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Abstract

Thue proved that the factors occurring infinitely many times in square-free
words over {0,1,2} avoiding the factors in {010,212} are the factors of the
fixed point of the morphism 0 7→ 012, 1 7→ 02, 2 7→ 1. He similarly character-
ized square-free words avoiding {010,020} and {121,212} as the factors of two
morphic words. In this paper, we exhibit smaller morphisms to define these two
square-free morphic words and we give such characterizations for six types of
binary words containing few distinct squares.

1. Introduction

Let Σk denote the k-letter alphabet {0,1, . . . , k-1}. Let ε denote the empty
word. A finite word is recurrent in an infinite word w if it appears as a factor of
w infinitely many times. An infinite word w is recurrent if all its finite factors
are recurrent in w. If a morphism f is such that f(0) starts with 0, then the
fixed point of f is the unique word w = f∞(0) starting with 0 and satisfying
w = f(w). An infinite word is pure morphic if it is the fixed point of a morphism.
An infinite word ismorphic if it is the image g(f∞(0)) by a morphism g of a pure
morphic word f∞(0). The factor complexity of an infinite word or a language is
the number of factors of length n of the infinite word or the language. A pattern
P is a finite word of variables over the alphabet {A,B, . . .}. A word w (finite
or infinite) avoids a pattern P if for every substitution φ of the variables of P
with non-empty words, φ(P ) is not a factor of w. Given a finite alphabet Σk, a
finite set P of patterns, and a finite set F of factors over Σk, we say that P ∪F
characterizes a morphic word w over Σk if w avoids P ∪F and every recurrent
factor of an infinite word avoiding P ∪F is a factor of w. In other words, P ∪F
characterizes w if and only if every recurrent word over Σk avoiding P ∪ F has
the same set of factors as w. In our results, we do not specify the alphabet size
k since Σk corresponds to the set of letters appearing in F . A repetition is a
factor of the form r = unv where u is non-empty and v is a prefix of u. Then
|u| is the period of the repetition r and its exponent is |r|/|u|. A square is a
repetition of exponent 2. Equivalently, it is an occurrence of the pattern AA.
An overlap is a repetition with exponent strictly greater than 2.

Thue [3, 10, 11] gave the following characterization of overlap-free binary
words: {ABABA} ∪ {000,111} characterizes the fixed point of the morphism
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0 7→ 01, 1 7→ 10. Concerning ternary square-free words, he proved that

• {AA} ∪ {010,212} characterizes the fixed point of f3 : 0 7→ 012, 1 7→ 02,
2 7→ 1,

• {AA} ∪ {010,020} characterizes the morphic word T1(f∞T (0)),

• {AA} ∪ {121,212} characterizes the morphic word T2(f∞T (0)),

where the morphisms fT , T1, and T2 are given below.

fT (0) = 012,
fT (1) = 0432,
fT (2) = 0134,
fT (3) = 013432,
fT (4) = 0434.

T1(0) = 01210212,
T1(1) = 01210120212,
T1(2) = 01210212021,
T1(3) = 012102120210120212,
T1(4) = 0121012021.

T2(0) = 021012,
T2(1) = 02102012,
T2(2) = 02101201,
T2(3) = 0210120102012,
T2(4) = 0210201.

To obtain the last two results, Thue first proved that f∞T (0) is characterized
by {AA}∪ {02,03,10,14,21,23,24,30,31,41,42,040,132,404,1201,2012}.

