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REPETITION THRESHOLDS FOR SUBDIVIDED GRAPHS
AND TREES

Pascal Ochem1 and Elise Vaslet2

Abstract. The repetition threshold introduced by Dejean and
Brandenburg is the smallest real number α such that there exists an in-
finite word over a k-letter alphabet that avoids β-powers for all β > α.
We extend this notion to colored graphs and obtain the value of the
repetition thresholds of trees and “large enough” subdivisions of graphs
for every alphabet size.

Mathematics Subject Classification. 68R15.

1. Introduction

A non-repetitive coloring f of a graph is a vertex coloring containing no square,
that is, the graph does not contain a non-intersecting path v1, . . . , v2r such that
f(vi) = f(vi+r) for all i ∈ [1, r].

This notion can be extended by considering repetitions of fractional exponent,
as it has been done in the framework of combinatorics on words.

Up to now, the most studied problem is the following: we fix the exponent (i.e.,
exponent 2, corresponding to squares) to be avoided and minimize the number of
colors, i.e., the alphabet size. For large subdivisions of graphs, this so-called non-
repetitive chromatic number is proved to be 3 [6]. The non-repetitive chromatic
number of trees is 4 [4].

Aberkane and Currie [1] considered the problem the other way. They fix the
alphabet size and study what exponents can be avoided. They show that there
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exist binary circular words of every length avoiding exponents strictly greater
than 5/2. The cycle of length 5 shows that this is the best possible bound.

A notion of repetition threshold (similar to Dejean’s repetition threshold [3])
can then be defined for graphs. Aberkane and Currie’s result sets it to 5/2 for
cycles.

We settle the problem of finding the repetition thresholds of two graph classes,
namely the subdivided graphs and the trees, for every alphabet size k. This im-
proves earlier results on nonrepetitive coloring on these classes [4, 6].

2. Preliminaries

Let k ∈ N and let f be a k-coloring of a finite graph G. We call factor the
sequence of colors on a non-intersecting path in a k-colored graph G. We recall
the usual notions of period and exponent: a word w is a repetition with period p
and excess e if w = pe, and e is a prefix of w. The exponent of the repetition w is
the ratio exp(w) = |pe|

|p| . A word or a colored graph is said to be (α+, n)-free if it
does not contain as a factor a repetition with exponent strictly greater than α and
period of length at least n. We use α+-free as a short notation for (α+, 1)-free.
Let G be a graph. We define the repetition threshold RT (k, G) by

inf
k-coloring f

sup {exp(w) | w is a factor in the k-coloring f of G} .

For a graph class G, we define RT (k,G) = supG∈G RT (k, G). Let us express
some known results with this definition: RT (2, C) = 5/2 [1] and RT (4, T ) ≤ 2 [4],
where C the class of cycles and by T the class of trees. A subdivision of a graph G
is a graph obtained from G by a sequence of edge subdivisions. A subdivision of
an edge {u, v} consists in the addition of a new vertex w and the replacement of
the edge {u, v} by the edges {u, w} and {w, v}. It has been shown that for every
graph G, there exists a subdivision Gs of G such that RT (3, Gs) < 2 [6].

The Thue-Morse word wTM = 011010011001011010010110011010 . . . is the fixed
point of 0 → 01, 1 → 10.

Let w[i, . . . , j] denote the subword wiwi+1 . . . wj of the word w.
Finally, we denote by Σk the k-letter alphabet {0, 1, . . . , k − 1}.

3. Repetition threshold for subdivided graphs

For a given k, we define the real number

αk = sup
G

inf
Gs subdivision of G

RT (k, Gs).

By abuse of notation, we set RT (k,S) = αk. We can see S as the pseudo-class of
“large enough” subdivisions of graphs.
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Theorem 3.1.

• RT (2,S) = 7
3 ,

• RT (3,S) = 7
4 ,

• RT (k,S) = 3
2 , for k ≥ 4.

