Minimum frequencies of occurrences of squares and letters in infinite words

Pascal Ochem CNRS-LRI-Université Paris Sud 11, France ochem@lri.fr

Michaël Rao CNRS-LIRMM-Université Montpellier 2, France rao@lirmm.fr

Abstract

We prove that the limit of the ratio the minimal number of squares occurrences in a binary word over its size is $\frac{103}{187} = 0.5508021...$ The same proof technique is applied to compute lower bounds on the function $\rho(x)$ corresponding to the minimal letter frequency in an infinite x-free word. This leads to some exact values of $\rho(x)$ for $x < \frac{5+\sqrt{5}}{2}$. Finally, we give a conjecture for the value of $\rho(x)$ for $x \ge \frac{5+\sqrt{5}}{2}$.

1 Introduction

A square is a factor of the form uu where u is a non-empty word. Thue's famous result show that squares can be avoided in an infinite ternary word [7, 8]. We are interested in the minimum number of square occurrences in a binary word.

Let $\Sigma_2 = \{0, 1\}$. For $w \in \Sigma_2^*$, let s(w) be the number of (possibly overlapping) square occurrences in w. For $n \in \mathbb{N}$, let $m(n) = \min_{w \in \Sigma_2^n} s(w)$. Let $\alpha = \lim_{n \to \infty} \frac{m(n)}{n}$.

We have shown [5] that $\frac{1815}{3297} \leq \alpha \leq \frac{103}{187}$. We prove here that:

Theorem 1. The exact value of α is $\frac{103}{187}$ (= 0.5508021390...).

Let $x \in \mathbb{R}$. A word w is an x-power if there exists a k such that $\frac{|w|}{k} = x$ and w[i-k] = w[i] for all $i \in \{k+1, \ldots, |w|\}$. A square is a 2-power. A word is x-free (resp. (x^+) -free) if it does not contain as factor any x-power such that $y \ge x$ (resp y > x).

Let $\rho(x)$ (resp. $\rho(x^+)$) be the minimal density of a letter in an infinite binary word with no repetition of exponent $\geq x$ (resp. > x). The function ρ has been defined in [4] and also studied in [6]. This function is defined starting from 2⁺ since

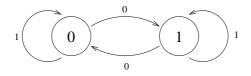


Figure 1: De Bruijn graph of words of size 1 ($\lambda^*(G) = 0$).

square are unavoidable in an infinite binary word, and there exists an infinite (2^+) -free binary word [8]. Moreover, ρ is decreasing and is equal to 1/2 on the interval $[2^+, 7/3]$ [4].

The same proof technique can be applied to compute lower bounds on the function $\rho(x)$ corresponding to the minimal letter frequency in an infinite x-free word. This leads to new exact values of $\rho(x)$ for $x < \frac{5+\sqrt{5}}{2}$. We also propose a conjecture for the value of $\rho(x)$ for $x \ge \frac{5+\sqrt{5}}{2}$.

2 Suffix graphs

Let $v \in \Sigma_2^* \setminus \epsilon$. Let v^{\sharp} be the last letter of v, and let v^{\bullet} be the prefix of v of size |v| - 1. Note that $v = v^{\bullet}v^{\sharp}$.

Definition 2. A good suffix cover is a set of words V such that

- (a) $\emptyset \subsetneq V \subseteq \Sigma_2^* \setminus \{\epsilon\}.$
- (b) For every $u, v \in V$ with $u \neq v$, u is not a suffix of v.
- (c) For every left-infinite word w, there is a $v \in V$ such that v is a suffix of w.
- (d) For every $u \in V$, there is a $v \in V$ such that u^{\bullet} is a suffix of v.

Definition 3. A suffix graph G = (V, A, w) is a directed graph (V, A) with weight function $w : A \to \mathbb{N}$ such that:

- V is a good suffix cover.
- There is an arc (u, v) if v^{\bullet} is a suffix of u.
- The weight of an arc (u, v) is $s(uv^{\sharp}) s(u)$, (*i.e.* the number of squares involving the last letter in uv^{\sharp}).

