
Complexity dichotomy for oriented homomorphism of planar graphs
with large girthI

Guillaume Guégana, Pascal Ochema

aCNRS - LIRMM, Montpellier, France

Abstract

We consider the complexity of oriented homomorphism and two of its variants, namely strong ori-
ented homomorphism and pushable homomorphism, for planar graphs with large girth. In each case,
we consider the smallest target graph such that the corresponding homomorphism is NP-complete.
These target graphs T4, T5, and T6 have 4, 5, and 6 vertices, respectively. For i ∈ {4, 5, 6} and for
every g, we prove that if there exists a (bipartite) planar oriented graph with girth at least g that does
not map to Ti, then deciding homomorphism to Ti is NP-complete for (bipartite) planar oriented
graphs with girth at least g.
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1. Introduction

Esperet, Montassier, Ochem, and Pinlou [7] have proved that for many types of coloring, there
exists an integer g such that deciding whether a planar graph with girth g is colorable is NP-complete,
whereas every planar graph with girth at least g + 1 is colorable. In this paper, we obtain similar
results for homomorphism to three interesting oriented graphs.

An oriented graph is a directed graph without loops, opposite arcs, nor multiple arcs. Equiva-
lently, an oriented graph is obtained by orienting every edge of a simple graph. We denote by V (G)
the vertex set and by A(G) the arc set of the oriented graph G. A homomorphism from an oriented
graph G to an oriented graph T is a mapping m : V (G) → V (T ) such that for every −→uv ∈ A(G),
we have

−−−−−−−→
m(u)m(v) ∈ A(T ). If G admits a homomorphism to T , then we say for short that G maps

to T , or that G admits a T -coloring.
A series of recent papers [11, 4, 8, 5] considers the complexity of deciding homomorphism of

an oriented graph to the tournament T4 depicted in Figure 1(a). Homomorphism is decidable in
polynomial time for every tournament with at most 4 vertices other than T4. Each new paper shows
that the problem is NP-complete on a smaller graph class. In Section 2, we prove Theorem 1 which
improves these results.

A k-vertex is vertex of degree k. Let Pg denote the class of planar graphs with girth at least g.
Therefore, Pg+1 is a proper subclass of Pg . We will use the well-known fact that graphs in P6 are
2-degenerate (see e.g [2]).

We also recall the definition of DAG-depth from [9]. For an oriented graph G and a vertex
v ∈ V (G), let R(v) denote the subgraph of G induced by the vertices reachable from v. The
reachable fragments of G are the graphs in the set {R(v) : v ∈ V (G)} that are maximal with respect
to the subgraph order. The DAG-depth ddp(G) of an oriented graph G is defined inductively as
follows: if |V (G)| = 1, then ddp(G) = 1. If G has a single reachable fragment, then ddp(G) =
1 + min {ddp(G \ v) : v ∈ V (G)}. Otherwise, ddp(G) equals the maximum over the DAG-depths
of the reachable fragments of G.
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Figure 1: The tournaments T4, T5, and the oriented graph T6.

Theorem 1. For any fixed g > 3, deciding whether an oriented graphGmaps to T4 is NP-complete,
even if G is restricted to be in Pg , bipartite, subcubic, with DAG-depth 3, with maximum outdegree
2 and maximum indegree 2, and such that one part of the bipartition contains every 3-vertex.

Borodin, Kostochka, and Ivanova [1] have considered homomorphism to the regular tournament
T5 depicted in Figure 1(b) and obtained the following.

Theorem 2. [1] Every oriented graph in P12 maps to T5.

Notice that T5 is not the only tournament on 5 vertices that can color planar graphs with large enough
girth [13]. However, the strong oriented chromatic number introduced by Nešetřil and Raspaud [12]
of an oriented graph is at most 5 if and only if it maps to T5. We prove the following result in
Section 4.

Theorem 3. Let g be a fixed integer. Either every oriented graph in Pg maps to T5 or it is NP-
complete to decide whether a graph in Pg maps to T5. Either every oriented bipartite graph in Pg

maps to T5 or it is NP-complete to decide whether a bipartite graph in Pg maps to T5.

Klostermeyer and MacGillivray [11] have considered the following variation of oriented homo-
morphism. Given an oriented graph G and a subset X of vertices of G, the graph obtained from G
by reversing the direction of the arcs in the cut (X,G \X) is said to be push equivalent to G. The
oriented graph G admits a push homomorphism to an oriented graph T if there exists a graph G′

such that G′ is push equivalent to G and G′ maps to T . The pushable chromatic number of G is then
defined as the minimum number of vertices of a graph T such that G has a push homomorphism
to T .