Proof. We first prove the upper bounds. For any graph G, we construct a subdi-
vision Gs of G and a suitable coloring of Gs. Without loss of generality, we can
suppose that G is a (large) complete graph. Let e denote the number of edges of
G. For each k, we consider a set Wk containing 2e words over the k-letter alphabet
such that all words in Wk have a non-empty common prefix and a non-empty
common suffix. An edge in G is replaced by a chain of vertices of degree 2 in Gs.
A vertex of degree at least 3 in Gs thus corresponds to an original vertex in G and
is said big. Such a chain consists of two half-chains. We color each half-chain with
a distinct word w ∈ Wk such that the first letter of w corresponds to the color of a
big vertex. The last vertex of an half-chain is identified with the last vertex of the
other half-chain of a same chain. This common vertex is called the center of the
chain and is colored with the common last letter of all words in Wk. A vertex is
said to be special if it is a big vertex or a center. Two half chains sharing a special
vertex are said to be opposite since they have opposite reading directions.

A morphism h : Σ∗
s → Σ∗

e is synchronizing if for any a, b, c ∈ Σs and v, w ∈ Σ∗
e ,

if h(ab) = vh(c)w, then either v = ε and a = c, or w = ε and b = c. In order
to prove upper bounds on the exponent of repetitions, it is convenient to use
synchronizing uniform morphisms together with the following lemma from [5]:

Lemma 3.2. Let α, β ∈ Q, 1 < α < β < 2 and n ∈ N∗. Let h : Σ∗
s → Σ∗

e be a
synchronizing q-uniform morphism (with q ≥ 1). If h(w) is (β+, n)-free for every
α+-free word w such that |w| < max

(
2β

β−α , 2(q−1)(2β−1)
q(β−1)

)
, then h(t) is (β+, n)-free

for every (finite or infinite) α+-free word t.

Case k = 2:
We consider a set W2 of (distinct) factors of the Thue-Morse word with prefix
0110010 and suffix 1011001. Suppose that there exists a repetition r in Gs with
exponent strictly greater than 7

3 . If r contains at most one big vertex (resp. at
most one center), then either:

• r is a factor of wTM and its exponent is at most 2.
• r has period at most 6 and we check that its exponent is at most 7

3 .
• The period of r contains exactly one occurrence of at least one factor in

{01001101, 10110010}. Those factors appear near the big vertex or the cen-
ter because of the prefix 0110010 and the suffix 1011001 in the half chains, and
since they are not factors of wTM , we have a contradiction.

If r contains at least two big vertices and at least two centers, then two half-chains
should be matched in r. This is a contradiction because half-chains are distinct.
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Case k = 3:
We consider the synchronizing 132-uniform morphism h in [5] such that for any
5
4

+-free word t ∈ Σ∗
6 , h(t) ∈ Σ∗

4 is 7
5

+-free. From [2], there exists an infinite 5
4

+-free
word w ∈ Σ∗

5 such that one of the letter, say 4, appears every other six positions.
For a fixed integer i ≥ 1, we define the infinite word w〈i〉 ∈ Σ∗

6 obtained from w by
replacing every other i occurrences of the letter 4 with the letter 5, so that the fre-
quency of the letter 5 in w〈i〉 is 1

6i . We consider a set S of 2e words of length c with
prefix 0123 and suffix 1230, such that the ith element in S is a factor of h(w〈i〉), for
1 ≤ i ≤ 2e. Notice that both 0123 and 1230 appear in every factor of length 100
of the h-image of any word. Words in S are in particular

(
7
5

+
)
-free words over Σ4.

