 1→ 02142; 2→ 03143.

We claim the image of every square-free word under h has the desired prop-
erty. Details will appear in the final paper. ut
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