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Abstract

Let tn be the number of words of length n in a factorial language
L. We adapt the transfert matrix method to obtain upper bounds on

the growth rate of words in L defined as limn→∞ (tn)
1

n . This method
is used to lower the best known upper bounds on the growth rate of
ternary square-free words from 1.30193812.. to 1.30178858..

1 Introduction

Let Σs denote the s-letter alphabet {0, 1, . . . , s−1}. A language L is said to
be factorial if it is closed under taking factors (i.e., subwords consisting of
consecutive letters). Let tn be the number of words of length n in a factorial
language L over Σs. Since L is factorial, tn is sub-multiplicative and thus the

growth rate C = limn→∞ (tn)
1

n is well-defined. We are in one the following
case:

• If L contains finite words only, then C = 0.

• If L = Σ∗

s, then C = limn→∞ (sn)
1

n = s.

• Otherwise 1 ≤ C < s.

See the survey of Berstel [1] for more information on the growth rate.
A factorial langage can also be defined by its set of minimal forbidden

factors. If this set is finite, then we can obtain the generating function of
tn and compute the growth rate of the langage. When the set of minimal
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forbidden factors is infinite, as for ternary square-free words, Noonan and
Zeilberger [6] propose to obtain an upper bound on the growth rate the
as follows. Let L be a factorial langage with an infinite set S of minimal
forbidden factors. We choose a finite subset S′ of S, for example take S′

as the set all of words in S of length at most ℓ, for some ℓ. Let L′ be
the factorial langage whose set of minimal forbidden factors is S′. We have
L ⊂ L′, so we can compute the growth rate of L′, which is also an upper
bound on the growth rate of L.

Richard and Grimm [5] have extended the computations in [6], they
obtained that the growth rate of ternary words avoiding squares xx with
|x| ≤ 24 is 1.30193812..

In Section 2, we describe a new method to obtain upper bounds on
growth rates. In Section 3, we discuss the computation of an upper bound
of 1.30178858.. on the growth rate of ternary square-free words.

2 Method for upper bounds

Let L be a factorial langage over Σs and let tn be the number of words of
length n in L. Let k ≥ 1 and ℓ ≥ 1 be integers. We consider the tk factors
wi in L of length k in lexicographic order. We define the tk×tk matrix Mk,ℓ,
as follows. For 0 ≤ i < k, 0 ≤ j < k, Mk,ℓ(i, j) is the number of words in
L of length k + ℓ having wi as a prefix and wj as a suffix. For n ≥ 0, we
also define V n

k as the vector of dimension tk such that V n
k (i) is the number

of words in L of length n having wi as a suffix, for 0 ≤ i < k.

So V n
k = 0 for n < k and V k

k = t[1, 1, . . . , 1]. Moreover, for n ≥ k, we
have V n+ℓ

k ≤ Mk,ℓ · V
n
k , where the inequality is componentwise. To see this,

notice that Mk,ℓ acts like adding a factors of length ℓ to the words in L.
By definition of Mk,ℓ, V k+ℓ

k = Mk,ℓ · V k
k , but the inequality can be strict

for n > k because e.g. the minimal forbidden factors of length greater than
k + l are not taken into account.

Iterating q times this inequality yields to V
k+qℓ
k ≤ M

q
k,ℓ · V

k
k . Let Ek, ℓ

denote the largest eigenvalue of Mk,ℓ. Let |.| be the norm obtain by summing
up the components. We have tn = |V n

k |, so that
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lim
n→∞

(tn)
1

n = lim
q→∞

|V k+qℓ
k |

1

k+qℓ

≤ lim
q→∞

|M q
k,ℓ · V

k
k |

1

k+qℓ

≤ lim
q→∞

(

kE
q
k,ℓ

)
1

k+qℓ

= lim
q→∞

E
q

k+qℓ

k,ℓ

= E
1

ℓ

k,ℓ.

To obtain upper bounds on the growth rate of L, we proceed as follows:

1. Choose integers k and ℓ.

2. Construct the matrix Mk,ℓ using a depth-first traversal of the set of
words in L of length at most k.

3. Compute Ek,ℓ using the well-known power method, and finally com-

pute E
1

ℓ

k,ℓ.

3 Application to repetition-free words

We associate to a ternary square-free word t of length n + 2 a binary word
b of length n defined as follows: for 0 ≤ i < n, b[i] = 0 if t[i] = t[i + 2] and
b[i] = 1 otherwise. See the example below.

t 0 1 2 0 2 1 0 1 2 1 0 2

b 1 1 0 1 1 0 1 0 1 1

This encoding is used in [3, 4] to prove parts of Dejean’s conjecture. Let
tn (resp. t′n) denote the number of ternary square-free words (resp. codes
of ternary square-free words) of length n. Two ternary square-free words
have the same code if and only if they are equal up to a permutation of the
letters in Σ3, so we have tn+2 = 6t′n. This implies that the langage of ternary
square-free words and the langage of their code have the same growth rate:
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lim
n→∞

(tn)
1

n = lim
n→∞

(tn+2)
1

n+2

= lim
n→∞

(

6t′n
)

1

n+2

= lim
n→∞

(

t′n
)

1

n .

Considering the codes instead of the ternary square-free words reduces
the size of the matrix Mk,ℓ within a factor 62 = 36 for the same parameters
k and ℓ.

The size of the matrix is indeed the limiting factor here: the quality of
the upper bound obtained mostly depends on k and the dimension of the
matrix is exponential in k. The following observation is useful: If ℓ ≤ k, then
every Mk,ℓ(i, j) is at most 1, since there exist at most one word of length
k + ℓ with fixed prefix and suffix of size k. For codes of ternary square-free
words, it remains true even for ℓ ≤ k + 1. This allows to use only one bit
per coefficient.

For k = 44 and ℓ = 45, the matrix M44,45 occupies 3609792 bits, which
is about 15.17 giga-bytes. The computation 1 took nearly three days on a
4-processor computer with 16 giga-bytes of memory. The construction of
the matrix was parallelized.
We obtain an upper bound on the growth rate of ternary square-free words of
1.30178858.. which improves upon the previously best known of 1.30193812..
[5]. It is noticeable that Richard and Grimm [5] get an estimation of this
growth rate of 1.301762.. using differential approximants on the known val-
ues of tn for n ≤ 110. Moreover, Kolpakov recently proved a lower bound
of 1.30125 [2].

We also considered (codes of) binary cube-free words. For k = ℓ = 32,
we obtained an upper bound on the growth rate of binary cube-free words
of 1.45758131.. which has to be compared to Kolpakov’s lower bound of
1.456975 [2].

1The program is written in C with pthread and GMP. It is available at:

http://dept-info.labri.fr/∼ochem/morphisms/
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