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Abstract

We estimate the extremal letter frequency in infinite words over a finite alphabet
avoiding some repetitions. For ternary square-free words, we improve the bounds
of Tarannikov on the minimal letter frequency, and prove that the maximal letter
frequency is 255

653 . Kolpakov et al. have studied the function ρ such that ρ(x) is the
minimal letter frequency in an infinite binary x-free word. In particular, they have
shown that ρ is discontinuous at 7

3 and at every integer at least 3. We answer one
of their question by providing some other points of discontinuity for ρ. Finally, we
propose stronger versions of Dejean’s conjecture on repetition threshold in which
unequal letter frequencies are required.
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1 Introduction

A square is a repetition of the form xx, where x is a nonempty word; an
example in English is hotshots.
Let Σk denote the k-letter alphabet {0, 1, . . . , k − 1}. It is easy to see that
every word of length ≥ 4 over Σ2 must contain a square, so squares cannot be
avoided in infinite binary words. However, Thue showed [18,19,1] that there
exist infinite words over Σ3 that avoid squares.

An interesting variation is to consider avoiding fractional powers. For α ≥ 1
a rational number, we say that y is an α-power if we can write y = xnx′ with
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x′ a prefix of x and |y| = α|x|. For example, the French word entente is a
7
3
-power and the English word tormentor is a 3

2
-power. For real α > 1, we

say that a word is α-free (resp. is α+-free) if it contains no factor that is a
α′-power for any rational α′ ≥ α (resp. α′ > α).

We study the extremal frequencies of a letter in factorial languages defined by
an alphabet size and a set of forbidden repetitions. Given such a language, we
denote by fmin (resp. fmax) the minimal (resp. maximal) letter frequency in
an infinite word that belong to the language L. Letter frequencies have been
mainly studied in [10,16,17]. We consider here the frequency of the letter 0.
Let |w|0 denote the number of occurrences of 0 in the finite word w. So the

letter frequency in w is |w|0|w| . A negative result is either a lower bound on fmin

or an upper bound on fmax. Notice that for binary words, we only need to
consider fmin since fmin + fmax = 1.

Our results are stated in Section 2. The proof technique for negative results is
an improved version of the methods given in [11] to find lower bounds on the
minimal frequency of occurrences of squares infinite binary words. It is detailed
in Section 3. Positive results consist of uniform morphisms that can produce
infinite words in L with a given letter frequency. The method used to find
such morphisms is explained in Section 4. In Section 5, we make a conjecture
related to Dejean’s conjecture [7] involving unequal letter frequencies. The C
sources of the programs and the morphisms used in this paper are available
at: http://dept-info.labri.fr/~ochem/morphisms/.

2 Statement of main results

For ternary square-free words, Tarannikov [17] showed that fmin ∈
[
1780
6481

, 64
233

]
=

[0.27464897 · · · , 0.27467811 · · ·]. According to [16], he also proved that fmax ≤
469
1201

= 0.39050791 · · · . We obtain the following results:

Theorem 1 For ternary square-free words, we have

(1) fmin ∈
[
1000
3641

, 883
3215

]
= [0.27464982 · · · , 0.27465007 · · ·].

(2) fmax = 255
653

= 0.39050535 · · · .

A (β, n)-repetition is a repetition with prefix size n and exponent β. The
notions of (β, n)-freeness and (β+, n)-freeness are introduced in [8]. A word
is said to be (β, n)-free (resp. (β+, n)-free) if it contains no (β′, n′)-repetition
such that n′ ≥ n and β′ ≥ β (resp. β′ > β). We construct in [8] an infinite(
8
5

+
, 3
)
-free binary word.