Let T6 be the oriented graph depicted in Figure 1(c) with vertex set {0, 1, . . . , 5} such that
−→
ij is

an arc if and only if j = i+1 (mod 6) or j = i+2 (mod 6). Klostermeyer and MacGillivray [11]
have shown in particular that the following statements are equivalent (see Corollary 4 and Lemma 16
in [11]).

• G maps to T6.

• G admits a push homomorphism ot T6.

• The pushable chromatic number of G is at most 3.

They also obtain that push homomorphism to T is polynomial time solvable if T maps to the
circuit of length 4 and is NP-complete otherwise. This implies that deciding whetherG has pushable
chromatic number at most k is polynomial time solvable if k 6 2 and is NP-complete otherwise. So,
T6-coloring is NP-complete.

Borodin, Kostochka, Nešetřil, Raspaud, and Sopena [3] have considered homomorphism to T6
and obtained the following.

Theorem 4. [3] Every oriented graph in P16 maps to T6.
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Their motivation was that T6 is itself planar. Then, Borodin, Kim, Kostochka, and West [2] obtained
as a consequence of their main result (Theorem 2.5) that every oriented graph with girth at least
13 and maximum average degree strictly smaller than 16

7 maps to T6. They mistakenly conclude
(Corollary 3.4) that every oriented graph in P13 maps to T6. The correct corollary is again that every
oriented graph in P16 maps to T6 and thus does not improve Theorem 4.

We prove the following result in Section 5.

Theorem 5. Let g be a fixed integer. Either every oriented graph in Pg maps to T6 or it is NP-
complete to decide whether a graph in Pg maps to T6. Either every oriented bipartite graph in Pg

maps to T6 or it is NP-complete to decide whether a bipartite graph in Pg maps to T6.

Section 3 describes graphs that do not map to T5 or T6. Using these graphs, we obtain the
following corollary of Theorems 3 and 5.

Corollary 6.

• Deciding whether an oriented planar graph G maps to T5 is NP-complete, even if G has girth
7, or if G is bipartite with girth 6.

• Deciding whether an oriented planar graph G maps to T6 is NP-complete, even if G has girth
9, or if G is bipartite with girth 8.

2. Proof of Theorem 1

Oriented homomorphism in general is clearly in NP. We reduce the NP-complete problem [6]
RESTRICTED PLANAR 3-SAT. This variant of SAT is such that:

• every clause has size 2 or 3,

• every variable appears exactly twice positively and once negatively,

• the variable-clause incidence graph is planar.

Let us call a k-clause a clause of size k. An alternating path is an oriented path such that
the length is even and at least 4, every vertex is a source or a sink, and the extremities are sinks.
Alternating paths are represented Figure 2 by a dashed segment with an arrow at both ends.

Given an instance I of RESTRICTED PLANAR 3-SAT, we construct a corresponding oriented
graph G. We take one copy of the variable gadget depicted in Figure 2 per variable of I , one copy of
the 2-clause gadget depicted on the left of Figure 3 per 2-clause of I , and one copy of the 3-clause
gadget depicted on the left of Figure 4 per 3-clause of I . In the gadget of the variable v, the vertices
v′1 and v′2 correspond to the two occurrences of the positive literal of v and v′ corresponds to the
occurrence of the negative literal of v. In the gadget of the clause c, the vertex `i corresponds to the
ith literal in c. For every occurrence of a literal of a variable v in a clause c, we identify the vertex
corresponding to this occurrence in the gadget of v with the vertex corresponding to this literal in the
gadget of c.

Let us describe the variable gadget. Every T4-coloring of the alternating path is such that if
one extremity is colored 1, then the other extremity is colored 1, and if one extremity has any color
distinct from 1, then the other extremity can be colored 2, 3, or 4. We consider first the possible
T4-colorings of the graph at the top of Figure 2. The vertex u3 cannot be colored 1 since such a
coloring cannot be extended to the vertices on the left of u3. Similarly, u3 cannot be colored 4 since
such a coloring cannot be extended to the vertices on the right of u3. Thus, u3 can be colored 2 or 3,
u2 can be colored 1 or 2, and u1 can be colored 1 or 4. This graph is used in the construction of the
variable gadget depicted at the bottom of Figure 2. The variable gadget is such that if v is colored 1
(resp. 4), then v1 and v2 are colored 4 (resp. 1). Again, by the properties of the alternating path, if a
vertex ` ∈ {v1, v2, v} is colored 1, then the vertex `′ is colored 1, and if ` is colored 4, then `′ can
be colored 2, 3, or 4.
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Figure 2: The variable gadget.