In this paper, we prove such characterizations mostly for the binary words
considered by the first author [1]. We also obtain smaller morphisms for Thue’s
words avoiding {AA} ∪ {010,020} and {AA} ∪ {121,212} as well as a char-
acterization for words avoiding the patterns AABBCC (i.e., three consecutive
squares), ABCABC and a finite set of factors. The results are summarized in
Table 1. The first column shows the description of the considered language given
in the literature. It is either given by forbidden sets of patterns and factors,
or by the notation (e, n,m), which means that we consider the binary words
avoiding repetitions with exponent strictly greater than e, containing exactly n
distinct repetitions with exponent e as a factor, and containing the minimum
number m of distinct squares. We use the notation SQt for the pattern corre-
sponding to squares with period at least t, that is, SQ1 = AA, SQ2 = ABAB,
SQ3 = ABCABC, and so on. These languages actually have an equivalent defi-
nition with one forbidden pattern SQt and a finite set of forbidden factors. This
standardized definition, given in the second column, is more suited for proving
the characterization. The third column gives the corresponding morphic word.
The fourth column indicates the section containing the corresponding set Fxx

and morphism gxx.
To define a morphic word g(f∞(0)), we allow that g is an erasing morphism,

i.e., that the g-image of a letter is empty. Notice that replacing g by hc =
g ◦ f c defines the same morphic word, and that hc is non-erasing for some small
constant c.

The proofs are obtained by computer using the technique described in the
next section. An example of proof by hand is given for Theorem 3. The morphic
words in Table 1 are gathered according the pure morphic word they are built on.
We introduce in Section 3 a pure morphic word f∞5 (0) similar to Thue’s word
f∞T (0) and we characterize some of its morphic images. Section 4 is devoted to
characterizations of some morphic images of Thue’s ternary pure morphic word
f∞3 (0).
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Original Standardized Morphic Section
form form word
{AA} ∪ {010,020} {AA} ∪ {010,020} M1(f∞

5 (0)) 3.1
{AA} ∪ {121,212} {AA} ∪ {121,212} M2(f∞

5 (0)) 3.1
(5/2, 2, 8) {SQ7} ∪ F8 g8(f∞

5 (0)) 3.2
(7/3, 2, 12) {SQ9} ∪ F12 g12(f∞

5 (0)) 3.3
(7/3, 1, 14) {SQ9} ∪ F14 g14(f∞

5 (0)) 3.4
{AABBCC, SQ3} ∪ F ′

cs {SQ3} ∪ Fcs gcs(f∞
5 (0)) 3.5

(5/2, 1, 11) {SQ5} ∪ F11 g11(f∞
3 (0)) 4.1

(3, 2, 3) ∪ F ′
3 {SQ3} ∪ F3 g3(f∞

3 (0)) 4.2
{AABBCABBA} ∪ {0011,1100} {SQ5} ∪ Fq gq(f∞

3 (0)) 4.3

Figure 1: Table of results

2. Characterizing a morphic word

A morphism f : Σ∗k → Σ∗k is primitive if there exists n ∈ N such that fn(a)
contains b for every a, b ∈ Σk. We are given a primitive morphism f : Σ∗k → Σ∗k,
a morphism g : Σ∗k → Σ∗k′ , and a finite set of factors Fm ⊂ Σ∗k′ . We want to
prove that g(f∞(0)) is characterized by {SQt} ∪ Fm.

We assume that g(f∞(0)) avoids {SQt} ∪ Fm. This can be checked using
Cassaigne’s algorithm [5] that determines if a morphic word defined by circular
morphisms avoids a given pattern with constants. We refer to Cassaigne [5] for
the definitions of circular morphisms, synchronization point, and synchroniza-
tion delay. We can use an online implementation [4] of this algorithm. We also
assume that the pure morphic word f∞(0) is characterized by {AA} ∪ Fp for
some finite set of factors Fp ⊂ Σ∗k.

We compute the smallest integer c such that min {|g(f c(a))|, a ∈ Σk} > t.
This c exists because f is primitive. We can consider the morphism g′ = g ◦ f c
instead of g since we have g′(f∞(0)) = g(f∞(0)).