Theorem 2 For (5
3
, 3)-free binary words, we have fmin = 1

2
.
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Theorem 2 implies that infinite (β, 3)-free binary words have equal letter fre-

quency for β ∈
[
8
5

+
, 5
3

]
. A similar result in [10] says that infinite (β, 1)-free

binary words have equal letter frequency for β ∈
[
2+, 7

3

]
. It is noticeable that

these two cases of equal letter frequency have different kind of growth func-
tion. Karhumäki and Shallit have shown that the growth function of 7

3
-free

binary words is polynomial [9], whereas the growth function of (8
5

+
, 3)-free bi-

nary words is exponential. To see this, notice that the 992-uniform morphism
h : Σ∗4 → Σ∗2 given in [8] produces a

(
8
5

+
, 3
)
-free binary word h(w) for every

7
5

+
-free word w ∈ Σ∗4, and that an exponential lower bound on the number of

4-ary 7
5

+
-free words is shown in [14].

Let ρ(x) (resp. ρ(x+)) denote the minimal letter frequency in an infinite x-
free (resp. (x+)-free) binary word. By the previous discussion, we thus have

ρ(2+) = ρ
(
7
3

)
= 1

2
. Kolpakov et al. [10] proved that the function ρ is discon-

tinuous at every integer value at least 3 and at 7
3
, more precisely they obtained

that ρ
(
7
3

+
)
≤ 10

21
= 0.47619047 · · · < 1

2
= ρ

(
7
3

)
.

The next result provides 11 new points of discontinuity for ρ in the range[
7
3

+
, 3
]
, namely 17

7
, 5

2
, 131

52
, 43

17
, 23

9
, 41

16
, 18

7
, 631

245
, 8

3
, 26

9
, and 44

15
. It also exhibits a

new constant segment: ρ
(
41
16

+
)

= ρ
(
18
7

)
= 79

179
.

Theorem 3

(1) ρ
(
7
3

+
)

≤ 327
703

= 0.4651493599· · ·

(2) ρ
(
17
7

)
> 427

918
= 0.4651416122· · ·

(3) ρ
(
17
7

+
)
≤ 797

1722
= 0.4628339141· · ·

(4) ρ
(
5
2

)
≥ 54286

117293
= 0.4628238684· · ·

(5) ρ
(
5
2

+
)

≤ 279
631

= 0.4421553090· · ·

(6) ρ
(
131
52

)
> 107

242
= 0.4421487603· · ·

(7) ρ
(
131
52

+
)
≤ 191

432
= 0.4421296296· · ·

(8) ρ
(
43
17

)
> 508

1149
= 0.4421235857· · ·

(9) ρ
(
43
17

+
)
≤ 262

593
= 0.4418212479· · ·

(10) ρ
(
23
9

)
> 1063

2406
= 0.4418121363· · ·

(11) ρ
(
23
9

+
)
≤ 860

1947
= 0.4417051875· · ·

(12) ρ
(
41
16

)
> 519

1175
= 0.4417021277· · ·
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(13) ρ
(
41
16

+
)
≤ 79

179
= 0.4413407821· · ·

(14) ρ
(
18
7

)
≥ 79

179
= 0.4413407821· · ·

(15) ρ
(
18
7

+
)
≤ 272

617
= 0.4408427877· · ·

(16) ρ
(
631
245

)
> 1196

2713
= 0.4408403981· · ·

(17) ρ
(
631
245

+
)
≤ 190

431
= 0.4408352668· · ·

(18) ρ
(
8
3

)
> 3431

7783
= 0.4408325838· · ·

(19) ρ
(
8
3

+
)

≤ 76
187

= 0.4064171123· · ·

(20) ρ
(
26
9

)
> 165

406
= 0.4064039409· · ·

(21) ρ
(
26
9

+
)
≤ 89

219
= 0.4063926941· · ·

(22) ρ
(
44
15

)
> 675

1661
= 0.4063816978· · ·

(23) ρ
(
44
15

+
)
≤ 332

817
= 0.4063647491· · ·

(24) ρ (3) > 115
283

= 0.4063604240· · ·

(25) ρ (3+) ≤ 523
1810

= 0.2889502762· · ·

3 Method for negative results

Let L be a factorial language. A word w is said to be k-biprolongable in L if
there exists a word lwr ∈ L such that |l| = |r| = k. A suffix cover of L is a
set S of finite words in L such that every finite word that is k-biprolongable
in L and of length at least maxu∈S |u| has a suffix that belongs to S, for some
finite number k. Taking k = 20 is sufficient for every negative result in this
paper. For a word u ∈ S, let

Au(q) =

{
w ∈ L | uw ∈ L and for every prefix w′ of w,

|w′|0
|w′|

< q

}
.