1

2

3 1

4

3 2

3

4

ℓ1

ℓ2

Figure 3: The 2-clause gadget.
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Figure 4: The 3-clause gadget.
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Thus, the set of colors {2, 3, 4} is associated to the boolean value true and {1} is associated to
the boolean value false.

Now let us assume that the vertices `i of the clause gadgets are precolored according to their
corresponding literal. On the right of Figure 3, we give coloring extensions for a satisfied 2-clause
(FT, TF and TT, respectively). If a 2-clause is not satisfied then both `1 and `2 are precolored 1 and
this precoloring cannot be extended. On the right of Figure 4, we give the possible color extensions
of the three paths of the 3-clause gadget, both in the case of a true literal (above the path) and in
the case of a false literal (below the path). If a 3-clause is satisfied, then at least one of its literal is
true and the precoloring can be extended to a T4-coloring of the clause gadget. Indeed, if the literal
corresponding to `1 (resp. `2, `3) is true, then the precoloring can be extended such that t is colored
4 (resp. 1, 2).

If a 3-clause is not satisfied, then the precoloring cannot be extended to a T4-coloring of the
clause gadget. Indeed, we have c(`1) = c(`2) = c(`3) = 1, thus c(t) 6∈ {3, 4} because c(`1) = 1,
c(t) 6= 1 because c(`2) = 1, and c(t) 6∈ {2, 3} because c(`3) = 1, so c(t) 6∈ {1, 2, 3, 4} and the
clause gadget does not map to T4.

Thus, G maps to T4 if and only if I is satisfiable.
Let us show that G satisfies the conditions of Theorem 1. It is easy to check that G is planar,

bipartite, subcubic, with maximum outdegree 2 and maximum indegree 2, and that every 3-vertex is
in the “black” part of the bipartition. We can also assume that the girth is large, since every cycle
contains an alternating path whose length can be as large as needed. The variable gadget contains
the unique maximal reachable fragment of G. It is rooted in the in-neighbor of v. This reachable
fragment, and thus G, has DAG-depth 3. The girth of G is large and the length of a directed path is
at most 4. This implies that G has K-width 1, i.e., there exists at most one directed path between two
vertices, and that G is acyclic, i.e., G has no circuit.

3. Planar graphs that do not map to T5 or T6

Figure 5 shows an oriented bipartite graph G6 in P6 that does not map to T5. Suppose for
contradiction that G6 admits a homomorphism h to T5. Without loss of generality, h(t) = 0. So
h(b) = c ∈ {2, 3, 4}. Let us set S = {2, 3, 4} ∩ {c+ 2, c+ 3, c+ 4} where additions are done
modulo 5. Notice that {h(x1), h(x2), h(x3)} ⊂ S. Since c 6= 0, S consists in a set of at most two
consecutive values. We have a contradiction if |S| = 1 because h(x1) 6= h(x2). If S = {t, t+ 1},
then we must have h(xi) = t and h(xi+1) = t+ 1 for some i ∈ {1, 2}, which is impossible.

t

x1 x2 x3

b

Figure 5: The bipartite graph G6 in P6 that does not map to T5.

Nešetřil, Raspaud, and Sopena [13] have shown that the oriented chromatic number of the class
of planar graphs with girth at least 7 is at least 6. This implies that there exists an oriented graph G7

in P7 that does not map to T5.
Figure 6 shows an oriented graph G9 in P9 that does not map to T6 and Figure 7 shows an

oriented bipartite graph G8 in P8 that does not map to T6.
To see that G9 does not map to T6, consider first the subgraph depicted on the left of Figure 6.

Suppose that this subgraph has a T6-coloring such that t is colored 0, without loss of generality.
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Figure 6: The graph G9 in P9 that does not map to T6.

Since t and b have a common out-neighbor, b must be colored 5, 0, or 1. Suppose that b is colored
1. Then the directed paths starting from t (resp. b) forbid that a vertex in the horizontal directed
path is colored 3 (resp. 4). This is a contradiction since the directed path on 5 vertices does not
map to T6 \ {3, 4}. Hence, b cannot be colored 1. By symmetry, b cannot be colored 5 and thus b is
colored 0. So, t and b get the same color in any T6-coloring. This implies that the whole graph G9

depicted on the right of Figure 6 does not map to T6.
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Figure 7: The bipartite graph G8 in P8 that does not map to T6.