Consider also the following synchronizing 48-uniform morphism m:

0 �→ 012010201202120121020102120121012010201210212021
1 �→ 012010201202120121012021020102120121012010212021
2 �→ 012010201202101210212012101202120102012021020121
3 �→ 012010201202101210201202120121012010212021020121

The set W3 contains the words of the form w = m(x)01201020120, with x ∈ S.
So the words in W3 have length d = 48c + 11. Since the morphisms h and m are
synchronizing, we can take d large enough to ensure that the factors of length
d/100 of distinct words in W3 do not contain the same number of factors m(h(5)),
and are thus distinct. The prefixes and suffixes of length 11 and the factors of
length 52 of words in W3 contain the factor 01201, whereas words in W3 do not
contain the mirror factor 10210. Using Lemma 3.2, we can check that the words
in W3 are

(
7
4

+
)
-free and

(
3
2

+
, 14

)
-free.

Suppose that there exists a repetition r = uvu in Gs with exponent strictly
greater than 7

4 , that is, |u| > 3|v|. Obviously, r cannot be contained in one
half-chain. A computer check shows that the period p = |uv| of r must be at least
68, by looking at the neighborhood of a special vertex. We first consider the case
where r is contained in two (opposite) half-chains. If the common special vertex
belongs to v, then |uv| ≥ 68 and |u| > 3|v| gives |u| ≥ 52. This is a contradiction
since the factor 01201 appearing in one occurrence of u would induce a forbidden
factor 10210 in the word in W3 corresponding to the opposite chain containing
the other ocurrence of u. If the common special vertex belongs to u, then the re-
striction of r to one of the half-chain is a repetition of period p ≥ 68 and exponent
at most 3

2 . To complete it and obtain the repetition r, there must exist a factor
u′ of u with size |u′| > p

(
7
4 − 3

2

)
≥ 68 × 1

4 > 11. So this occurrence of u′ contains
the factor 01201 that is near the special vertex. Since the matching occurrence of
u′ is contained in the opposite half-chain, we have again a contradiction with the
factors 01201 and 10210. Suppose now that r contains at least two special vertices.
Since words in W3 are

(
3
2

+
, 14

)
-free, we have 3

2 |uv| ≥ d. Recall that |u| > 3|v|,
which gives |u| > d

2 and |r| > 7
6d. Then, there exists a factor u′ of u such that
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either |u′| ≥ 52 and both occurrences of u′ are in half-chains with opposite
reading directions, or |u′| ≥ d/100 and both occurrences of u′ are in distinct
half-chains with the same reading direction. In both cases, we have a contradiction.

Case k = 4:
We consider the set S defined in the case k = 3 and the following 11-uniform
synchronizing morphism m:

0 �→ 01320213032
1 �→ 01312023203
2 �→ 01232120323
3 �→ 01213231302

The set W4 contains the words of the form w = m(x)01, with x ∈ S. As in the
case k = 3, we can suppose that the factors of length d/100 of distinct words in
W4 are distinct, where d = 11c + 2 is the length of words in D. The prefixes and
suffixes of length 2 and the factors of length 12 of words in W4 contain the factor
01, whereas words in W4 do not contain the mirror factor 10. Using Lemma 3.2,
we can check that the words in W4 are

(
3
2

+
)
-free and

(
10
7

+
, 34

)
-free.

Suppose that there exists a repetition r = uvu in Gs with exponent strictly
greater than 3

2 , that is, |u| > |v|. Obviously, r cannot be contained in an half-chain
We check that the period p = |uv| of r must be at least 22, by looking at the
neighborhood of a special vertex. We first consider the case where r is contained
in two (opposite) half-chains. If the common special vertex belongs to v, then
|uv| ≥ 22 and |u| > |v| gives |u| ≥ 12. This is a contradiction since the factor
01 appearing in one occurrence of u would induce a forbidden factor 10 in the
word in W4 corresponding to the opposite chain containing the other ocurrence
of u. If the common special vertex belongs to u, then u must contain a factor 01
or 10 that cannot be matched in the other occurrence of u. Suppose now that r

contains at least two special vertices. Since words in W4 are
(

10
7

+
, 34

)
-free, we

have 10
7 |uv| ≥ d. Recall that |u| > |v|, which gives |u| > 7

20d and |r| > 21
20d. Then,

there exists a factor u′ of u such that either |u′| ≥ 12 and both occurrences of
u′ are in half-chains with opposite reading directions, or |u′| ≥ d/100 and both
occurrences of u′ are in distinct half-chains with the same reading direction. In
both cases, we have a contradiction.