Lemma 4 Let L be a factorial language and S one of its suffix covers. Let
q ∈ Q. If Au(q) is finite for every word u ∈ S, then fmin ≥ q.

PROOF. Assume Au(q) is finite for every word u ∈ S. We show that every
right-infinite word w ∈ L has a decomposition into finite factors
w = pv0v1v2v3 · · · such that |p| = k, |v0| = maxu∈S |u|, and |vi|0

|vi| ≥ q for every
i ≥ 1. Notice that for every i ≥ 0, the factor fi = v0 · · · vi is k-biprolongable
in L and is such that |fi| ≥ maxu∈S |u|. Thus, for every i ≥ 0, fi has a suffix
si ∈ S, and since Asi(q) is finite, there exists a finite factor vi+1 at the right

of fi such that |vi+1|0
|vi+1| ≥ q.
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Lemma 4 enables us to obtain bounds of the form fmin ≥ q by choosing an
explicit suffix cover and checking by computer that every set Au(q) is finite.
It is easy to see that Lemma 4 and the definition of Au(q) can be modified to
provide bounds of the form fmin > q, fmax ≤ q, or fmax < q. This method is
a natural generalization of the one in [17], where the suffix cover consists of
the empty word, and of the one in [11], where the suffix cover consists of all
binary words of length three.

Since we study here the frequency of the letter 0 in repetition-free words, every
letter other than 0 play the same role. Let us say that two words u and u′ in
Σs are equivalent if and only if u can be obtained from u′ by a permutation of
the letters in Σs \ {0}. Notice that for two equivalent words u and u′, Au′(q)
is finite if and only if Au(q) is finite. We define the reduced suffix cover of a
suffix cover S as the quotient of S by this equivalence relation.

To prove the negative part of Theorem 1.1 we used the reduced suffix cover
{1, 01210, 0210, 2010}, the computation took about 20 days on a XEON 2.2Gh.
For Theorem 1.2 we used the reduced suffix cover {0, 01, 021, 0121}.
For Theorem 2 we used the suffix cover {01, 11, 000, 11100, 0100, 1110, 1010,
0001111000010, 0111101000010, 1110101000010, 0111100010}.
A computer check shows that this is indeed a suffix cover for 20-biprolongable
(5
3
, 3)-free binary words. The negative statements of Theorem 3 (even items)

were obtained using the suffix cover {1, 10, 100}.

4 Method for positive results

Let L be a factorial language over Σ∗s. To construct an infinite word w ∈ L
with a given letter frequency q ∈ Q, we basically use the method described in
[14]. We write q = a

b
with a coprime to b. For increasing values of k, we look

for a (k × b)-uniform morphism h : Σ∗e → Σ∗s producing (infinite) words in L
such that |h(i)|0 = k × a for every i ∈ Σe.

Consider the 8-uniform morphism m : Σ∗3 −→ Σ∗4 defined by

m(0) = 01232103,

m(1) = 01230323,

m(2) = 01210321.