For example, De Bruijn graphs with the appropriate weight function are suffix graphs. Note that a suffix graph is uniquely determined by the good suffix cover.

Lemma 4. If G = (V, A, w) is a suffix graph, then we have:

1. For every $w \in \Sigma_2^*$, there exists $v \in V$ such that v is a suffix of w or w is a suffix of v.

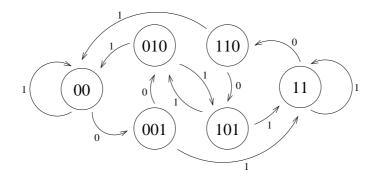


Figure 2: A suffix graph with $\lambda^*(G) = 1/3$.

2. Every vertex has out-degree two.

3. Every vertex has in-degree at least one.

Proof. (1) Let $w \in \Sigma_2^*$ and let w' be a left-infinite word with suffix w. By (c), there exists $v \in V$ which is a suffix of w'. Then either w is a suffix of v, or v is a suffix of w.

(2) Let $v \in V$ and $x \in \Sigma_2$. Let $u_x \in V$ be such that either u_x is a suffix of vx or vx is a suffix of u_x . If u_x is a suffix of vx then $(v, u_x) \in A$ by definition. Otherwise, by (d), u_x^{\bullet} is a suffix of some $w \in V$. Then v is a suffix of w, and thus v = w by (b).

Thus $v \in V$ has exactly two distinct out-neighbors since $u_0 \neq u_1$.

(3) Let $v \in V$. By (d), there exists $u \in V$ such that v^{\bullet} is a suffix of u. Thus $(u, v) \in A$.

Let G = (V, A, w) be a suffix graph. A walk is a sequence $P = (v_1, \ldots, v_k)$ of vertices in V such that for all $i \in \{1, \ldots, k-1\}, (v_i, v_{i+1}) \in A$. A circuit is a circular sequence $C = (v_1, \ldots, v_k)$ of vertices in V such that for all $i \in \{1, \ldots, k\},$ $(v_i, v_{i+1}) \in A$ (indices are taken modulo k). The size l(C) of a circuit (resp. walk) is k. The weight w(C) of a circuit (resp walk) is $\sum_{i \in \{1, \ldots, k\}} w((v_i, v_{i+1}))$ (resp. $\sum_{i \in \{1, \ldots, k-1\}} w((v_i, v_{i+1})))$.

The minimum mean circuit of G is $\lambda^*(G) = \min_{C \text{ circuit of } G} \frac{w(C)}{l(C)}$. A circuit C with $\frac{w(C)}{l(C)} = \lambda^*(G)$ can be found in polynomial time with a dynamic approach [3].

Lemma 5. Let G be a suffix graph. Then $\lambda^*(G) \leq \alpha$.

Proof. Similar to the proof of Lemma 9 in [5].

We show in [5] that $\alpha \leq \frac{103}{187}$. We explain how to construct a suffix graph with $\lambda^*(G) \geq \frac{103}{187}$ in the next section. This proves that $\alpha = \frac{103}{187}$.

3 Construction of a suffix graph with $\lambda^* = \frac{103}{187}$

Proposition 6. Let $(u, v) \in A$ such that |u| < |v|. Then |u| = |v| - 1, and u is the only in-neighbor of v.

Proof. By definition, |u| = |v| - 1 and there exists $x \in \Sigma_2$ such that ux = v. Suppose that v has an other in-neighbor w. Then there exists $x' \in \Sigma_2$ such that v is a suffix of wx'. Thus x = x' and u is a suffix of w. Contradiction.

We say that a vertex $v \in V$ is *critical* if there exists $u \in V$ such that u is the suffix of v of size |v| - 1. The critical vertices of the graph in Figure 2 are 001 and 110.

