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Abstract

A tangram is a word in which every letter occurs an even number of times.
Thus it can be cut into parts that can be arranged into two identical words. The
cut number of a tangram is the minimum number of required cuts in this process.
Tangrams with cut number one corresponds to squares. For k ⩾ 1, let t(k) denote
the minimum size of an alphabet over which an infinite word avoids tangrams with
cut number at most k. The existence of infinite ternary square-free words shows
that t(1) = t(2) = 3. We show that t(3) = t(4) = 4, answering a question from
Dębski, Grytczuk, Pawlik, Przybyło, and Śleszyńska-Nowak.
Mathematics Subject Classifications: 68R15

1 Introduction

A tangram is a word in which every letter occurs an even number of times, possibly zero.
In particular, tangrams are a generalization of squares. In this article, we consider a
classification of tangrams depending on how close they are from being a square. This
relies on the so-called cut number of a tangram, recently introduced by Dębski, Grytczuk,
Pawlik, Przybyło, and Śleszyńska-Nowak [3]. The cut number of a tangram is defined
as the minimum number of cuts needed so that the parts can be rearranged into two
identical words. Tangrams with cut number at most k are called k-tangrams. Note that
1-tangrams are exactly squares, and the larger the cut number, the farther the tangram
is from a square.

Let Σq = {1, 2, . . . , q − 1} denote the q-letter alphabet. It is straightforward to check
that every binary word of length 4 contains a square, while a famous theorem from Thue
in 1906 asserts that there exist infinite words avoiding squares over Σ3. In [3], the authors
consider a similar question by investigating (infinite) words without tangrams: since every
infinite word must contain some tangram, they consider the relation between the size of
the alphabet and the cut number of the excluded tangrams. For k ⩾ 1, the authors thus
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define t(k) as the minimum alphabet size such that there exists an infinite word avoiding
k-tangrams. By definition, t(k) is non-decreasing, and since every 2-tangram contains a
square, the result of Thue shows that t(1) = t(2) = 3.

The other results from [3] are summarized in the following.

Theorem 1 ([3]).

• t(k) ⩽ 1024 ⌈log2 k + log2 log2 k⌉ for every k ⩾ 3.

• t(k) ⩽ k + 1 for every k ⩾ 4.

• 4 ⩽ t(3) ⩽ t(4) ⩽ 5

Moreover, the authors leave as an open problem the exact value of t(3). In this article,
we prove the following.

Theorem 2. t(3) = t(4) = 4.

2 Preliminaries

To obtain Theorem 2, we heavily use the following relation observed in [3] between k-
tangrams and patterns. A pattern P is a finite word over the alphabet ∆ = {A,B, . . .},
whose letters are called variables. An occurrence of a pattern P in a word w ∈ Σ∗ is a
non-erasing morphism h : ∆∗ → Σ∗ such that h(P ) is a factor of w, and a word w avoids
a pattern P if it contains no occurrence of P .

As noticed in [3], a k-tangram is an occurrence of some pattern with at most k variables
such that every variable occurs exactly twice. So for every k ⩾ 1, there exists a mini-
mum set Sk of such patterns such that avoiding Sk is equivalent to avoiding k-tangrams.
Obviously, Sk ⊂ Sk+1 for every k ⩾ 1. A small case analysis gives the first four sets Sk:

• S1 = S2 = {AA}

• S3 = {AA,ABACBC,ABCACB,ABCBAC}

• S4 = {AA,ABACBC,ABCACB,ABCBAC,ABACBDCD,ABACDBDC,
ABACDCBD,ABCACDBD,ABCADBDC,ABCADCBD,ABCADCDB,
ABCBADCD,ABCBDACD,ABCBDADC,ABCBDCAD,ABCDACBD,
ABCDADCB,ABCDBADC,ABCDBDAC,ABCDCADB,ABCDCBAD},

In the next section, we prove Theorem 2 by constructing infinite words over Σ4 avoiding
all patterns in S4. But first, let us show the weaker result t(3) ⩽ 4 as a straightforward
(and computer-free) consequence of well-know results in pattern avoidance. Following
Cassaigne [2], we associate to each pattern a formula, by replacing each variable appearing
only once by a dot (such variables are called isolated). For example, the formula associated
to the pattern ABBACABADAA is ABBA.ABA.AA. The factors between the dots are
called fragments. Similarly to patterns, an occurrence of a formula f in a word w ∈ Σ∗ is
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a non-erasing morphism h : ∆∗ → Σ∗ such that every fragment of f is mapped under h
to a factor of w (note that the order of the fragments does not matter). A word w avoids
a formula f if it contains no occurrence of f .