To get the bound fmin ≤ 883
3215

in Theorem 1, we found a square-free morphism
hmax : Σ∗3 −→ Σ∗3 such that hmax = mmax ◦ m where mmax : Σ∗4 −→ Σ∗3 is a
3215-uniform morphism. To get the bound fmax ≥ 255

653
in Theorem 1, we found

a square-free morphism hmin : Σ∗3 −→ Σ∗3 such that hmin = mmin ◦ m where
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mmin : Σ∗4 −→ Σ∗3 is a 9142-uniform morphism (9142 = 14× 653). We need a
result of Crochemore [6] saying that a uniform morphism is square-free if the
image of every square-free word of length 3 is square-free. The software mreps
[13] written by Kucherov et al. can test if a word is square-free in linear time.
We used it to prove that hmin and hmax are square-free by checking that hmin(w)
and hmax(w) are square-free, where w = 010201210120212 is square-free and
contains every ternary square-free words of length 3 as factors. Checking the
image of w is faster than checking the images of the 12 ternary square-free
words of length 3 because mreps runs in linear time. Since the morphisms
hmin (resp. hmax) are square-free, we obtain an exponential lower bound for
ternary square-free words with letter frequency 883

3215
(resp. 255

653
).

Let t denote the Thue-Morse word, i.e. the fixed point of 0 7→ 01, 1 7→ 10.
A uniform morphism h : Σ∗i → Σ∗k is said to be synchronizing if for any
a, b, c ∈ Σi and s, r ∈ Σk, if h(ab) = rh(c)s, then either r = ε and a = c or
s = ε and b = c. For each positive statement in Theorem 3 (odd items), we
provide a q-uniform synchronizing morphism h : Σ∗2 −→ Σ∗2 such that h(t) has
the desired properties of repetition-freeness and letter frequency. Suppose h(t)
contains a forbidden repetition of prefix p and exponent 7

3
< e ≤ 3. If |p| < 2q,

then the length of the repetition is less than 6q, so that checking the h-image
of every factor t of length 7 is sufficient. If |p| ≥ 2q, then p contains a full
h-image of some letter, so |p| is a multiple of q by the synchronizing property.
Thus we only need to check that h(0) and h(1) do not have too large common
prefixes and suffixes, or equivalently check the words h(1001) and h(0110).

5 Dejean’s conjecture and letter frequencies

The repetition threshold is the least exponent α = α(k) such that there exists
an infinite (α+)-free word over Σk. Dejean proved that α(3) = 7

4
. She also

conjectured that α(4) = 7
5

and α(k) = k
k−1 for k ≥ 5. This conjecture is now

“almost” solved: Pansiot [15] proved that α(4) = 7
5

and Moulin-Ollagnier [12]
proved that Dejean’s conjecture holds for 5 ≤ k ≤ 11. Recently, Currie and
Mohammad-Noori [5] also proved the cases 12 ≤ k ≤ 14, and Carpi [2] settled
the cases k ≥ 38. For more information, see [4]. Based on numerical evidences,
we propose the following conjecture which implies Dejean’s conjecture.

Conjecture 5

(1) For every k ≥ 5, there exists an infinite
(

k
k−1

+
)
-free word over Σk with

letter frequency 1
k+1

.

(2) For every k ≥ 6, there exists an infinite
(

k
k−1

+
)
-free word over Σk with

letter frequency 1
k−1 .
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It is easy to see that the values 1
k+1

and 1
k−1 in Conjecture 5 would be best pos-

sible. For
(
5
4

+
)
-free words over Σ5, we obtain fmax <

103
440

= 0.23409090 · · · < 1
4

using the reduced suffix cover {0, 01, 012, 0123, 012341, 401234, 4301234}. That
is why Conjecture 5.2 is stated with k ≥ 6. Recently, we proved [3] Conjec-
ture 5.1 with k = 5 and Conjecture 5.2 with k = 6.
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[2] A. Carpi. On the repetition threshold for large alphabets, MFCS 2006.

[3] J. Chalopin and P. Ochem. Dejean’s conjecture and letter frequency, Mons Days
of Theoretical Computer Science 2006.
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[18] A. Thue. Über unendliche Zeichenreihen, Norske vid. Selsk. Skr. Mat. Nat. Kl.
7 (1906), 1–22. Reprinted in Selected Mathematical Papers of Axel Thue, T.
Nagell, editor, Universitetsforlaget, Oslo, 1977, pp. 139–158.
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