Lemma 7. Let G = (V, A, w) be a suffix graph, and let $v \in V$ be a non-critical vertex. Then there exists a unique suffix graph G * v with vertex set $V' = (V \setminus \{v\}) \cup \{0v, 1v\}$.

Proof. We only need to show that V' is a good prefix cover. Clearly, V' respects (a), (b) and (c). Suppose that (d) is not fulfilled and let $u \in V'$ such that u^{\bullet} is not a suffix of any word in V'. Then $u \in \{0v, 1v\}$. W.l.o.g. u = 0v. Let $w \in V$ be such that either w is a suffix of $0v^{\bullet}$ or $0v^{\bullet}$ is a suffix of w. We have $w \neq v$, otherwise $0v^{\bullet}$ will be a suffix of $0w \in V'$. Thus $w \in V'$. If w is a suffix of $0v^{\bullet}$, then $w' = 0v^{\bullet}$ otherwise w' would be a suffix of v^{\bullet} and thus v would be critical. In all cases, $0v^{\bullet}$ is suffix of $w \in V'$. Contradiction.

We describe now the algorithm used to obtain the graph. We start with $G = DB_1$ (Figure 1). While $\lambda^*(G) < \frac{103}{187}$, we take a circuit C of ratio $\frac{w(C)}{l(C)} = \lambda^*(G)$, we take a vertex v in C of minimum length, and we replace G by G * v. Note that a vertex of minimum length on the cycle cannot be critical.

This algorithm stops with a graph G of size 62739. For this graph, $\lambda^*(G) \ge \frac{103}{187}$ thus by Lemma 5, $\alpha \ge \frac{103}{187}$. With the result of [5], this proves Theorem 1.

4 Minimal letter frequency in infinite repetitionfree words

A similar technique can be applied to obtain a lower bounds on the minimal letter frequency in an infinite x-free binary word.

Using the technique described in previous sections, and techniques described in [6], we get:

Theorem 8.

$\rho(2+) = \rho(7/3)$	=	1/2	=	0.5
$\rho(7/3+) = \rho(407/172)$	=	327/703	=	$0.4651493598\dots$
$\rho(407/172+) = \rho(833/344)$	=	347/746	=	$0.4651474530\dots$
ho(833/344+)	\leq	6012/12925	=	$0.4651450676\dots$
ho(17/7)	\geq	754/1621	=	$0.4651449722\dots$
ho(17/7+)	\leq	2129/4600	=	$0.4628260869\dots$
ho(298/121)	\geq	3318/7169	=	0.4628260566