Consider the formula F3 = AB.BA.AC.CA.BC. Notice that AA contains an occur-
rence of F3. Moreover, ABACBC, ABCACB, and ABCBAC also contain an occurrence
of F3 since they have 5 distinct factors of length 2. So every pattern in S3 contains an
occurrence of F3. Baker, McNulty, and Taylor [1] have considered that the fixed point
b4 ∈ Σω

4 of the morphism defined by 0 7→ 01, 1 7→ 21, 2 7→ 03, 3 7→ 23 (that is,
b4 = 01210321012303210121 . . .) and shown that b4 avoids F3. Then b4 avoids every
pattern in S3. So b4 avoids 3-tangrams, which implies that t(3) ⩽ 4.

3 Proof of t(4) ⩽ 4

Unfortunately, the word b4 contains the factor 03210123 which is a 4-tangram. Moreover,
backtracking shows that every infinite word over Σ4 avoiding 4-tangrams must contain a
factor aba for some letters a and b. In particular, every 7

5

+-free word over Σ4 contains
a 4-tangram. More generally, we have not been able to find a word that might witness
t(4) ⩽ 4 in the literature. Thus we use an ad-hoc construction. The proof will need the
following notions. Given a square-free word w, a repetition in w is a factor of w of the
form uvu. Its period is |uv| and its exponent is |uvu|

|uv| . Given α ∈ Q and n ∈ N, a word w

is (α+, n)-free if it does not contain any repetition with period at least n and exponent
strictly greater than α. We say that w is α+-free if it is (α+, 1)-free.

Consider the 312-uniform morphism h : Σ∗
6 → Σ∗

4 below. We will show that for every
6
5

+-free word w over Σ6, h(w) avoids every pattern in S4. Together with the result of
Kolpakov and Rao [5] that there exist exponentially many 6

5

+-free infinite words over Σ6,
this implies that there exist exponentially many words over Σ4 avoiding 4-tangrams.

First, we show that h(w) is
(

5
4

+
, 9
)
-free by using the following lemma from [6]. A

morphism f : Σ∗ → ∆∗ is q-uniform if |f(a)| = q for every a ∈ Σ, and is called synchro-
nizing if for all a, b, c ∈ Σ and u, v ∈ ∆∗, if f(ab) = uf(c)v, then either u = ε and a = c,
or v = ε and b = c.

Lemma 3. Let α, β ∈ Q, 1 < α < β < 2 and n ∈ N∗. Let h : Σ∗
s → Σ∗

e be a synchronizing
q-uniform morphism (with q ⩾ 1). If h(w) is (β+, n)-free for every α+-free word w such
that |w| < max

(
2β
β−α

, 2(q−1)(2β−1)
q(β−1)

)
, then h(t) is (β+, n)-free for every (finite or infinite)

α+-free word t.

We have checked that h is synchronizing and that the h-image of every 6
5

+-free word of

length smaller than
2×5

4
5
4
−6
5

= 50 is
(

5
4

+
, 9
)
-free. Therefore h(w) is

(
5
4

+
, 9
)
-free by Lemma 3.

Now we show that every occurrence m of a pattern P ∈ S4 in a
(

5
4

+
, 9
)
-free word

is such that |m(P )| is bounded (see Table 1). As an example, let us detail the case of
ABCDACBD. To lighten notations, we write y = |m(Y )| for every variable Y .
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Lemma 4. Let z be a
(

5
4

+
, 9
)
-free word. Then if z contains an occurrence m of ABCDACBD,

then |m(ABCDACBD)| ⩽ 24.

Proof. Consider an occurrence m of ABCDACBD in z. The factor m(ABCDA) of z is
a repetition with period |m(ABCD)| and exponent |m(ABCDA)|

|m(ABCD)| .

Since z is
(

5
4

+
, 9
)
-free, then a + b + c + d ⩽ 8 or 2a+b+c+d

a+b+c+d
⩽ 5

4
. The latter inequality

gives a
a+b+c+d

⩽ 1
4

and then
3a ⩽ b+ c+ d. (1)

Similarly, the repetition m(BCDACB) implies that a+ b+ 2c+ d ⩽ 8 or

3b ⩽ a+ 2c+ d. (2)

m(CDAC) implies that a+ c+ d ⩽ 8 or

3c ⩽ a+ d. (3)

m(DACBD) implies that a+ b+ c+ d ⩽ 8 or

3d ⩽ a+ b+ c. (4)

Suppose that a+ c+ d ⩾ 9. Then the combination 6× (1)+ 4× (2)+ 7× (3)+ 6× (4)
gives a+ c+ d ⩽ 0, a contradiction. Therefore

a+ c+ d ⩽ 8. (5)

This implies
c ⩽ 6. (6)

Now suppose that b ⩾ 5, so that a+ b+2c+d ⩾ 9. Then the combination (2)+ (5)+ (6)
gives 3b ⩽ 14, which contradicts b ⩾ 5. Therefore

b ⩽ 4. (7)

By (5) and (7), we get that a+ b+ c+ d ⩽ 12, hence |m(ABCDACBD)| ⩽ 24.