First, we check that g′ is circular. Then, we compute the set Sl of words v
such that there exists a word pvs ∈ Σ∗k′ avoiding {SQt} ∪ Fm, where
l = max {|u|, u ∈ Fp} × max {|g′(a)|, a ∈ Σk}, |v| = l, and |p| = |s| = 4l. To
do this, we simply perform a depth-first exploration of the words of length 9l
avoiding {SQt} ∪ Fm and for each of them, we put the central factor of length
l in Sl. The running time of this brute-force approach is not so prohibitive
precisely because the characterization implies a polynomial factor complexity.
Finally, we check that every word in Sl is a factor of g′(f∞(0)).

This implies that an infinite word over Σk′ avoiding {SQt} ∪ Fm is the g′-
image of an infinite word w ∈ Σ∗k. Now w is square-free, since otherwise g′(w)
would contain a square of period at least t. Also w does not contain a word
y ∈ Fp, because g′(y) is a word of length at most l that is not a factor of any
word in Sl. So w avoids {AA} ∪ Fp, and thus has the same set of factors as
f∞(0). Thus, every infinite recurrent word over Σk′ avoiding {SQt} ∪ Fm has
the same set of factors as g′(f∞(0)).

The programs we used are available at
http://www.lirmm.fr/~ochem/morphisms/characterization.htm .
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3. A pure morphic word over Σ5

We define the morphism f5 from Σ∗5 to Σ∗5 as follows:

f5(0) = 01,
f5(1) = 23,
f5(2) = 4,
f5(3) = 21,
f5(4) = 0.

We also define the set

F5 = {02, 03, 13, 14, 20, 24, 31, 32, 40, 41, 43, 121, 212, 304, 3423, 4234} .

Theorem 1. {AA} ∪ F5 characterizes f∞5 (0).

Proof. We adapt the method of the previous section for morphic words to the
pure morphic word f∞5 (0) by setting g = g′ = f5 and Fm = Fp = F5. We set
l = max {|u|, u ∈ F5} × max {|f5(a)|, a ∈ Σk} = 8. We compute the set Sl of
words v such that there exists a word pvs ∈ Σ∗5 avoiding squares and F5 with
|v| = l and |p| = |s| = 4l. Then we check that every word in Sl is a factor of
f∞5 (0).

The morphism f5 is circular with synchronization delay 1. Indeed, for every
factor of length 1 of the f5-image of some word, we can insert at least one
synchronization point | between letter images:

0 implies |0,
1 implies 1|,
2 implies |2,
3 implies 3|,
4 implies |4|.

This implies that every infinite recurrent word over Σ5 avoiding {AA} ∪ F5

is the f5-image of some infinite recurrent word w over Σ5. Notice that w must
be square-free, since otherwise f5(w) would not avoid squares. Now suppose
that w contains a factor y ∈ F5. Then f5(y) must appear as a factor in Sl since
|f5(y)| 6 8 = l. Every word in Sl is a factor of f∞5 (0), so f5(y) should also be
a factor of f∞5 (0), which is a contradiction. So w avoids squares and F5, which
implies by induction that it has the same set of factors as f∞5 (0). Finally, we
have that every infinite recurrent word over Σ5 avoiding {AA} ∪ F5 is of the
form f5(w) where w has the same set of factors as f∞5 (0), so that f5(w) also
has the same set of factors as f∞5 (0).

Since many morphic words in this paper are obtained as the image of f∞5 (0),
let us state some of its properties. In f∞5 (0), the letters 0, 1, and 2 have
frequency

√
5− 2 and the letters 3 and 4 have frequency

(
7− 3

√
5
)
/2. Notice

that {AA}∪F5, and thus the set of factors of f∞5 (0), is invariant by the operation
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consisting in reversing the word and exchanging 3 and 4. This is trivially true
for squares. For a word in F5, say 40, we obtain 04 by reversing the word and
we obtain 03 by exchanging 3 and 4, then we have that F5 contains indeed 03.
The factor complexity of f∞5 (0) seems to be 4n+1 for every factor length n > 0.

3.1. Smaller morphisms for Thue’s words
Let M1 and M2 be the morphisms from Σ∗5 to Σ∗3 defined by

M1(0) = 012,
M1(1) = 1,
M1(2) = 02,
M1(3) = 12,
M1(4) = ε.