To see that G8 does not map to T6, consider first the subgraph depicted on the left of Figure 7.
Suppose that this subgraph has a T6-coloring such that t is colored 0, without loss of generality.
The path tx1x2x3b (resp. ty1y2y3b) implies that b is not colored 0 (resp. 3). We associate to each
vertex i of T6 its anti-twin i + 3 (mod 6). Thus t and b cannot have the same color nor anti-twin
colors. The graph G8 depicted on the left of Figure 6 contains 4 vertices that are pairwise linked by
the mentioned subgraph. No two of them can have the same color nor anti-twin colors. Since T6
consists in only 3 pairs of anti-twins, G8 does not map to T6.

4. Proof of Theorem 3

We suppose that there exists a graph H ∈ Pg that does not map to T5 and is minimal for the
subgraph order. Notice that T5 is a circulant tournament, so H must be 2-connected since otherwise
we can obtain a T5-coloring of H from the T5-colorings of the 2-connected components of H .
Thanks to Theorem 2 and the graph G6 in Section 3, we can assume that 6 6 g 6 11. Since
H ∈ P6, we have that H is 2-degenerate and thus δ(H) = 2. Let v be a 2-vertex of H and let x1
and x2 be the neighbors of v. Notice that the tournament obtained by reversing every arc of T5 is
isomorphic to T5. So, by possibly reversing every arc ofH , we assume without loss of generality that
H contains−→x1v. The graph H ′ = H \ v is a subgraph of H and thus admits at least one T5-coloring.
LetM be the set of T5-coloringsm ofH ′ such thatm(x1) = 0. Let S be the set {m(x2) |m ∈M}.
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So S is non-empty. Moreover, S ⊂ {0, 1} if −→vx2 ∈ A(H) and S ⊂ {2, 3} if −→x2v ∈ A(H), since
otherwise H would map to T5.

Now we use H ′ to construct a series of gadgets UX with two specified vertices z and z′ on its
outerface such that there exists a T5-coloring of UX such that z is colored 0 and z′ is colored c if and
only if c ∈ X . Our goal is to obtain U2,3. By setting z = x1 and z′ = x2, we obtain US = H ′. So,
if S = {2, 3}, then we are done. If |S| = 1, then we obtain U0 by identifying the vertices z′ of two
copies of US , such that the vertices z and z′ of U0 correspond to the vertices z of both copies of US .
If S = {0, 1}, then we obtain U0 from two copies U1

S and U2
S of US by identifying z of U1

S with z′

of U2
S , and z′ of U1

S with z of U2
S , and choosing z and z′ of U1

S as z and z′ of U0, respectively. Now,
we obtain U2,3 by adding a directed path zy1y2y3z′ to U0 such that the vertex z of U2,3 is z and the
vertex z′ of U2,3 is y2. It is indeed easy to check that if z is colored 0 then the vertex z′ of U0 is
colored 0 and y2 can be colored 2 or 3.

The reduction is from PLANAR C5-COLORABILITY, which is known to be NP-complete for
planar graphs with girth at least 7 [7]. Let I be an instance of PLANAR C5-COLORABILITY with
girth at least 7. We obtain the oriented graph G from I by replacing every edge ab of I by a copy of
U2,3 such that a = z and b = z′. Then I admits a C5-coloring if and only if G maps to T5 (a vertex
colored c ∈ {0, . . . , 4} in I is colored 2c (mod 5) in G).

Let us show that G satisfies the conditions of Theorem 3. Notice that in every case, the girth of
U2,3 is at least g. The distance between z and z′ in U2,3 is at least 2, so the distance between old
vertices in G is at least 2 and the cycles of G that are not contained in a copy of U2,3 have length at
least 2× 7 = 14 > g. So G contains no cycle of length strictly smaller than g. Finally, suppose that
H is bipartite. Then U2,3 is bipartite and the distance between z and z′ is even. Thus G is bipartite
too.