Now, notice that every pattern in S4 is doubled, that is, every variable appears at least
twice [4, 7]. Alternatively, a doubled pattern is a formula with exactly one fragment. The
avoidability exponent AE(f) of a pattern or a formula f is the largest real x such that every
x-free word avoids f . By Lemma 10 in [8], the avoidability exponent of a doubled pattern
with 4 variables is at least 6

5
. This bound is not good enough, so we have computed the

avoidability exponent of every pattern in S4, see Table 1. Notice that these avoidability
exponents are greater than 5

4
. Then the

(
5
4

+
, 9
)
-freeness of h(w) ensures that there is no

"large" occurrence of a pattern in S4, that is, such that the period of every repetitions is
at least 9. This is witnessed by the combination 6× (1)+ 4× (2)+ 7× (3)+ 6× (4) in
the proof of Lemma 4. Now, to bound the length of the other occurrences, we do not rely
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on a tedious analysis by hand as in Lemma 4. Instead, the bound in the last column of
Table 1 is computed as the maximum of 2(a+ b+ c+ d) such that 1 ⩽ a, b, c, d < 100 and
(a+b+c+d ⩽ 8∨3a ⩽ b+c+d)∧(a+b+2c+d ⩽ 8∨3b ⩽ a+2c+d)∧(a+c+d ⩽ 8∨3c ⩽
a+d)∧ (a+ b+ c+d ⩽ 8∨3d ⩽ a+ b+ c), again with the example of P = ABCDACBD
of Lemma 4.

Finally, for every pattern P ∈ S4, we check exhaustively by computer that h(w)
contains no occurrence of P of length at most the corresponding bound. 1 So h(w) avoids
every P ∈ S4. So h(w) avoids 4-tangrams. So t(4) ⩽ 4.

Pattern P PR AE(P ) Bound on |m(P )|
AA self-reverse 2 16
ABACBC self-reverse 1.414213562 =

√
2 30

ABCACB ABCBAC 1.361103081 26
ABACBDCD self-reverse 1.381966011 32
ABACDBDC ABCBADCD 1.333333333 = 4

3
40

ABACDCBD ABCACDBD 1.340090632 32
ABCADBDC ABCBDACD 1.292893219 32
ABCADCBD self-reverse 1.295597743 28
ABCADCDB ABCBDCAD 1.327621756 32
ABCBDADC self-reverse 1.302775638 32
ABCDACBD self-reverse 1.258055872 24
ABCDADCB ABCDCBAD 1.288391893 42
ABCDBADC self-reverse 1.267949192 24
ABCDBDAC ABCDCADB 1.309212406 44

Table 1: The patterns in S4, their avoidability exponent, and the upper bound for the
length of their occurrences in a

(
5
4

+
, 9
)
-free word.

4 Concluding remarks

Notice that our words h(w) contain the factor 012130212321 which is a 5-tangram since
0|1|213021|2|3|21 can be rearranged as 213021|2|1|3|0|21. The exact value of t(k)
remains unknown for every k ⩾ 5. In particular, we only known that 4 ⩽ t(5) ⩽ 6.
Improving the upper bound on t(5) using the approach in this paper might be tedious, as
we expect the set S5 to be quite large.

1The C code to check the properties of the morphism h and the bounds on |m(P )| is available at
http://www.lirmm.fr/~ochem/morphisms/tangram4.htm.
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0 → 010201321021231201213020103101203013032131031323010302130320312023020103212

0123121021320102031201213021232101312030130230310320131012301021032120213012010

3102101320212303230102031210213212012310201032102123012131203213230231232013121

0301032313021231201213210231323012320321030230313201031021013012031303210310123

1 → 010201312103231302123201020312023021303203010231301321310312301030213013120

3132310121302012032021023012101320103102313031201301021031012303132131032312320

1213212023132301232032103020312302321320323102030121012320213032031030230132023

2103203012303130201032120231323012320321030230313201031021013012031303210310123

2 → 010201312103231302030123031032101310230130320310302131012010312102123020120

2321012130212312031321310123031032030130231013120310302130323010203121013202123

0323102321320131231303210130120103102130313201301023101210302013230231232032130

2030123031032101310230130320310302131012321230313201031021013012031303210310123

3 → 010201312103231302030123031032101301020312102132120123102010321021230121312

0232103023013032031023202130230312030103231302123201312103010231012013202102030

1232032132302312030201320323102321230132131031231302123201020131210323123023213

2031213102312320132303212023020123203231030230313201031021013012031303210310123

4 → 010201312102123101201032021020301232032132302312030201320323102321230313201

0302120231020320132302321203132130131231032123201321310231303121013202102302012

0321012130210203120232010302131012303132023210323123012131203213230231232013121

0301032313021231201213210231323012320321030203123023213203231020301303210310123

5 → 010201312102123101201032021020301232032132302312030201320210231012010302131

0312313013210301023103132013121302312320321323012131020102321203132130131231032

1232013213102313031201301021031012303132023201030213103123130132103010231012013

2021203102101301201032120231323012320321030203123023213203231020301303210310123
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