M2(0) = 02,
M2(1) = 1,
M2(2) = 0,
M2(3) = 12,
M2(4) = ε.

Theorem 2.

• {AA} ∪ {010, 020} characterizes the morphic word M1(f∞5 (0)),

• {AA} ∪ {121, 212} characterizes the morphic word M2(f∞5 (0)).

Thue noticed that every word avoiding {AA} ∪ {121,212} can be obtained
from a word avoiding {AA}∪{010,020} by deleting the letter immediately after
each occurrence of the letter 0. This property is easy to check by comparingM2

to M1 and it explains why the same pure morphic word is used for both types
of words. The morphisms M1 and M2 are the smallest possible. However, the
morphisms M ′1 = M1 ◦ f5 and M ′2 = M2 ◦ f5 given below provide additional
insight.

M ′1(0) = 0121,
M ′1(1) = 0212,
M ′1(2) = ε,
M ′1(3) = 021,
M ′1(4) = 012.

M ′2(0) = 021,
M ′2(1) = 012,
M ′2(2) = ε,
M ′2(3) = 01,
M ′2(4) = 02.

The morphismM ′1 exhibits natural properties of words avoiding {AA}∪{010,020}
and of M1(f∞5 (0)):

• The set {0121,0212,012,021} is a code for words avoiding {AA}∪{010,020}.

• The asymptotic frequencies of the factors 121 and 212 are equal since the
letters 1 and 2 are symmetrical for words avoiding {AA} ∪ {010,020}.

• Similarly, the asymptotic frequencies of 0120 and 0210 are equal.

• By applying the symmetry of the factors of f∞5 (0) toM ′1, that is, reversing
the M ′1-images of every letter and exchanging 3 and 4, we obtain the
conjugate morphism of M ′1 such that the common prefix 0 becomes the
common suffix.

Except for the last, similar remarks hold for M ′2. The factor complexity of
M1(f∞5 (0)) and M2(f∞5 (0)) seems to be 4n− 2 for every factor length n > 2.
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3.2. Words containing two 5/2-repetitions and 8 squares
If an infinite binary word contains the repetitions 01010 and 10101 of ex-

ponent 5/2 and no other overlap, then it contains at least 8 distinct squares.
Moreover, if it contains exactly 8 distinct squares, then these 8 squares are 02,
12, (01)2, (10)2, (0110)2, (1001)2, (011001)2, (100110)2. Equivalently, a re-
current binary word containing these overlaps and squares avoids SQ7 and the
set

F8 = {000,111,00100,11011,010010,010101,101010,101101,00110011,
11001100,1011001011,0100110100}.

Let g8 be the morphism from Σ∗5 to Σ∗2 defined by

g8(0) = 011,
g8(1) = 0,
g8(2) = 01,
g8(3) = ε,
g8(4) = ε.

Theorem 3. {SQ7} ∪ F8 characterizes g8(f∞5 (0)).

Proof. We assume that g8(f∞5 (0)) avoids SQ7 and F8 and we prove the other
direction of Theorem 3. That is, we suppose that G8 is an infinite recurrent
word avoiding {SQ7} ∪ F8 and we show that every factor of G8 is a factor of
g8(f∞5 (0)). We consider the morphism g′8 = g8 ◦ f55 given below instead of g8
because we have min {|g′8(a)|, a ∈ Σ5} = 9 > 7 = t, as specified in the method.

g′8(0) = 011001010011010110011010,
g′8(1) = 011001011001101,
g′8(2) = 011001010,
g′8(3) = 0110010110011010,
g′8(4) = 01100101001101.