5. Proof of Theorem 5

We suppose that there exists a graph H ∈ Pg that does not map to T6 and is minimal for the
subgraph order. Notice that T6 is a circulant graph, so H must be 2-connected since otherwise we
can obtain a T6-coloring of H from the T6-colorings of the 2-connected components of H . Thanks
to Theorem 4 and the graph G8 in Section 3, we can assume that 8 6 g 6 15. Since H ∈ P6, we
have that H is 2-degenerate and thus δ(H) = 2. Let v be a 2-vertex of H and let x1 and x2 be
the neighbors of v. A graph that is push equivalent to H has a T6-coloring if and only if H has a
T6-coloring, because if a vertex v that mapped to a vertex i is pushed, then v maps to the anti-twin
of i. So, by possibly replacing H by a graph that is push equivalent to H , we can assume that H
contains the arcs −→x1v and −→x2v. The graph H ′ = H \ v is a subgraph of H and thus admits at least
one T6-coloring. Let M be the set of T6-colorings m of H ′ such that m(x1) = 0. Let S be the set
{m(x2) |m ∈M}. Notice that we cannot have m(x1) = 0 and m(x2) ∈ {0, 1, 5}, since otherwise
it would be possible to extend m to H . So S is a non-empty subset of {2, 3, 4}.

Now we use H ′ to construct a duplicator gadget D with two specified vertices z and z′ on its
outerface such that D maps to T6 and every T6-coloring of D is such that z and z′ have the same
color. We consider two cases depending on S:

• If S = {3}, then we obtain D from H ′ by pushing the vertex x2 and by setting z = x1 and
z′ = x2. Thus, z and z′ have the same color.

• If S ∩ {2, 4} 6= ∅, then we obtain D from two copies of H ′ as follows (see Figure 8). We
identify the vertices x2 of both copies of H ′. We rename the two vertices x1 in z and z′.
Finally, we add the directed paths x2x3x4x5z and x2x3x′4x

′
5z

′. Suppose that z is colored 0.
Because of the copy of H ′ between z and x2, x2 cannot be colored 0, 1, or 5. Because of the
directed 4-path x2x3x4x5z, x2 cannot be colored 3.

Suppose that x2 is colored 2. So S contains 2 and the only possible coloring of the path
x2x3x4x5z is such that the color of xi is i, for 2 6 i 6 5. So x3 is colored 3 and the path
x3x

′
4x

′
5z

′ forbids that z′ is colored 4 or 5. The copy of H ′ between z′ and x2 forbids that z′
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is colored 1, 2, or 3. The only remaining possibility is that z′ is colored 0, which is possible
since S contains 2 and the vertices x′i can be colored i, for 4 6 i 6 5.

Suppose that x2 is colored 4. So S contains 4 and the only possible coloring of the path
x2x3x4x5z is such that the color of xi is 2i (mod 6), for 2 6 i 6 5. So x3 is colored 0 and
the path x3x′4x

′
5z

′ forbids that z′ is colored 1 or 2. The copy of H ′ between z′ and x2 forbids
that z′ is colored 3, 4, or 5. The only remaining possibility is that z′ is colored 0, which is
possible since S contains 4 and the vertices x′i can be colored 2i (mod 6), for 4 6 i 6 5.

Thus, z and z′ have the same color.

H′

z

x2

H′
z′

x′4x4 x3 x′5x5

Figure 8: Construction of D.

The reduction is from PLANAR 3-COLORABILITY, which is known to be NP-complete [10] for
planar graphs with maximum degree 4. Let I be an instance of PLANAR 3-COLORABILITY. We
obtain the oriented graph G from I by replacing every edge of I by the edge gadget depicted in
Figure 9. A vertex in G that corresponds to a vertex in I is said old. Consider a T6-coloring of the
edge gadget such that a is colored 0. By the property of D, the vertices a′ and a′′ are also colored
0. The directed 4-path between a′ and b forbids color 3 for b. The directed 2-path between a′′ and b
forbids colors 0, 1, and 5 for b. On the other hand, b can be colored 2 or 4. This shows that I admits
a 3-coloring if and only if G maps to T6 (a vertex colored c ∈ {0, 1, 2} in I is colored 2c in G).

=⇒
D

D
a b

a′

a′′

ba

Figure 9: The edge gadget.

Let us show that G satisfies the conditions of Theorem 5. Recall that the girth g of H satisfies
8 6 g 6 15. The distance between x1 and x2 in H ′ is at least g − 2. The distance between z and
z′ in D is at least g − 2 in the case S = {3} and is 6 in the case S ∩ {2, 4} 6= ∅. So, the distance
between z and z′ in D is at least 6. Moreover, D contains no cycle of length strictly smaller than
g. The distance between old vertices in G is at least 6 + 2 = 8. Thus the shortest cycles of G that
are not contained in a copy of H ′ have length at least 2× 8 = 16. So G contains no cycle of length
strictly smaller than g. Finally, suppose that H is bipartite. Then H ′ is bipartite and the distance
between x1 and x2 in H ′ is even. Also, D is bipartite and the distance between z and z′ is even.
Thus the distance between old vertices is even, which implies that G is bipartite.
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