ho(298/121+)	\leq	6841/14781	=	$0.4628238955\ldots$
$\rho(5/2)$	\geq	54286/117293	=	0.4628238684
$\rho(5/2+)$	\leq	2767/6258	=	0.4421540428
$\rho(131/52)$	2	3818/8635	=	0.4421540243
$\rho(131/52+) = \rho(43/17)$	=	191/432	=	0.4421296296
$\rho(43/17+)$		4309/9753	=	0.4418127755
$\rho(23/9)$	>	6678/15115	=	0.4418127687
$\rho(23/9+)$	< > < >	8437/19101	=	0.4417046227
$\rho(41/16)$	 >	197/446	=	0.4417040358
$\rho(41/16) = \rho(18/7)$	=	79/179	=	0.4413407821
$\rho(11/10^+) = \rho(10/1)$ $\rho(18/7+)$		3983/9035	=	0.4408411732
ho(631/245)		1740/3947	=	0.4408411451
$\rho(631/245)$ $\rho(631/245+)$	~ <	2306/5231	=	0.4408334926
$\rho(001/210+)$ $\rho(2900/1107)$		5480/12431	=	0.4408334003
$\rho(2300/1107)$ $\rho(2900/1107+)$	~ <	1926/4369	=	0.4408331425
$\rho(2917/1107+)$		4720/10707	=	0.4408330998
$\rho(2917/1107)$ $\rho(2917/1107+)$	< <	$\frac{4720}{10101}$ 5696/12921	=	0.4408327528
$\rho(2317/1107+)$ $\rho(8/3)$		10144/23011	=	0.4408326452
$\rho(8/3)$ $\rho(8/3+)$	< <	241/593	=	0.4064080944
$\rho(3,3+)$ $\rho(886/315)$		12152/29901	=	0.4064078124
$\rho(886/315)$ $\rho(886/315+)$	_ _	6520/16043	=	0.4064077790
		5430/13361		0.4064067060
$\rho(197/69)$	\geq	1459/3590	=	0.4064067000
$\rho(197/69+)$	≤ ≥	,	=	
$\rho(901/315)$		7473/18388	=	0.4064063519
$\rho(901/315+)$	\leq	38131/93825	=	0.4064055422
$\rho(26/9)$	\geq	1561/3841	=	0.4064045821
$\rho(26/9+) = \rho(79/27)$	=	89/219	=	0.4063926940
$\rho(79/27+) = \rho(202/69)$	=	662/1629	=	0.4063842848
$\rho(202/69+)$	\leq	853/2099	=	0.4063839923
$\rho(44/15)$	\geq	675/1661	=	0.4063816977
$\rho(44/15+)$ (2)	\leq	447/1100	=	0.4063636363
$\rho(3)$	\geq	5570/13707	=	0.4063617129
$\rho(3+)$	\leq	332/1149	=	0.2889469103
$\rho(31/10)$	≥ ≤	1981/6856	=	0.2889439906
$\rho(31/10+)$	\leq	4442/15393	=	0.2885727278
ho(1554/499)	≥ ≤	6389/22140	=	0.2885727190
$ \rho(1554/499+) $	\leq	2149/7447	=	0.2885725795
ho(22/7)	\geq	2899/10046	=	0.2885725661
$\rho(22/7+) = \rho(67/21)$	=	126/437	=	0.2883295194
ho(67/21+)	\leq	1781/6180	=	0.2881877022
ho(11501/3581)	\geq	4594/15941	=	$0.2881876921\dots$
$\rho(11501/3581+)$	V	7407/25702	=	$0.2881876896\dots$
ho(68/21)	\geq	2813/9761	=	$0.2881876856\dots$
ho(68/21+)	\leq	2777/9643	=	0.2879809188
ho(13/4)	\geq	4828/16765	=	0.2879809126

ho(13/4+)	\leq	10289/36400	=	$0.2826648351\dots$
ho(36/11)	\geq	1642/5809	=	$0.2826648304\dots$
$\rho(36/11+) = \rho(23/7)$	=	13/46	=	$0.2826086956\dots$
$\rho(23/7+) = \rho(83/25)$	=	37/132	=	0.2803030303
$\rho(83/25+) = \rho(37/11)$	=	442/1577	=	$0.2802790107\dots$
$\rho(37/11+) = \rho(38/11)$	=	44/157	=	$0.2802547770\dots$
$\rho(38/11+) = \rho(7/2)$	=	27/97	=	$0.2783505154\dots$
$\rho(7/2+) = \rho(103/29)$	=	5/18	=	$0.27777777777\dots$
$\rho(103/29+) = \rho(168/47)$	=	23/83	=	0.2771084337
$\rho(168/47+) = \rho(273/76)$	=	129/466	=	$0.2768240343\ldots$
$\rho(273/76+) = \rho(443/123)$	=	109/394	=	$0.2766497461\ldots$
$\rho(443/123+) = \rho(718/199)$	=	112/405	=	0.2765432098
$\rho(718/199+) = \rho(1163/322)$	=	569/2058	=	$0.2764820213\ldots$
$\rho(1163/322+) = \rho(1883/521)$	=	473/1711	=	0.2764465225
$\rho(1883/521+) = \rho(1016/281)$	=	1556/5629	=	0.2764256528
$\rho(1016/281+) = \rho(4933/1364)$	=	225/814	=	$0.2764127764\ldots$
$\rho(4933/1364+) = \rho(7983/2207)$	=	1018/3683	=	$0.2764051045\ldots$
ho(7983/2207+)	\leq	6656/24081	=	$0.2764004817\dots$
ho(4)	\geq	2584/9349	=	$0.2763931971\ldots$