Let p = 01100101 be the common prefix of the factors g′8(a) for a ∈ Σ5. It is
easy to check that every occurrence of p in the g′8-image of a word is the prefix
of g′8-image of a letter. So g′8 has bounded synchronization delay. Moreover, a
computer check shows that the factors of G8 are factors of the g′8-image of a
word. Let L ⊂ Σ∗5 denote the language of words whose g′8-image is a factor of
G8. We show that L is the set of factors of f∞5 (0). Suppose that L contains a
square uu for some u ∈ Σ+

5 . Then G8 contains the square g′8(uu) with period
|g′8(u)| > 9. This is a contradiction since G8 avoids SQ7, so L is square-free.

Now, for every w ∈ F5, we suppose that w ∈ L and obtain a contradiction:

• w ∈ {02,32}: g′8(02)p and g′8(32)p both contain the square 1g′8(2)p =
(001100101)2 with period 9 as a suffix.

• w = 03: g′8(03)p contains the square (1001101001100101)2 with period
16 as a suffix.
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• w ∈ {13,41,43}: A common suffix of g′8(1) and g′8(4) is 1. A common
prefix of g′8(1) and g′8(3) is 011001011. So, in every case, g′8(w) contains
the factor 1011001011 ∈ F8.

• w = 14: g′8(14)p contains the square (00110101100101)2 with period 14
as a suffix.

• w ∈ {20,24}: g′8(20) and g′8(24) both contain the square g′8(22) with
period 9 as a prefix.

• w = 31: g′8(31)p contains the square g′8(33) with period 16 as a prefix.

• w = 40: g′8(40) contains the square g′8(44) with period 14 as a prefix.

• w = 304: g′8(304) = 0110(010110011010011001010011)201 contains a
square with period 24.

• w = 121: Since L is square-free and avoids {13,14}, L must contain 1210.
However, g′8(1210) contains the square g′8(1212) with period 24 as a prefix.

• w = 212: Since L is square-free and avoids {20,24}, L must contain 2123.
However, g′8(2123) contains the square g′8(2121) with period 24 as a prefix.

• w = 3423: Since L is square-free and avoids {03,13,43}, L must contain
23423. Since L is square-free and avoids {31,32}, L must contain 234230.
However, g′8(234230) contains the square g′8(234234) with period 39 as a
prefix.

• w = 4234: Since L is square-free and avoids {40,41,43}, L must contain
42342. Since L is square-free and avoids {20,24}, L must contain 423421.
However, g′8(423421)p contains the square g′8(423423) with period 39 as
a prefix.

Therefore L is square-free and does not contain a factor in F5, thus L is the
set of factors as f∞5 (0) by Theorem 1.

Notice that the last part of the proof above (that every word in Fp is a
forbidden factor in L) differs from the computer check described in Section 2.
The proof by hand exhibits a forbidden factor in {SQt} ∪ Fm for every word
in Fp. The computer check does the contrapositive: It lists all words avoiding
{SQt}∪Fm of some sufficient length and checks that they are g′-images of some
word avoiding {AA} ∪ Fp.

The factor complexity of g8(f∞5 (0)) seems to be 4n−6 for every factor length
n > 3.
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3.3. Words containing two 7/3-repetitions and 12 squares
If an infinite binary word contains the repetitions 0110110 and 1001001 of

exponent 7/3 and no other overlap, then it contains at least 12 distinct squares.
Moreover, if it contains exactly 12 distinct squares, then these 12 squares are
02, 12, (01)2, (10)2, (001)2, (010)2, (011)2, (100)2, (101)2, (110)2, (01101001)2,
(10010110)2. Equivalently, a recurrent binary word containing these overlaps
and squares avoids SQ9 and the set

F12 = {000,111,01010,10101,001100,110011,0010010,0100100,1011011,
1101101,0011010011,0101100101,1010011010,1100101100,
01001011010010}.

Let g12 be the morphism from Σ∗5 to Σ∗2 defined by

g12(0) = 01,
g12(1) = 0,
g12(2) = 011,
g12(3) = ε,
g12(4) = ε.

Theorem 4. {SQ9} ∪ F12 characterizes g12(f∞5 (0)).

The factor complexity of g12(f∞5 (0)) seems to be 4n − 6 for every factor
length n > 3.