Now, we prove the lower bounds.
Let us call spider a tree with at most one vertex of degree strictly greater than

two. Notice that every subdivision Gs of a spider G contains G as a subgraph. For
each k, we give a spider G such that any k-coloring of G contains a repetition of
exponent at least the value of RT (k,S) given in the theorem. Every subdivision
Gs of this spider G contains G as a subgraph and thus a repetition of exponent
at least RT (k,S), which proves the lower bound.
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Case k = 2:
Every

(
7
3

+
)
-free binary word of length 4 has a prefix in F = {00, 11, 010, 101,

0110, 1001}. Consider the spider G on 13 vertices containing a vertex v of degree
4 incident to 4 paths of length 3. Without loss of generality, v gets color 0. Since
there are 4 paths to color in G and only 3 words in F starting with 0, two paths
are colored with the same word in F . Now, for any factor f [1, d] in F , the factor
fdfd−1 . . . f2f1f2 . . . fd−1fd is a repetition of exponent at least 7

3 .

Case k = 3:
Dejean [3] proved that the repetition threshold of a path on 39 vertices is 7

4 . Such
a path is a spider.

Case k ≥ 4:
We consider the spider G = K1,k, that is, G contains a vertex v with degree k and
its neighbors. We have to color k + 1 vertices, v and its neighbors, using k colors
only, so at least two of them get the same color. If v has the same color as one of
its neighbors then we get a square, and if two neighbors of v have the same color
then we get a repetition of exponent 3

2 . �

4. Repetition threshold for trees

Theorem 4.1.

• RT (2, T ) = 7
2 ,

• RT (3, T ) = 3,
• RT (k, T ) = 3

2 , for k ≥ 4.

Proof. We define the family Un, n ≥ 0 of rooted trees as follows: U0 is a vertex,
Un+1 is obtained from kn +1 copies of Un by adding a root vertex adjacent to the
root of each copy. The family Un is universal, that is, every (rooted) tree is the
subgraph of Un for some n. We thus have RT (k, T ) = limn→∞ RT (k, Un). A tree
is level-colored if it is colored such that all vertices at the same depth have the
same color.

We prove now that in any k-coloring of Un, there exists in Un a level-colored
complete binary subtree of height n. Suppose that the property holds for Un and
consider any coloring of Un+1. We have kn+1 copies of Un, each containing a level-
colored binary tree, and there are at most kn ways to color one of these binary
trees. So two level-colored binary trees have the same coloring, and this creates
the expected level-colored binary tree in Un+1.

The repetition threshold of a k-coloring of Un is at least the largest exponent
of a repetition in a level-colored complete binary tree of height n that it contains.
Moreover, the largest exponent of a repetition in a level-coloring is the same for
Un and for a binary complete tree of height n, because the set of factors is the
same in these two trees.
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The study of RT (k, T ) is thus reduced to that of level-colorings of complete
binary trees, so we can consider the word w = w1w2 . . . such that wi is the color
appearing at depth i− 1. The factors of the level-colored complete binary tree are
exactly those of the form wm+lwm+l−1 . . . wm+1wmwm+1 . . . wm+r−1wm+r.

We first prove the upper bounds. For each k, we consider an infinite word
w over the k-letter alphabet such that for all l, r, and m, the exponent of
wm+lwm+l−1 . . . wm+1wmwm+1 . . . wm+r−1wm+r is at most the expected value of
RT (k, T ). Without loss of generality, we suppose that l ≤ r.