Whereas our previous method for lower bounds [6] was not well suited for x > 3, the new method also handles this case. Theorem 8 gives in particular the exact value for ρ on the intervals $[2^+, 833/344]$, [131/52+, 43/17], [41/16+, 18/7], [26/9+, 202/69], [22/7+, 67/21], and [36/11+, 1016/281]. Moreover, ρ is piecewise constant on these intervals. We calculated that the decreasing between $\rho(2^+) = 1/2$ and $\rho(4) \geq 2584/9349$ is now almost completely due to the jumps except for an amount smaller than 2×10^{-5} .

A conjecture for $x \ge \frac{5+\sqrt{5}}{2}$ $\mathbf{5}$

We propose the following conjecture for $x \ge \frac{5+\sqrt{5}}{2}$. Note that the conjectured values are irrational, thus the techniques presented in [6] and in this article cannot prove these values.

Conjecture. For every integer $n \ge 4$,

1. $\rho([n-1, \overline{1, n-3}]) = \rho(n) = [0, n-1, \overline{1, n-3}],$ 2. for $k \in \mathbb{N}$, $\rho(U_{n,k}^+) = \rho(U_{n,k+1}) = [0, n(1, n-2)^k, \overline{1, n-3}].$

where $[a, b, c, \ldots]$ denotes the continued fraction $a + 1/(b + 1/(c + \ldots))$, and $U_{n,k} = n + 1 - \frac{D_{n,k-1}+2}{D_{n,k}}, \ D_{n,-1} = -1, \ D_{n,0} = 1, \ D_{n,k+1} = nD_{n,k} - D_{n,k-1}.$ The values of $\rho(x)$ are given by the sturmian word of density (or slope) $\rho(x)$. We need a result of Damanik and Lenz [1] in order to prove the upper bounds of the conjecture. Every irrational $\alpha \in (0, 1)$ has a unique continued fraction expansion $\alpha = [0, a_1, a_2, a_3, \ldots]$. The rational approximants $\frac{p_t}{q_t}$ of α are defined by

$$p_0 = 0, \quad p_1 = 1, \quad p_t = a_t p_{t-1} + p_{t-2},$$

 $q_{-1} = 0, \quad q_0 = 1, \quad q_t = a_t q_{t-1} + q_{t-2}.$

Theorem 9. [1]

The largest exponent of a repetition in the sturmian word of slope α is

$$2 + \sup_{t \in \mathbb{N}} \left\{ a_{t+1} + \frac{q_{t-1} - 2}{q_t} \right\}.$$

Theorem 10. For every integer $n \ge 4$,

1.
$$\rho([n-1, \overline{1, n-3}]) \le [0, n-1, \overline{1, n-3}],$$

2. for $k \in \mathbb{N}, \rho(U_{n,k}^+) \le [0, n(, 1, n-2)^k, \overline{1, n-3}].$

Proof.