3.4. Words containing one 7/3-repetition and 14 squares
If an infinite binary word contains the repetition 1001001 of exponent 7/3

and no other overlap, then it contains at least 14 distinct squares. Moreover, if
it contains exactly 14 distinct squares, then these 14 squares are 02, 12, (01)2,
(10)2, (001)2, (010)2, (100)2, (101)2, (0110)2, (1001)2, (100110)2, (0100110)2,
(0110010)2, and (10010110)2. Equivalently, a recurrent binary word containing
these overlaps and squares avoids SQ9 and the set

F14 = {000,111,11011,010101,101010,0010010,0100100,00110011,
11001100,101001101,101100101,0100101101,1100101100,
001001100100,010011010011,0011001001100,1011010010110011}.

Let g14 be the morphism from Σ∗5 to Σ∗2 defined by

g14(0) = 01,
g14(1) = 00110,
g14(2) = 1,
g14(3) = 0010110,
g14(4) = 0110.

Theorem 5. {SQ9} ∪ F14 characterizes g14(f∞5 (0)).

The factor complexity of g14(f∞5 (0)) seems to be 4n − 1 for every factor
length n > 11.
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3.5. Words avoiding AABBCC
The second author proved that the pattern AABBCC, i.e., three consecutive

squares, can be avoided over the binary alphabet [8]. More precisely, there exist
exponentially many binary words avoiding both AABBCC and SQ3. However,
if we forbid also the factors in

F ′cs = {0001110010110,0110100111000,1001011000111,1110001101001} ,

we obtain a characterization of the morphic word gcs(f∞5 (0)), where gcs is the
morphism from Σ∗5 to Σ∗2 defined by

gcs(0) = 00101100011010,
gcs(1) = 0111,
gcs(2) = 0010111010,
gcs(3) = 011100011010,
gcs(4) = 001011000111.

The word gcs(f∞5 (0)) avoids SQ3 and the set

Fcs = {0000,1111,01010,10101,011001,100110,0011101,1011100,
1100010,00010111,11101000,0001110010110,0110100111000,
1001011000111,1110001101001}

Theorem 6. {AABBCC,SQ3}∪F ′cs and {SQ3}∪Fcs both characterize gcs(f∞5 (0)).

The factor complexity of gcs(f∞5 (0)) seems to be 4n + 4 for every factor
length n > 6.

4. Thue’s ternary pure morphic word

Thue [3, 10, 11] proved that {AA}∪{010,212} characterizes the fixed point
of f3. In this section, we give characterizations of three words that are mor-
phic images of f∞3 (0). It is not surprising that f∞3 (0) appears in the con-
text of characterizations: as soon as a morphism m is such that m(0) = axb
and m(1) = ab, the m-image of words of the form 0u1u0, u ∈ Σ∗3, contains a
large square: m(0u1u0) = axbm(u)abm(u)axb contains (bm(u)a)2. Moreover, a
ternary square-free word avoids factors of the form 0u1u0 with u ∈ Σ∗3 if and
only if it avoids {010, 212} [9]. So, the set of factors of a factorial langage con-
taining only square-free factors in {m(0),m(1),m(2)}∗ such that m(0) = axb
and m(1) = ab is the set of factors of m(f∞3 (0)). It is also easy to check that
{AA}∪{010,212} characterizes the same ternary word as {AA}∪{1021,1201}.

4.1. Words containing one 5/2-repetition and 11 squares
If an infinite binary word contains the repetition 10101 of exponent 5/2 and

no other overlap, then it contains at least 11 distinct squares. Moreover, if
it contains exactly 11 distinct squares, then these 11 squares are 02, 12, (01)2,
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(10)2, (001)2, (010)2, (011)2, (100)2, (101)2, (110)2, (01100110)2. Equivalently,
a recurrent binary word containing these overlaps and squares avoids SQ7 and
the set

F11 = {000,111,01010,001100,0010010,0100100,1011011,1101101}.