Case k = 2:
We choose w to be the Thue-Morse word wTM . Notice that the factor wm+2wm+1

wmwm+1wm+2 is in {10001, 01010, 11011, 00100, 10101, 01110}, so it is not a
factor of wTM . Suppose that wm+lwm+l−1 . . . wm+1wmwm+1 . . . wm+r−1wm+r is
a repetition with a period of length p ≥ 2 and exponent strictly greater than 7

2
(a repetition with period of length 1 has exponent at most 3). If l = 1, then the
exponent is 2 + 1

p ≤ 5
2 < 7

2 . If l ≥ 2, then the factor wm+2wm+1wmwm+1wm+2

must appear in w[m, m + r], which is a factor of wTM . A contradiction.

Case k = 3:
We choose w to be the image of any ternary square-free word by the morphism
0 �→ 00, 1 �→ 11, 2 �→ 22 which doubles every letter. The tree thus contains the
cubes 000, 111, and 222, but no cube of period at least two. To see this, consider
a potential cube uuu of period at least two as two overlapping occurrences of
the square uu. Since w contains no square of period at least two, the leftmost
occurrence of uu cannot be contained in the left branch of the cube factor. So the
leftmost factor uu contains the factor bab where a, b ∈ Σ3 and a is the color of the
root. This is a contradiction, since the matched occurrence of bab in the rightmost
factor uu is contained in the right branch of uuu but bab is not a factor of w.

Case k = 4:
We choose w to be any

(
3
2

)
-free word over Σ4. Notice that w has no factors of the

form aa nor aba where a and b are letters. So w contains no palindrome of size
at least two. Suppose that uvu is a repetition of exponent strictly greater than 3

2 ,
that is, |u| > |v|, and suppose w.l.o.g that 01 is a prefix of u. The first factor u
cannot contain a vertex and two of its sons, since this creates a factor aba that
cannot be matched in the other factor u. So the first occurrence of u is a prefix of
the left branch wm+lwm+l−1 . . . wm+1wm.

Without loss of generality, wm is the last letter of u, since otherwise the factor
wm+lwm+l−1 . . . wm+2wm+1wm+2 . . . wm+r−1wm+r rooted at level m + 1 is the
repetition uv′u where v′ is the suffix of v of length |v| − 2, so that the exponent of
uv′u is greater than the exponent of uvu. Thus |u| = l + 1, and since |v| < |u|, we
can consider the following cases on the right branch:

• |v| = l: the factor wm+lwm+l+1 should be 00, a contradiction.
• |v| = l − 1: the factor wm+l−1wm+lwm+l+1 should be 101, a contradiction.
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• |v| = l − t, t ≥ 2: the factor wm+l−t+1 . . . wm+l should be a palindrome of size
at least two, a contradiction.

Now, we prove the lower bounds.
For each k, we prove that for any infinite word w over the k-letter al-

phabet, there exist l, r and m, such that the exponent of wm+lwm+l−1 . . .
wm+1wmwm+1 . . . wm+r−1wm+r is at least RT (k, T ).

Case k = 2:
It is easy to check that every long enough binary word either has a factor in
F = {000, 111, 0101, 1010, 0110110, 1001001} or contains (0011)4 as a factor.
Moreover, for any factor f [1, d] in F , the factor fdfd−1 . . . f2f1f2 . . . fd−1fd is a
repetition of exponent at least 7

2 .

Case k = 3:
Let F be the set of words obtained by permutations of the letter alphabet
of the words in {00, 0101, 0121012, 012012012}. A computer check shows that
every ternary word w of length 58 contains a factor w[b, e] such that the factor
wewe−1 . . . wb+1wbwb+1 . . . we−1we contains a cube.
The following word of length 57 does not contain such a factor:
010201210212012021021012012010210210120120210212012102010.

Case k ≥ 4:
It is clear that any level-coloring of the complete binary tree of height 1 contains
a repetition of exponent at least 3

2 . �
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