[2]. Let $n \ge 4$, $k \in \mathbb{N}$ and let w be the Sturmian word of slope $[0, n(1, n - 2)^k, \overline{1, n-3}]$. We show that the largest exponent of a repetition in w is $U_{n,k}$. Let $\beta_i = 2 + a_{i+1} + \frac{q_{i-1}-2}{q_i}$. It is not hard to see that $0 \le \frac{q_{i-1}-2}{q_i} \le 1$ for all i > 1. Thus if q = 0, then the greatest exponent in w is $\beta_0 = n = U_{n,0}$. Otherwise, the greatest exponent is $\sup_{i \in \{1,\ldots,k\}} \beta_{2i}$. One can easily show by induction than $D_i = q_{2i}$ for all $i \in \{1,\ldots,k\}$:

$$\beta_{2i} = n + \frac{q_{i-1} - 2}{q_i} = n + \frac{q_i - q_{i-2} - 2}{q_i} = n + 1 - \frac{q_{i-2} + 2}{q_i} = U_{n,k}.$$

To conclude, we show that $\{U_{n,i}\}_i$ is increasing (note that $D_{n,i}^2 - D_{n,i+1}D_{n,i-1} = n+2$ for all i):

$$U_{n,i+1} - U_{n,i} = \frac{1}{D_{n,i+1}D_{n,i}} \{ D_{n,i+1}(D_{n,i-1}+2) - D_{n,i}(D_{n,i}+2) \}$$

= $\frac{1}{D_{n,i+1}D_{n,i}} \{ 2D_{n,i+1} - 2D_{n,i} - (n+2) \} \ge 0.$

[1, n > 4]. Let w be the Sturmian word of slope $[0, n - 1, \overline{1, n - 3}]$. With the same arguments, the greatest exponent in w is $\lim_{i\to\infty} U_{n-1,i}$.

$$\lim_{i \to \infty} U_{n-1,i} = n - \lim_{i \to \infty} \frac{D_{n-1,i-1}}{D_{n-1,i}}$$
$$= n - \frac{2}{n-1 + \sqrt{(n-1)^2 - 4}} = \frac{n+1 + \sqrt{(n-1)^2 - 4}}{2}$$
$$= [n-1, \overline{1, n-3}].$$

[1, n = 4]. Let w be the Sturmian word of slope $[0, 3, \overline{1}]$. For $i \in \mathbb{N}$, let $\beta_i = 3 + \frac{q_{i-1}-2}{q_i}$. Note that $q_i = \mathcal{F}_{i+1}$ (the i+1-th Fibonacci number), and $\lim_{i\to\infty} \beta_i = 3 + \frac{2}{1+\sqrt{5}} = \frac{5+\sqrt{5}}{2}$. Now:

$$\beta_{i+1} - \beta_i = \frac{1}{q_i q_{i+1}} \left\{ q_i^2 - q_{i+1} q_{i-1} + 2q_{i+1} - 2q_i \right\}$$
$$= \frac{1}{q_i q_{i+1}} \left\{ (-1)^{i+1} + 2q_{i+1} - 2q_i \right\} \ge 0.$$

Thus β_i is increasing, and the largest exponent in w is $\frac{5+\sqrt{5}}{2} = [3,\overline{1}]$.

References

- D. DAMANIK AND D. LENZ, The index of sturmian sequences. Europ. J. Combinatorics, 23 (2002), 23–29.
- [2] F. DEJEAN, Sur un théorème de Thue. J. Combinatorial Th. (A), 13 (1972), 90-99.
- [3] R.M. KARP, A characterization of the minimum mean cycle in a digraph. Discrete Math. 23 (1978), 309-311.
- [4] R. KOLPAKOV, G. KUCHEROV, AND Y. TARANNIKOV, On repetition-free binary words of minimal density. *Theoret. Comput. Sci.*, 218(1) (1999), 161– 175.
- [5] G. KUCHEROV, P. OCHEM, AND M. RAO, How many square occurrences must a binary sequence contain? The Electronic Journal of Combinatorics, 10(1), R12 (2003).
- [6] P. OCHEM, Letter frequency in infinite repetition-free words. Theoret. Comput. Sci., 380 (2007), 388–392.
- [7] A. THUE, Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiania, 7 (1906), 1–22.
- [8] A. THUE, Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiania, 10 (1912), 1–67.