Let g11 be the morphism from Σ∗3 to Σ∗2 defined by

g11(0) = 1001001101011001101001011001001101100
101101001101100100110100101100110101,

g11(1) = 100100110100101,
g11(2) = 1001001101100101101001101.

Theorem 7. {SQ5} ∪ F11 characterizes g11(f∞3 (0)).

4.2. Words containing 3 squares
It is known that there exist exponentially many binary words containing

only 3 distinct squares [7, 8]. Without loss of generality, we assume that these
3 squares are 00, 11, and 1010. To obtain a characterization, we forbid also
the factors in F ′3 = {01000110,10011101,1001101000,1110100110}. If w is a
recurrent binary word avoiding F ′3 and squares distinct from 00, 11, and 1010,
then w avoids SQ3 and the set

F3 = {0000,0101,1111,01000110,10011101,1001101000,1110100110}.

Let g3 be the morphism from Σ∗3 to Σ∗2 defined by

g3(0) = 000111,
g3(1) = 0011,
g3(2) = 01001110001101.

Theorem 8. {SQ3} ∪ F3 characterizes g3(f∞3 (0)).

4.3. Words avoiding AABBCABBA
Another characterization has been obtained by the second author [9]:

{AABBCABBA} ∪ {0011,1100} characterizes gq(f∞3 (0)), where gq is given
below.

gq(0) = 0010110111011101001,
gq(1) = 00101101101001,
gq(2) = 00010.

Equivalently, gq(f∞3 (0)) is characterized by {SQ5} ∪ Fq where

Fq = {0000,0011,1100,1111,01010,10101,010111,101000,0001001,
1110110,00100100,01011010,10100101,11011011,0110111010,1001000101}
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5. Concluding remarks

We have seen in Section 4 why f∞3 (0) appears often in the context of char-
acterization. Also, we have seen in Section 3.1 why Thue’s words avoiding
{AA} ∪ {010,020} and {AA} ∪ {121,212} use the same pure morphic word
f∞5 (0). However, we do not see why f∞5 (0) is used in other “natural” languages.
It would be interesting to investigate its properties, in particular to prove that
its factor complexity is 4n+ 1 and that its critical exponent is (5 +

√
5)/4.

The fixed point of 0 7→ 01, 1 7→ 0, known as the Fibonacci word, seems to
have the same set of factors as gfib(f∞5 (0)), where gfib is given below. Moreover,
the Rote-Fibonacci word studied in [6] seems to have the same set of factors as
grf(f

∞
5 (0)), where grf is given below.

gfib(0) = 01,
gfib(1) = 0,
gfib(2) = 1,
gfib(3) = 0,
gfib(4) = 0.

grf(0) = 01,
grf(1) = 10,
grf(2) = ε,
grf(3) = 11,
grf(4) = 00.

The method discussed in this paper is not able to prove such equivalences
because the languages are not defined by avoiding large squares and a finite set
of factors. Maybe it can be proven by the method used in [6] to recover many
known results about the Fibonacci word.

Baker, McNulty, and Taylor [2] obtained that ABXBAY ACZCAWBC ∪
{02} characterizes the fixed point of 0 7→ 01, 1 7→ 21, 2 7→ 03, 3 7→ 23 over
Σ4. Notice that the forbidden factor 02 is not crucial here, its only role is to
distinguish one out of three symmetric versions obtained by permutation of the
alphabet letters. So, characterizations are known for the patterns AA, ABABA,
ABCABC, AABBCC, AABBCABBA, and ABXBAY ACZCAWBC. An
interesting open question is the following: Suppose that P is an avoidable pat-
tern with avoidability index λ(P ) = k. Is it possible to find a finite set P of
patterns and a finite set F of factors such that P ∈ P and P ∪ F character-
izes a morphic word over Σk ? This would be a strengthening of Cassaigne’s
conjecture stating that there exists a morphic word avoiding P over Σk.
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